次磷去除剂

次磷去除剂

次磷去除剂

一、次磷去除剂简介

次磷去除剂是一种化学无机复合盐,铝镁基复合物,呈白色粉末状,易溶于水,湛清环保通过均相共沉淀技术,研发的次磷去除剂能够让水中的次亚磷酸盐快速生成不溶性沉淀,是化学镀、磷化工等行业含次亚磷废水的首选处理废水药剂。

二、次磷去除剂的作用

次磷去除剂因能够去除次磷,而被广泛用于电镀行业。电镀液中由于存在次磷酸钠,导致产生的清洗废水中含有次磷酸钠,传统的芬顿氧化法无法彻底把次磷氧化为正磷,因此无法除磷。次磷去除剂由多种无机盐复合而成,在废水中形成多交联的网络,表面带有大量的正电荷,在双氧水的催化作用下,能够与次磷酸根相互作用,生成沉淀物,将含磷废水处理至0.5mg/L以下。

三、次磷去除剂使用步骤

使用次磷去除剂P3,首先运用传统工艺将废水调节pH值至酸性,然后根据废水量分别加入适量的次磷去除剂和双氧水,反应达到一定时间后,再将废水pH值调节至中性,加入絮凝剂,经一定时间再次沉淀后,出水,磷即可达标。次磷去除剂操作相对简单,处理成本低,出水清澈透明,具有除磷、除重金属、降COD等多重功效,因而被电镀生产厂商们广泛使用。

UNITANK工艺提高氮、磷去除率的研究

吴牛嘴等^jNlTANK工岂提高氮、磷去除率的研究73 整的运行周期由6个阶段组成,主体1一过渡l一沉降1一丰体2一过渡2一沉降2阶段。后3个阶段的污水流向恰好与前3个阶段相反(如图2)、 罔2uNITANK上艺的周期运钉过程 22试验用水及试验污泥 试验地点为南京市锁金村污水处理厂,试验水质为典型的城巾生活t;水,污水水质如表l。试验开始时,驯化污泥取自该厂曝气池的活性污泥。 表l试验水质(曝气沉砂池出水 3结果与讨论 3l主体阶段运行时间试验 本试验没置了3个主体阶段反应时间210min、120min和90nlin,过渡阶段和沉降阶段分别采用30min和60min。水力停留时间恒定为12h,水温在49℃范围内变化,泥龄控制为25—30d,容积负荷范同为0290.52奴CoD/m3-d。 主体阶段的时间对coD和TP处理效果的影响如图3。cOD的去除率随主体段时间的变化不显著,但TP的去除率则与主体段时间设置有一定关系。随着主体段时间的延长,TP的去除旱升高的趋势。, 主体阶段的时间对TP去除率的影响可从微生物活性的角度进行解释,微牛物菌群的活性依赖于其有利的生存研=境。上体阶段时间为210m;n、l2【)min和9()mm时活性污泥处于厌氧状态与好氧状态的时间比例分别为0.64、O50和043。厌氧阶段对于除磷菌的蕈要性是不言而喻的。厌氧时段的缩短将会影响除磷茼的活性,使除磷菌不能充分释磷,进而导致曝气阶段的吸磷能力受到影响,致使除磷率降低¨。此外,uNITANK采用连续进水,能保证厌氧池源源不断地产生挥发‘怍脂肪酸(VFA),满足释磷。因此,适当延长厌氧阶段的时间冉利于活性污泥充分释磷,而小会因内源损耗引起无效释磷。同时,随着反应的进行,搅拌池中的污泥不断被椎流进入曝气池。搅拌池巾残留的污泥越来越少,相对可利用的碳源增多,这更有利于这部分污泥的充分释磷。 手体阶段的时同(mm) 盥3主体段时间试验 总的来说,主体阶段时间对于cOD的降解无很大影响,适当延长主体段时问有利于TP的去除。但3个试验工况下NfE—N去除率都不商。 32过渡阶段运行时间试验 前述试验中,NHi—N去除率较低.分析其可能的原因如下:(1)过渡段曝气时间不足;(2)好氧泥龄低;(3)水温较低。 针对上述原困,本试验调整了过渡阶段的时间,并且延长污泥泥龄至40—50d,试验水温在18—25℃范围内。中间曝气池的DO浓度控制在30—40mg/L范围内,HRT控制在12h,uNITANK反应器的平均MLSs浓度为3500mg/L。试验中考察了过渡段时间为60min、90min、120mln和150一n时的N}“。N和TP去除的情况。主体段和沉降段时间分别设定为90min和60min。 图4足NH?一N和TP的去除率随过渡段时问

絮凝剂配方工艺

新资料目录: 1 .X 用于水处理的絮凝剂的制备方法 2 .2 一种聚合有机硫酸铝絮凝剂配方及制备方法 3 .3 一种高效藻絮凝剂及其用于治理赤潮及水华的方法 4 . 5 结构改性的聚合物絮凝剂 5 .X 油水分离絮凝剂及油水分离絮凝方法 6 . 7 有机无机复合型絮凝剂及其生产方法 7 .0 一种絮凝剂及生产方法 8 .8 造纸纸浆和包含酸性含水氧化铝溶胶的絮凝剂 9 .4 生态安全复合高效絮凝剂 10 .6 双机絮凝剂 11 .3 一种有机高分子絮凝剂及其制备方法 12 .3 新型复合絮凝剂及其制备方法 13 .3 聚硅铝絮凝剂的制备方法 14 .3 一种制备絮凝剂的方法及其设备 15 .5 木质素季铵盐阳离子絮凝剂合成工艺 16 采用新型施胶用絮凝剂进行中性-碱性造纸 17 一种水处理方法及其絮凝剂 18 .0 聚合氯化铝絮凝剂生产工艺 19 .2 碱式氯基硫酸铝,其制法及作为絮凝剂的应用 20 .0 用煤渣粉生产复合絮凝剂的方法 21 .4 一种絮凝剂的生产方法 22 .9 含铝、镁有机高分子絮凝剂及制法 23 .5 高分子复合絮凝剂的生产方法 24 .X 用于回收蛋白质的新型絮凝剂 25 .5 聚合硅酸-盐液体絮凝剂及制备方法 26 .5 聚合硅酸-盐絮凝剂及制备方法 27 .3 水处理用的絮凝剂 28 .1 吸附絮凝剂的制备 29 .6 聚合硅酸-铝复合絮凝剂及制备方法 30 .6 用于水处理的絮凝剂及其生产方法 31 .0 水处理用无机复合絮凝剂及其制备方法 32 .X 多氯聚硫钨酸铝絮凝剂的生产方法 33 .2 絮凝剂的回收方法 34 .7 用水淬渣或飞灰生产硅酸系絮凝剂的方法 35 .7 一种生产聚合氯化铝絮凝剂的工艺 36 .9 新型阳离子絮凝剂 37 .0 生产絮凝剂中的脱水方法 38 .7 聚硅酸锌絮凝剂的制备方法及用途 39 .3 一种处理造纸黑液的絮凝剂 40 .2 硅钙复合型聚合氯化铝铁絮凝剂及其生产方法 41 .8 施胶用絮凝剂及其制法

