发光二极管主要参数与特性(精)

发光二极管主要参数与特性(精)
发光二极管主要参数与特性(精)

发光二极管主要参数与特性(精)

发光二极管主要参数与特性

LED 是利用化合物材料制成

pn 结的光电器件。它具备pn 结结型

器件的电学特性:I-V 特性、C-V 特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。 1、LED 电学特性

1.1 I-V 特性 表征LED 芯片pn 结制备性能主要参数。LED 的I-V 特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。

如左图:

(1) 正向死区:(图oa 或oa ′段)a 点对于V 0

为开启电压,当V <Va ,外加电

场尚克服

不少因载

流子扩散

而形成势垒电场,此时R 很大;开启电压对于不同LED 其值不同,GaAs 为1V ,红色GaAsP 为1.2V ,GaP 为1.8V ,GaN 为2.5V 。 (2)正向工作区:电流I F 与外加电压呈指数关系

I F = I S (e qV F /KT

–1) -------------------------I S 为反向饱和电流 。

V >0时,V >V F 的正向工作区I F 随V F 指数上升 I F = I S e qV F /KT

(3)反向死区 :V <0时pn 结加反偏压 V= - V R 时,反向漏电流I R (V= -5V )时,GaP 为0V ,GaN 为10uA 。 (4)反向击穿区 V <- V R ,V R 称为反向击穿电压;V R 电压对应I R

为反向漏电流。当反向偏压一直增加使V <- V R 时,则出现I R 突然增加而出现击穿现象。由于所用化合物材料种类不同,各种LED 的反向击穿电压V R 也不同。 1.2 C-V 特性

鉴于LED 的芯片有9×9mil (250×250um),10×10mil ,11×11mil (280×280um),12×12mil

(300×300um),故pn 结面积大小不一,使其结电容(零偏压)

C ≈n+pf 左右。

C-V 特性呈二次函数关系(如图2)。由1MH Z 交流信号用C-V 特性测试仪测得。 1.3 最大允许功耗PF m 当流过LED 的电流为I F 、

正向死区

图I-V 特性曲线

反向死区击穿区I R

I V R 0I F 工作区V F V

′′

管压降为U F 则功率消耗为P=U F ×I F

LED 工作时,外加偏压、偏流一定促使载流子复合发出光,还有一部分变为热,使结温升高。若结温为Tj 、外部环境温度为Ta ,则当Tj >Ta 时,内部热量借助管座向外传热,散逸热量(功率),可表示为P = K T (Tj – Ta )。 1.4 响应时间

响应时间表征某一显示器跟踪外部信息变化的快慢。现有几种显示LCD (液晶显示)约10-3~10-5S ,CRT 、PDP 、LED 都达到10-6~10-7S (us 级)。

① 响应时间从使用角度来看,就是LED 点亮与熄灭所延迟的时间,即图中t r 、t f 。图中t 0值

② 响应时间主要取决于载流子寿命、器件的结电容及电路阻抗。 LED 的点亮时间——上升时间t r 是指接通电源使发光亮度达到正常的10%开始,一直到发光亮度达到正常值的90%所经历的时间。

LED 熄灭时间——下降时间t f 是指正常发光减弱至原来的10%所经历的时间。

不同材料制得的LED 响应时间各不相同;如GaAs 、GaAsP 、GaAlAs 其响应时间<10-9S ,GaP 为10-7 S 。因此它们可用在10~100MH Z 高频系统。 2 LED 光学特性

发光二极管有红外(非可见)与可见光两个系列,前者可用辐射度,后者可用光度学来量度其光学特性。

2.1 发光法向光强及其角分布I θ

2.1.1 发光强度(法向光强)是表征发光器件发光强弱的重要性能。LED 大量应用要求是圆柱、圆球封装,由于凸透镜的作用,故都具有很强指向性:位于法向方向光强最大,其与水平面交角为90°。当