污水处理用杀菌剂破乳除油剂生物活性磷消泡剂油泥专用分

污水处理用杀菌剂\破乳除油剂\生物活性磷\消泡剂\油泥专用分离剂 公开招标技术要求 一、种类及规模: 锦西石化分公司污水车间污水处理用杀菌剂\破乳除油剂\生物活性磷\消泡剂\油泥专用分离剂等水处理剂。本采购量杀菌剂78吨,浮选破乳除油剂15吨,生物活性磷35吨,浮渣消泡剂22吨,油泥专用分离剂8吨。 本次招标分成五个标段: 标段一:杀菌剂; 标段二:浮选破乳除油剂; 标段三:生物活性磷; 标段四:浮渣消泡剂; 标段五:油泥专用分离剂。 (1)、本次招标不接受联合体投标;(2)、具有法人资格、生产许可的生产商;公司注册资本在1000万元人民币(含)以上。(3)、已获得ISO9000(或ISO14000、ISO18000)体系认证;(4)、近两年在中国石油、中国石化、中海油炼油企业三家及以上应用业绩(其中浮选除油剂需提供浮选单元业绩;活性磷需提供生化系统应用业绩;杀菌剂需提供污水回用系统的应用业绩;油泥分离剂需提供浮渣、油泥处理单元业绩;消泡剂需提供炼油污水的应用业绩。)并提供业绩证明材料。(5)、近3年在炼油行业未出现过质量、技术、安全、业绩、财务、资质等问题。(6)、所供产品具有企业所在地的技术监督局备案的产品标准。 二、使用功能: 投加杀菌剂后,污水回用水异养菌合格。 投加破乳除油剂后,能够去除污水中的浮油,并将水体中的小颗粒絮凝成较大的团体。 投加生物活性磷后,能够提高生化系统中水体的磷营养源,提高微生物活性。 投加消泡剂后,能够消除浮选池浮渣夹带的气泡,并不影响后续水处理,不增加水体中污染物含量。

投加油泥分离剂后,在处理浮渣和油泥时,水、泥、油能够较好分离,泥饼含水率达标。 三、技术标准: 1、杀菌剂 序号内容 1 关键技术参数和要求(不满足关键技术参数和要求,投标将被否决) 1.1 现场运行情况介绍 杀菌剂主要去除循环水中的细菌,应用于污水车间新区装置回用水,一次性投加挂篮中通过来水冲刷缓慢溶解。回用水量为每小时350-450吨,投加浓度为20-30ppm。 1.2 药剂使用要求 投加后确保有效的防止微生物及细菌的生长,回用水质合格。 1.3 技术规格 主要指标要求:活性溴、氯组份:≥80.0%。并满足运输、存储、现场使用的实际要求。 1.4 用量及性能保证 1.4.1要求药剂为固体片状; 1.4.2要求药剂为固体含活性溴类杀菌剂; 1.4.3不能增加污水中其他污染物含量(总磷、总氮等); 2、浮选破乳除油剂 序号内容 1 关键技术参数和要求(不满足关键技术参数和要求,投标将被否决) 1.1 现场运行情况介绍 破乳除油剂用于污水处理过程中浮选单元,具有凝聚和除油能力,在污水装置两级浮选投加量分别为:涡凹曝气1.2-1.4ppm,溶气气浮1.0-1.2ppm。处理水量为每小时600吨。 1.2 药剂使用要求 投加药剂后,二级浮选出水油含量≤40mg/L。 1.3 技术规格 几丁质类除油剂,固含量≥90%,溶解时间≤120min;满足运输、存储、现场使用的实际要求。 1.4 用量及性能保证 1.4.1要求药剂为粉末状; 1.4.2药剂在经过熟化后不能含有较明显的杂质; 1.4.3不能增加污水中其他污染物含量。

如何提高污泥脱氮除磷效果效率

如何提高污泥脱氮除磷效果效率 氮、磷污染已成为破坏水体环境的主要因素之一(如水体富营养化),生物脱氮除磷越来越受到人们的重视[1, 2, 3]. 在常规污水生物处理系统中,由于脱氮与除磷之间存在矛盾,常采用化学法辅助除磷(通过投加铁盐和铝盐出水TP含量在0.02 mg ·L-1以下); 而脱氮由于受温度、 DO、 pH值等因素的影响难以达到稳定的脱氮效果[4, 5, 6, 7, 8]. 好氧颗粒污泥具有优异的沉降性能、较高的微生物浓度和良好的抗冲击负荷能力[9, 10, 11]. 有研究发现,颗粒污泥一定的粒径和紧密结构导致DO在污泥内部传质时形成好氧区/缺氧区/厌氧区从而有利于系统同步脱氮除磷[12, 13, 14]. Kerrn-Jespersen等[15]发现PAOs具有反硝化聚磷能力,它以NO-x(NO-2+NO-3)代替氧作为电子受体同步去除N和P,可以有效节约碳源和能源,反应器形成NO-x是反硝化聚磷的重要步骤. 如果系统中存在反硝化聚磷菌,反应器吸磷过程中可以减缓硝酸盐存在对聚磷菌活性的影响; 如果反硝化聚磷菌不存在,在脱氮除磷颗粒污泥中好氧段硝酸盐将对好氧吸磷产生影响[16, 17]. 同步硝化反硝化(simultaneous nitrification and denitrification, SND)作用是使在污泥外部好氧区形成的NO-x,通过内层缺氧区反硝化作用降低从而减少主体溶液中 NO-x(NO-2+NO-3)的积累(NO-x不积累可以降低其对聚磷菌活性的影响)[18]. 因此,污泥内部形成稳定性的好氧区/缺氧区是影响系统脱氮效果的关键. 在较低DO下硝化菌活性受到抑制,在较高DO下反硝化菌受到抑制,因此在好氧池中DO对脱氮影响很大. 文献[21, 20, 21]指出,当DO浓度为0.5 mg ·L-1时,系统可以获得良好的同步硝化反硝化脱氮效果. 利用好氧颗粒污泥进行脱氮除磷研究近年来取得了较大进展[12],但少有人系统研究脱氮除磷颗粒污泥的硝化反硝化特性. 因此,笔者以好氧/厌氧交替运行的SBR反应器培养的脱氮除磷颗粒污泥为研究对象,采取一定的手段对颗粒污泥反应器的N、 P历时去除效果、硝化及反硝化反应特性等进行研究,并通过N的平衡细致分析脱氮除磷反应过程中N的去除走向,丰富了颗粒污泥进行脱氮除磷研究. 1 材料与方法 1.1 试验装置 试验用SBR反应器,材质为有机玻璃,有效容积4 L,内径16 cm,高径比为1.56(图1). 反应器每周期运行4.8 h,包括进水1 min、厌氧80 min、好氧196 min、沉淀4 min、出水4 min以及闲置4 min共6个阶段. 反应器每周期进水2 L,出水2 L. 反应器搅拌强度在80 r ·min-1左右,曝气强度在12 L ·(L ·h)-1左右,温度在22℃±2℃(由水浴控制)、 pH值在7.5左右. 每天从反应器中排出一定量混合液,维持系统污泥龄在23 d左右.

如何提高A2O工艺的脱氮除磷效果

如何提高A2/O工艺的脱氮除磷效果 1.A2O池的检测与控制参数的确定 A2O生物除磷脱氮工艺处理污水效果与DO、内回流比r、外回流比R、泥龄SRT、污水温度及PH值等有关。一般厌氧池DO在0.2mg/l以下,缺氧池DO在0.5mg/l以下,而好氧池DO在2.0mg/l以上;污泥混合液的PH值大于7;SRT为8-15天。 然而A2O生物除磷脱氮过程,本质上是一系列生物氧化还原反应的综合,A2O生物池各段混合液中的ORP(氧化还原值)能够综合地反应生物池中各参数的变化。混合液中的DO越高,ORP值也越高;而当存在磷酸根离子和游离的磷时,ORP则随磷酸根离子和游离的浓度升高而降低。一般A-A-O生物除磷脱氮工艺处理过程中,厌氧段的ORP应小于-250mV,缺氧段控制在-100mV左右,好氧段控制在40mV以上。 如厌氧段ORP升高,表明DO值过大,可能与回流比过大带入更多的氧及回流污泥中带入太多的氮有关,还与搅拌强度太大产生空气复氧有关。 如缺氧段ORP升高,表明DO值过大,可能与回流比过大带入更多的氧有关,另外还与搅拌强度太大产生空气复氧有关。 根据以上说明的A2O池中各参数变化对污水除磷脱氮处理工艺的影响,合理选择检测仪表,对污水处理过程中各参数的变化情况进行检测,为污水处理厂的运行控制提供依据。一般A2O工艺中需要检测的数据为: 进水:进水量Q COD COD5 PH T A2O池厌氧段:溶解氧DO 氧化还原值ORP A2O池缺氧段:溶解氧DO 氧化还原值ORP A2O池好氧段:溶解氧DO 氧化还原值MLSS 出水:COD BOD5 根据以上推荐的典型仪表配置与工艺控制特点,我们提出以ORP和DO为主要控制参数,来对曝气系统、内回流系统、外回流系统、剩余污泥排放系统进行控制,以实现良好的除磷脱氮效果,有效地降低污水中的BOD5,同时最大限度地节约能源,使整个系统高效稳定地运行。 2.A2O污水处理工艺过程控制方法 A2O污水处理工艺A2O池传统的控制是:DO值的PID调节(进气量)、MLSS的PID调节(回流比)均为对单一参数的单一对象控制。然而污水处理过程是一个滞后量非常大的过程,影响过程的参数也很多,不可能依据某一具体参数来实现整个过程的控制。污水处理过程中,生物池的曝气系统控制、污流回流系统控制都是极其复杂的控制过程。采用独立的单一的闭环控制很难达到控制要求。随着控制技术的不断发展,同时在污水处理运行过程中不断积累了大量的运行数据,这就为控制过程的查表运算,实现模糊控制带来了可能。 (1) 曝气系统自动化控制 根据季节、进水水质、进水水温、进水水量、好氧池DO、出水COD、BOD5、NH3-N 、TOP、TKN、SS等情况不同,分别确定不同的供气量,即确定空气调节阀的开度和鼓风机的开启台数及其转速。自动对工艺过程控制进行自动修整,实现模糊控制。 A2/O工艺是将厌/好氧除磷系统和缺氧/好氧脱氮系统相结合而成,是生物脱氮除磷的基础工艺,可同时去除水中的BOD、氮和磷。 工艺为:原水与从沉淀池回流的污泥首先进入厌氧池,在此污泥中的聚磷菌利用原污水中的溶解态有机物进行厌氧释磷;然后与好氧末端回流的混合液一起进入缺氧池,在此污

含有抗絮凝剂的乙膦铝可湿粉配方(高悬浮率)

含有抗絮凝剂的乙膦铝可湿粉配方(高悬浮率) 关键词:乙膦铝可湿粉配方悬浮率抗絮凝剂助剂DC7D06朗钛 近期,深圳市朗钛生物科技有限公司研制成功的新型可湿粉助剂wgwin DC7问世。DC7助剂是一种类白色粉末,含有多种活性成分,可用于乙膦铝可湿粉配方中,能够有效地减少可湿粉在水中的絮凝现象,大大提高产品的悬浮率。 乙磷铝可湿粉是一种常见的农用杀菌剂,能够在植物体内传导,为性杀菌剂,兼具治疗和保护双重作用。广泛应用于防治蔬菜、果树、水稻、瓜类等病害。国内有数百家厂家登记此产品。在实际生产和使用中,乙磷铝可湿粉产品往往在水中产生絮凝,有效成分迅速在水中沉淀,悬浮率常低于30%,为不合格产品。深圳朗钛公司发现,在不同含量的乙磷铝可湿粉产品中,生产时加入2—5%的可湿粉助剂DC7,能够有效地防止絮凝,悬浮率提高到80%以上,大大提高产品质量,更有利于药效发挥。经厂家使用,取得了满意的效果。 wgwin DC7的使用方法:1.在原生产配方中加入2—5%,即可有效地提高悬浮率。2.使用以下推荐配方。 推荐配方:(一) 25%乙膦铝可湿粉配方 乙膦铝…………25%(折百)助悬剂D08……14% 助剂DC7……2.5%填料…………补足至100% 【注】助悬剂D08是深圳朗钛公司生产的高效助悬剂。结果测得产品乙膦铝悬浮率:91.6%,润湿时间65s。

推荐配方:(二) 50%乙膦铝可湿粉配方 乙膦铝…………40%(折百)助悬剂D08……14% 助剂DC7……3.3%白炭黑…………6% 高岭土…………补足至100% 【注】助悬剂D08是深圳朗钛公司生产的高效助悬剂。结果测得产品乙膦铝悬浮率:87.3%,润湿时间78s。 悬浮率是衡量农药可湿粉质量高低的重要指标。悬浮率越高,有效成分在水中分布越均匀,其效果远高于悬浮率差的产品。悬浮率低的产品,在水中会产生沉淀、絮凝等,喷雾时浓度不均匀,影响防治效果。使用时甚至会堵塞喷雾器的喷头等。 深圳市朗钛生物科技有限公司是一家农药技术研发公司,研制了1200多种可湿粉配方,同时开发出多种农药助剂。新型可湿粉助剂DC7问世的问世,将会大大提高乙磷铝可湿粉、乙膦铝可湿粉产品的悬浮率,推动众多的农药企业产品质量提升。 深圳市朗钛生物科技有限公司 地址:深圳市龙华新区观澜隆添利科技园H栋五楼,邮编:518110

铁盐絮凝剂配方8例

铁盐絮凝剂配方8例 1、聚合硫酸铁絮凝剂 聚和硫酸铁又称为羟基硫酸铁,是一种无机高分子絮凝刺,其液体为红棕色产品,固体则为黄色粉束状。聚铁的分子通式可表示为[Fe2 (OH)n( S04) 3-1/2] m。聚铁具有中和胶体电荷、压缩烈电层、降低胶体?电位的能力,从而使其具有良好的絮凝、混凝作用。据文献报道,聚铁在除浊、除COD和BOD等方面均优于其他的无机絮凝剂,且还具有pH适用范围广、无毒、对设备腐蚀性小等诸多优点,目前已广泛地应用于给排水工业和废水处理行业。(1)制备方法 ①硫酸铁聚合法制备 取定量的硫酸铁用去离子水进行溶解,制得含铁最为3mol/L的硫酸铁溶液,然后熟化24h,量取一定体积的聚合硫酸铁溶液,边搅拌边缓慢滴加一定浓度的氢氧化钠溶液,定容制得不同pH值的含铁量为0.5mol/L。聚合硫酸铁絮凝剂。 ②硫铁矿烧渣和硫酸溶液为原料制备 称取100g烧渣置于500ml烧瓶中,加入浓度为30%的硫酸浸泡。反应4h,然后聚合反应2h,取少量反应液,经检验全部为Fe3+时,反应完成。经过滤,制得液体产品。滤渣回收。 方法特点该方法具有投资少、原料易得、工艺简单、成本低和产品质量稳定等优点,适台于硫酸厂自行生产。为便于运输,可以将液体产品经浓缩过程生产胶体粒状的产品。工艺过程产生的废渣pH在2~3左右,可用于处理碱性废水(如造纸黑液),达到以废治废的目的。 ③硫酸亚铁聚合法制备 取25mL自来水于250mL的烧杯中,缓缓加入15mL浓H2S04。称取80g Fe2SO4·7H2O 工业品溶于前述稀H2SO4中,搅拌。接5~6s加1滴的速度滴加16mL H2O2,待H2O2滴加完毕,继续搅拌5min后静置。硫酸亚铁也可用空气氧化,但要加入MnO2作为催化剂。反应温度控制在50~60℃。 硫酸亚铁和硫酸也可由钢铁厂酸洗废藏提供,根据工艺指标补加化学计量的Fe2SO4·7H2O和硫酸。最佳工艺指标”n(H+):n(Fe2+)=0. 35~0 45。 (2)应用 聚合硫酸铁混凝具有凝聚力强、水解快、矾花大、沉降快、不存在铁后移的问题等优点,完全可出替代目前所应用的铝系混凝剂用于水的净化处理。 例如对渤海湾海水进行颦凝实验。原水求质指标为:浊度15~50NTU,pH7. 9~8. 4总铁0. 79mg/l.,总硬度5. 77g/L。碱度169g/L。当该混凝剂投加30mg/L,温度为15~25℃条件下快速搅拌混合1min后,搅拌转数(慢速)为50r/min。能有效地去除渤海湾海水中总固溶物、悬浮物和降低有机物的含量,处理后海水浊度≤4NTU。因此,能够为大规模海水净化工艺提供有效的技术支持。 2、纳米聚合硫酸铁絮凝剂 (1)制备方法 水热法台成纳朱聚合硫酸铁 称取8 0g Fe3( SO4) 3·xH2O于乙二醇溶液中,在60℃的超声渡反应器中反应。在搅拌条件下缓慢滴加1mol/L乙酸钠溶液,调节溶液的pH值至1.30,继续搅拌反应0.5h。此时溶液为红褐色。将反应液放入到水热反应釜中,在150℃的条件下水热反应15h。反应后,将

常用絮凝剂的溶解与使用方法

常用絮凝剂的溶解与使用方法 1、PAC(聚合氯化铝)的溶解与使用 1) PAC为无机高分子化合物,易溶于水,有一定的腐蚀性; 2) 根据原水水质情况不同,使用前应先做小试求得最佳用药量(具体方法可参见第2条:聚合硫酸铁的溶解与使用-加药量的确定);(参考用量范 围:20-800ppm) 3) 为便于计算,实验小试溶液配置按重量体积比(W/V),一般以2~5%配为好。如配3%溶液:称PAC3g,盛入洗净的200ml量筒中,加清水约50ml,待溶解后再加水稀释至100ml刻度,摇匀即可; 4) 使用时液体产品配成5-10%的水液,固体产品配成3-5%的水液(按商品重量计算); 5) 使用配制时按固体:清水=1:5(W/V)左右先混合溶解后,再加水稀释至上述浓度即可; 6) 低于1%溶液易水解,会降低使用效果;浓度太高易造成浪费,不容易控制加药量; 7) 加药按求得的最佳投加量投加; 8) 运行中注意观察调整,如见沉淀池矾花少、余浊大,则投加量过少;如见沉淀池矾花大且上翻、余浊高,则加药量过大,应适当调整; 9) 加药设施应防腐。 2、聚合硫酸铁(PFS)的溶解与使用 1) PFS溶液配制 a. 使用时一般将其配制成5%-20%的浓度; b. 一般情况下当日配制当日使用,配药如用自来水,稍有沉淀物属正常现象。 2) 加药量的确定 因原水性质各,应根据不同情况,现场调试或作烧杯混凝试验,取得最佳使用条件和最佳投药量以达到最好的处理效果。 a.取原水1L,测定其PH值;

b.调整其PH值为6-9; c.用2ml注射器抽取配制好的PFS溶液,在强力搅拌下加入水样中,直至观察到有大量矾花形成,然后缓慢搅拌,观察沉淀情况。记下所加的PFS量,以此初步确定PFS的用量; d. 按照上述方法,将废水调成不同PH值后做烧杯混凝试验,以确定最佳用药PH值; e. 若有条件,做不同搅拌条件下用药量,以确定最佳的混凝搅拌条件; f. 根据以上步骤所做试验,可确定最佳加药量,混凝搅拌条件等。 注意混凝过程三个阶段的水力条件和形成矾花状况。 a) 凝聚阶段:是药剂注入混凝池与原水快速混凝在极短时间内形成微细矾花的过程,此时水体变得更加浑浊,它要求水流能产生激烈的湍流。烧杯实验中宜快速(250-300转/分)搅拌10-30S,一般不超过2min。 b) 絮凝阶段:是矾花成长变粗的过程,要求适当的湍流程度和足够的停留时间(10-15min),至后期可观察到大量矾花聚集缓缓下沉,形成表面清晰层。烧杯实验先以150转/分搅拌约6分钟,再以60转/分搅拌约4分钟至呈悬浮态。 c) 沉降阶段:它是在沉降池中进行的絮凝物沉降过程,要求水流缓慢,为提高效率一般采用斜管(板式)沉降池(最好采用气浮法分离絮凝物),大量的粗大矾花被斜管(板)壁阻挡而沉积于池底,上层水为澄清水,剩下的粒径小,密度小的矾花一边缓缓下降,一边继续相互碰撞结大,至后期余浊基本不变。烧杯实验宜以20-30转/分慢搅5分钟,再静沉10分钟,测余浊。 表1:PFS适用范围及参考用量

金属除油剂配方成分比例,除油剂生产工艺及除油原理

金属除油剂配方成分比例,生产工艺及除油原理 1 背景 金属除油剂除油原理是表面活性剂与助洗剂润涅、渗透、乳化分散、加溶效能的综合体现。利用表面活性剂分子结构中的亲水基团和亲油基团而吸附于油污和溶液之间的界面上, 其亲水基团指向溶液而亲油基团指向油污, 定向地排列, 使得油一液界面张力大大降低。在搅拌作用下, 油污松动, 容易被分散成极细小的油珠而被脱离工件表面。表面活性剂与助洗剂又通过乳化分散作用, 使油珠之间不能相互合并和重新粘附于工件表面上, 从而达到清洗作用, 效果显著。 金除油剂主要应用于金属表面除油,该除油剂能够在极短时间内有效地除去金属表面的油污,对金属没有腐蚀性,同时除油的配方简单、成本低、性能稳定。 禾川化学是一家专业从事精细化学品分析、研发的公司,具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。 样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师解谱—分析结果验证—后续技术服务。有任何配方技术难题,可即刻联系禾川化学技术团队,我们将为企业提供一站式配方技术解决方案! 2 金属除油剂常见组分 金属除油剂一般由助洗剂和表面活性剂两部分组成。通过大量实验,选用复配表面活性剂,有机溶剂、缓蚀剂、无机盐、消泡剂、水等按适当比例配制而成的一种金属除油剂。

2.1表面活性剂: 表面活性剂的加入首先起到降低溶液的表面张力,增强渗透作用;另外具有很好的脱脂能力及乳化作用,同时可以起到清洗和去污作用。 1)阴离子表面活性剂: 阴离子表面活性剂为油酸三乙醇胺皂、十二烷基苯磺酸钠、十二烷基硫酸钠、硬脂酸钠、聚氧乙烯月桂醇硫酸钠、脂肪醇聚氧乙烯醚羧酸盐、月桂酸甘油酯磷酸酯盐的至少一种。 2)非离子表面活性剂: 为烷基酚聚氧乙烯醚、椰子油脂肪酸二乙醇酰胺、脂肪醇聚氧乙烯醚中的至少一种。 2.2 增溶剂 增溶剂作用是促进有机物与水溶液体系的互溶,有利于形成均一体系。金属除油剂中常用到乙醇、异丙醇、丁醇、醇醚中的至少一种。 2.3 助洗剂 助洗剂主要作用是软化水的硬度、提供碱性缓冲环境,以及润湿、乳化、悬浮、分散污渍污垢,防止污垢再次沉淀附着。金属除油剂种是助洗剂是焦磷酸钠、焦磷酸钾、亚硝酸钠、苯甲酸钠、硫酸钠中至少一种。 2.4无机盐 无机盐增强表面活性剂的清洗剂能力,同时可以增强清洗液耐硬水性和镜片表面残留的油脂类油污的分散能力。一元羧酸盐为月桂酸、癸酸、肉豆蔻酸、正丁酸、己酸中的至少一种。二元羧酸盐为癸二酸、己二酸、丁二酸、壬二酸中的一种。金属除油剂采用碱性盐为氢氧化钠、碳酸钠、碳酸氢钠、正硅酸钠、偏硅

污水处理中的脱氮除磷工艺

污水处理中的脱氮除磷工艺 摘要:在陈述城市污水生物脱氮除磷机理的基础下,简单分析生物脱氮除磷的处理工艺。 关键词:脱氮除磷;机理;工艺 1 前言 城市污水中的氮、磷主要来自生活污水和部分工业废水。氮、磷的主要危害:一是使受纳水体富营养化;二是影响水源水质, 增加给水处理成本;三是对人和生物产生毒害。上述 危害严重制约了城市水环境正常功能的发挥, 并使城市缺水状况加剧,而且随着人民生 活水体的提高和环境的恶化,对水质的要求也越来越高。为了达到较好的脱氮除磷效果,环境工作者对一些传统工艺进行了改进或设计出新工艺,本文简单介绍一些脱氮除磷工艺。 2 生物脱氮原理【1】 一般来说, 生物脱氮过程可分为三步: 第一步是氨化作用, 即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中, 氨化作用进行得很快, 无需采取特殊的措施。第二步是硝化作用, 即在供氧充足的条件下, 水中的氨氮首先在亚硝酸菌的作用下被氧化成亚硝酸盐, 然后再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。第三步是反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。反应方程式如下: ( 1) 硝化反应: 硝化反应总反应式为: ( 2) 反硝化反应:

另外, 由荷兰Delft 大学Kluyver 生物技术实验室试验确认了一种新途径, 称为厌氧氨( 氮) 氧化。即在厌氧条件下,以亚硝酸盐作为电子受体,由自养菌直接将氨转化为氮, 因而不必额外投加有机底物。反应式为:NH4+NO2→N2+2H2O 3 生物除磷原理【1】 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 生物除磷过程可分为3 个阶段,即细菌的压抑放磷、过渡积累和奢量吸收。首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。反应方程式如下: ( 1) 聚磷菌摄取磷: ADP+H3PO4+能量→ATP+H2O ( 2) 聚磷菌的放磷: ATP+H2O→ADP+H3PO4+能量 4.脱氮除磷工艺 4.1 AB法【2】 AB法污水处理工艺是一种新型两段生物处理工艺,是吸附生物降解法的简称。该工艺将高负荷法和两段活性污泥法充分结合起来,不设初沉池,A、B两段严格分开,形成各自的特征菌群,这样既充分利用了上述两种工艺的优点,同时也克服了两者的缺点。所以

两种藻类对水体氮磷去除效果

第52卷第4期 2006年8月武汉大学学报(理学版) J.Wuhan Univ.(Nat.Sci.Ed.)Vol.52No.4 Aug.2006,487~491 收稿日期:2006202228 通讯联系人 E 2mail :Huzy @https://www.360docs.net/doc/bb18985490.html, 基金项目:国家高技术研究发展计划(863)项目资助(2002AA601021);国家重点基础研究发展规划(973)项目资助(2002CB412309)作者简介:凌晓欢(19822),男,硕士生,现从事藻类水质净化研究. 文章编号:167128836(2006)0420487205 两种藻类对水体氮、磷去除效果 凌晓欢1,2,况琪军1,邱昌恩1,2,胡征宇1 (1.中国科学院水生生物研究所/淡水生态与生物技术国家重点实验室,湖北武汉430072; 2.中国科学院研究生院,北京100049) 摘 要:借助人工装置和露天水池,通过分析实验水体中氮、磷元素浓度的变化,研究了实验室条件下一种绿球藻(Chlorococcum sp.)和露天小型生态系统中寡枝刚毛藻(Cladophora oli goclona K ütz ).对污水中氮磷营养的去除效果.结果显示:绿球藻在高浓度氮和磷的污水中生长良好并维持较高的氮磷去除率,在6天处理期间,人工污水中总溶解性氮、硝酸盐氮、氨氮、总溶解性磷的去除率分别达到46.2%,37.8%,98.4%和79.3%;在对天然湖泊水的处理中,绿球藻对总溶解性磷的去除率在第5天为79.2%.室外条件下,该刚毛藻通过吸收水体中的氮、磷营养维持自身正常生长代谢,从而降低水体的电导率和改善水质.根据本次研究,结果两种被试藻类均可作为污水处理用藻类,其中Chlorococcum sp.适合用于静态水体的修复与改善,Cladop hora oli goclona 适合于流动水体的减负与治理. 关 键 词:绿球藻;刚毛藻;氮;磷;水质;净化中图分类号:X 171 文献标识码:A 0 引 言 应用藻类进行水质净化的研究,自20世纪50年代起,至今已有近60年的历史[1].早期主要是应用微型藻悬浮培养技术进行污水处理,相关技术有藻菌氧化塘、高效藻类塘、活性藻 [2] 等.由于微型藻 悬浮培养技术在实际应用中有诸如过量藻体不易收获、出水中仍有藻类细胞残留等问题,科学家们随之将研究的焦点更多地集中在固着藻类的研究与应用上,如:固定化藻类技术[3]和藻菌生物膜技术.Da Costa [4]的研究结果证明,固定化藻类不但能有效去 除污水中的氮磷营养,对去除镉和锌等重金属离子也效果显著.由于受限于固定藻类用载体的成本较高,以致该项技术仅停留在实验室规模的研究和探索阶段,至今未见大规模实际应用的报道.吴永红等[5]以高分子材料的人工水草作为藻菌生物膜载体,用于改善富营养化水体的水质,同样获得较为理想的水质净化效果.为了进一步挖掘和筛选能有效净化污水且藻细胞易于收获的藻种,拓展藻类在污水处理中的应用范围,本文研究了一种极为耐污的 绿球藻(Chlorococcum sp.)和寡枝刚毛藻 (Cl adop hora oli goclona K ütz )对氮磷的去除效果,对二者各自的应用前景作了简要分析,同时对藻类水质净化的优势进行了探讨. 1 材料和方法 1.1 室内实验藻种与培养条件 绿球藻(Chlorococcum sp.)采自美国亚里桑那州一家污水处理厂,应用微藻分离纯化的方法,用B G11琼脂培养基分离纯化后保种培养.在无菌条 件下,将琼脂培养基上的单个藻落转接到B G11液体培养基中,置L R H 22502G 光照培养箱中培养,培养温度(25±1)℃,光照强度35~40μmol/m -2?s -1,在获得足够生物量后用于污水处理试验. 实验污水分别为人工合成污水和天然富营养化湖泊水.人工合成污水配方为:NaNO 30.425g 、(N H 4)2SO 40.075g 、MgSO 4?7H 2O 0.025g 、Ca (H 2PO 4)20.03g 、Na HCO 30.30g 、FeCl 30.0015g ,用自来水定容至1L.天然富营养化湖泊水采自 武汉东湖茶港湖区,经25号浮游生物网过滤去除明

复合絮凝剂的概述及研制方向

复合絮凝剂的概述及研制趋向 0120050092 吴志平 1、概述 絮凝技术是目前国内外普遍用来提高水质处理效率的一种既经济又简便的水质处理方法,它广泛用于工业用水、工业废水及生活污水的处理。在絮凝剂的选择和应用中,目前绝大多数放在无机絮凝剂和合成一般高分子絮凝剂上,而对复合絮凝剂的研究和应用很少。 在形态、聚合度及相应的凝聚-絮凝效果方面,无机高分子絮凝剂仍处于传统金属盐混凝剂与有机絮凝剂之间的位置。它的分子量和粒度大小以及絮凝架桥能力仍比有机絮凝剂差很多,而且还存在对进一步水解反应的不稳定性问题。此外无机絮凝剂的投加量大,产污泥量多,并且处理复杂;一般的有机高分子絮凝剂的价格昂贵,合成过程复杂。因而寻求一种价格低、处理效果好的新型絮凝剂就显得越来越重要。 2、无机复合絮凝剂 无机复合絮凝剂中高分子絮凝剂是其中的主流,在这儿我主要论述一下。无机高分子絮凝剂(IPF)是1960年后发展起来的新型絮凝剂,目前它的生产和应用在全世界都取得迅速进展。 无机复合絮凝剂有各种成分,其主要原料是铝盐、铁盐和硅酸盐。它们可以预先分别羟基化聚合后再加以混合,也可以先混合再加以羟基化聚合,但最终总是要形成羟基化的更高聚合度的无机高分子形态,才会达到优异的絮凝效能。 在无机复合絮凝剂中各组分的适当配比和制备时的最佳工艺应是研究的目标。制备过程中和最终产品内各组分的化学形态转化及其综合结果是研究和应用的关键问题。复合剂中每种组分在总体结构和凝聚-絮凝结果中都会作出贡献,但可能在不同方面的作用有正效应和负效应。如何在加强一种效应的同时尽量把另一种不利效应控制在有有限程度,应是在发展和选用复合絮凝剂时的重要考虑,取得综合的净增效果应是复合改型的遵循原则。 2.1 铝、铁、硅的聚合形态 铝、铁、硅类的无机高分子絮凝剂实际上分别是它们由水解、溶胶到沉淀过程的中间产物,即AL(+1)、Fe(+2)、Si(+4)的羟基和氧基聚合物。铝和铁是阳离子型荷正电、硅是阴离子型荷负电,它们在水溶态的单分子量约为数百到数千,可以相互结合成为具有分形结构的聚集体。 它们的凝聚-絮凝过程是对水体颗粒物的电中和与粘附架桥两种作用的综合体现。各类水体颗粒物及污染物的粒度在纳米到微米级,大多带负电荷。因此,絮凝剂及其形态的电荷正负、电性强弱和分子量、聚集体的粒度大小是决定其絮凝效能的主要因素。当然,水质与颗粒物的脱稳需求以及投加剂量和工艺条件的适配也是重要因素。 无机高分子复合絮凝剂的制备意图可能有许多方面的考虑,在设计方案中经常遇到的主要因素是:粘附架桥能力、稳定性和电中和能力等。聚合铝、聚合铁类絮凝剂的弱点,分子量和粒度尚不够高而聚集体的粘附架桥能力不够强,因而常加入粒径较大的硅聚合物来增强絮凝性能。但硅聚合物属于阴离子型,总体电荷会随其加入而降低,从而减弱了电中和能力。如果这时加入量和配比不能适度,就得不到最佳效果。 2.2、聚合硅酸铁(PFSiC) 在传统絮凝剂的应用中,已有许多方法试图以投加助凝剂来加强絮凝效果。把活化硅酸亚铁、硫酸铝的助凝剂分别投加,曾经发挥过很好作用。在预制的IPF成功后,把助凝剂结合在一起制备而合并投加来简化处理厂的操作,应是一种合理的发展,或许也是复合絮凝剂研究的最早意图。把活化硅酸与硫酸铝结合制成复合絮凝剂就是这一意向的具体实例。聚合硅酸铁也是符合这一意图的。

脱氮除磷工艺汇总

脱氮除磷工艺汇总 MBR工艺脱氮除磷 MBR是一种结合膜分离和微生物降解技术的高效污水处理工艺。在反应器内,一方面,膜组件将泥水高效分离,促使出水水质改善;另一方面,污泥停留时间(SRT)与水力停留时(HRT)在反应器内相互独立,可提高污泥浓度;此外,反应器内较长的SRT可使增殖缓慢的某些特殊菌(如自养硝化菌等)在活性污泥中出现,而膜组件又能将这些菌持留,从而使MBR处理效果得以改善。 MBR工艺具有一定局限性,对于生活污水,其仅依靠MBR本身其脱氮除磷能力只能达到40%至60%左右的去除率;对于工业废水,其对难降解有机物的去除率并没有得到太大改善。所以MBR工艺一般和SBR系列/AAO等工艺组合使用。五种常见组合工艺: SBR-MBR工艺 A2O-MBR工艺 3A-MBR工艺 A2O/A-MBR工艺 A(2A)O-MBR工艺 SBR-MBR工艺: 将SBR与MBR相结合形成的SBR-MBR工艺,除了具有一般MBR的优点外,对于膜组件本身和SBR工艺两种程序运行都互有帮助。由于膜组件的截留过滤作用,反应中的微生物能最大限度地增长,利于世代时间较长的硝化及亚硝化细菌的生长繁殖,因此,污泥的生物活性高,吸附和降解有机物的能力较强,同时也具有较好的硝化能力。此外,SBR式的工作方式为除磷菌的生长创造了条件,同时也满足了脱氮的需要,使得单一反应器内实现同时高效去除氮磷及有机物成为可能。与传统SBR系统相比,SBR-MBR在反应阶段利用膜分离排水,可以减少传统SBR的循环时间;同时,序批式的运行方式可以延缓膜污染。

A2O-MBR工艺: 由A2O工艺与MBR膜分离技术结合而成的具有同步脱氮除磷功能的A2O-MBR工艺,可进一步拓展MBR的应用范畴。在该工艺中设置有两段回流,一段是膜池的混合液回流至缺氧池实现反硝化脱氮,另一段是缺氧池的混合液回流至厌氧池,实现厌氧释磷。A2O-MBR工艺中高浓度的MLSS、独立控制的水力停留时间和污泥停留时间、回流比及污泥负荷率等都会产生与传统A2O工艺不同的影响,具有较好的脱氮除磷效率。 3A-MBR工艺: 3A-MBR是依据生物脱氮除磷机理,结合膜生物反应器技术特点而形成的具有高效脱氮除磷性能的新型污水处理工艺。其基本原理是,膜生物反应器内的高浓度硝化液和高浓度活性污泥经过回流系统形成良好的缺氧、厌氧条件,实现系统的高效脱氮除磷。该工艺的内部流程依次是第一缺氧池、厌氧池、第二缺氧池、好氧池和膜池,膜池混合液分别回流至第一缺氧池和第二缺氧池。第一缺氧池利用进水碳源和回流硝化液进行快速反硝化,接着混合液进入厌氧池进行厌氧释磷,减少了硝酸盐对释磷的影响,第二缺氧池再利用污水中剩余的碳源和回流的硝化液进一步反硝化脱氮,好氧池内同步发生有机物降解、好氧释磷和好氧硝化等多种反应,彻底去除污水中的污染物,混合液再a经膜过滤出水,实现了对污水中有机物和氮磷的去除。3A-MBR工艺合理地组合了有机物降解和脱氮除磷等各处理单元,协调了各种生物降解功能的发挥,达到了同步去除各污染指标的目的,具有较高的推广应用价值。 A2O/A-MBR工艺: A2O/A-MBR工艺是一种强化内源反硝化的新型工艺,该工艺利用MBR内高浓度活性污泥和生物多样性来强化脱氮除磷效果,工艺流程依次为厌氧、缺氧、好氧、缺氧和膜池。该工艺在普通A2O工艺后再设一级缺氧池,在利用进水快速碳源完成生物除磷和脱氮后,再利用第二缺氧池进行内源反硝化,进一步去除TN,之后,再利用膜池的好氧曝气作用保障出水。A2O/A-MBR工艺是针对进水碳源不足,而同时又有较高脱氮要求的污水处理项目所开发,也是强化脱氮的MBR脱氮处磷

污水处理脱氮、除磷的经验值汇总

污水处理脱氮、除磷的经验值汇总 1、脱氮除磷水质的要求 1、污水的五日生化需氧量与总凯氏氮之比是影响脱氮效果的重要因素之一。异养性反硝化菌在呼吸时,以有机基质作为电子供体,硝态氮作为电子受体,即反硝化时需消耗有机物。青岛等地污水厂运行实践表明,当污水中五日生化需氧量与总凯氏氮之比大于4时,可达理想脱氮效果;五日生化需氧量与总凯氏氮之比小于4时,脱氮效果不好。五日生化需氧量与总凯氏氮之比过小时,需外加碳源才能达到理想的脱氮效果。外加碳源可采用甲醇,它被分解后产生二氧化碳和水,不会留下任何难以分解的中间产物。由于城市污水水量大,外加甲醇的费用较大,有些污水厂将淀粉厂、制糖厂、酿造厂等排出的高浓度有机废水作为外加碳源,取得了良好效果。当五日生化需氧量与总凯氏氮之比为4或略小于4时,可不设初次沉淀池或缩短污水在初次沉淀池中的停留时间,以增大进生物反应池污水中五日生化需氧量与氮的比值。 2、生物除磷由吸磷和放磷两个过程组成,积磷菌在厌氧放磷时,伴随着溶解性可快速生物降解的有机物在菌体内储存。若放磷时无溶解性可快速生物降解的有机物在菌体内储存,则积磷菌在进入好氧环境中并不吸磷,此类放磷为无效放磷。生物脱氮和除磷都需有机碳,在有机碳不足,尤其是溶解性可快速生物降解的有机碳不足时,反硝化菌与积磷菌争夺碳源,会竞争性地抑制放磷。 污水的五日生化需氧量与总磷之比是影响除磷效果的重要因素

之一。若比值过低,积磷菌在厌氧池放磷时释放的能量不能很好地被用来吸收和贮藏溶解性有机物,影响该类细菌在好氧池的吸磷,从而使出水磷浓度升高。广州地区的一些污水厂,在五日生化需氧量与总磷之比为17及以上时,取得了良好的除磷效果。 3、若五日生化需氧量与总凯氏氮之比小于4,难以完全脱氮而导致系统中存在一定的硝态氮的残余量,这样即使污水中五日生化需氧量与总磷之比大于17,其生物除磷的效果也将受到影响。 4、一般地说,积磷菌、反硝化菌和硝化细菌生长的最佳pH在中性或弱碱性,当pH偏离最佳值时,反应速度逐渐下降,碱度起着缓冲作用。污水厂生产实践表明,为使好氧池的pH维持在中性附近,池中剩余总碱度宜大于70mg/L。每克氨氮氧化成硝态氮需消耗7.14g 碱度,大大消耗了混合液的碱度。反硝化时,还原1g硝态氮成氮气,理论上可回收3.57g碱度,此外,去除1g五日生化需氧量可以产生0.3g碱度。出水剩余总碱度可按下式计算,剩余总碱度=进水总碱度+0.3×五日生化需氧量去除量+3×反硝化脱氮量-7.14×硝化氮量,式中3为美国EPA推荐的还原1g硝态氮可回收3g碱度。当进水碱度较小,硝化消耗碱度后,好氧池剩余碱度小于70mg/L,可增加缺氧池容积,以增加回收碱度量。在要求硝化的氨氮量较多时,可布置成多段缺氧/好氧形式。在该形式下,第一个好氧池仅氧化部分氨氮,消耗部分碱度,经第二个缺氧池回收碱度后再进入第二个好氧池消耗部分碱度,这样可减少对进水碱度的需要量。 2、生物脱氮的经验值

絮凝剂的选择综述

絮凝过程是目前国内外众多水处理工艺中应用最广泛、最普遍的单元操作之一, 是废水处理过程中不可缺少的关键环节。絮凝效果的好坏往往决定了后续流程的运行状况、最终出水水质和费用, 选择何种絮凝剂, 对于提高出水水质、降低制水成本有着重要的技术经济价值。 按其化学成分分类 , 絮凝剂可分为无机盐类絮凝剂、有机高分子絮凝剂和微生物絮凝剂。无机盐类絮凝剂的品种较少, 主要是铝盐、铁盐、水解聚合物等低分子盐类以及无机高分子等絮凝剂。有机高分子絮凝剂主要有合成的有机高分子絮凝剂和天然改性有机高分子絮凝剂。 1 无机盐类絮凝剂 1.1 无机低分子絮凝剂 无机低分子絮凝剂包括硫酸铝、氯化铝、硫酸铁、氯化铁等,其中硫酸铝最早是由美国开发的,并一直沿用至今的一种重要的无机絮凝剂。常用的铝盐有硫酸铝AL 2(SO4 3·18H 2O 和明矾 AL 2(SO4 3·K 2SO 4·24H 2O, 另一类是铁盐有三氯化铁水合物 FeCL 3·6H 2O. 硫酸亚铁水合物 FeSO 4·17H 2O 和硫酸铁。 无机絮凝剂的优点是比较经济、用法简单;但用量大、絮凝效果低,而且存在成本高、腐蚀性强的缺点。 1.2 无机高分子絮凝剂 无机高分子絮凝剂是 20世纪 60年代后期才发展起来的一类新型废水处理剂。与传统絮凝剂相比, 它能成倍的提高效能,且价格较低,因而有逐步成为主流药剂的趋势。目前日本、俄罗斯、西欧及我国生产此类絮凝剂已达到工业化、规模化和流程自动化的程度, 加上产品质量稳定,无机聚合类絮凝剂的生产已占絮凝剂总产量的 30%~60%[1]。 1.2.1 简单的无机聚合物絮凝剂

这类无机聚合物絮凝剂主要是铝盐和铁盐的聚合物。如聚合氯化铝 (PAC 、聚合硫酸铝 (PAS 、聚合氯化铁 (PFC 以及聚合硫酸铁 (PFS等。无机聚合物絮凝剂之所以比其它无机絮凝剂效果好, 其根本原因在于它能提供大量的络合离子, 且能够强烈吸附胶体微粒, 通过吸附、桥架、交联作用,从而使胶体凝聚。同时还发生物理化学变化,中和胶体微粒及悬浮物表面的电荷, 降低了δ电位, 使胶体微粒由原来的相斥变为相吸,破坏了胶团稳定性,使胶体微粒相互碰撞,从而形成絮状混凝沉淀,沉淀的表面积可达(200~1000 m 2/g,极具吸附能力。 1.2.2 改性的单阳离子聚合絮凝剂 除常用的聚铝、聚铁外,还有聚活性硅胶及其改性品,如聚硅铝(铁、聚磷铝(铁通过引入某些高电荷离子改性以提高电荷的中和能力; 如聚硅酸硫酸铝 (PASS、聚硅酸絮凝剂(PSAA 等引入羟基、磷酸根等以增加配位的络合能力,从而改变絮凝效果。其可能的原因是 [2]:某些阳离子或阴离子可以改变聚合物的形态结构分布,或者是两种以上聚合物之间具有协同增效作用。对含铝离子的聚硅酸絮凝剂(PSAA 的研究 [3]表明 PSAA 对油田稠油采出水的处理中具有比 PACS (含硫酸根的改性聚合氯化铝更强的除油能力,处理煤矿矿井废水时 COD 去除率可达 98.2%,悬浮固体的去除率可达 99.4%。 PASS 的制备方法简单、原料来源广泛、成本底,具有极大的开发价值及广泛的应用前景。而对聚硅酸硫酸铁(PFSS 絮凝剂 [4]的研究发现高度聚合的硅酸与金属离子一起可产生良好的混凝效果, 因而有可能在废水处理中部分取代有机合成高分子絮凝剂, 以消除毒性, 而且可以根据不同的处理对象通过 改变 Fe/SiO2摩尔比调整 PFSS 的配方来取得良好的絮凝效果。 1.2.3 多阳离子无机聚合絮凝剂 聚铝铁复合絮凝剂是含有聚铝、聚铁及氯根和硫酸根多核配位的复合性无机高分子絮凝剂,因兼有聚铝和聚铁的优良性能而日益受人关注。 聚合硫酸氯化铁铝 [5](PAFCS是其中之一,其有效铁铝含量(AL 2O 3+Fe2O 3大于 22%,产品吸湿性强。研究表明:在聚合氯化铝的 (PAC的有效铝含量大于 PAFCS 有效铝铁含量的情况下, PAFCS 在污水处理中有着比明矾更好的结果; 在含油废水

相关文档
最新文档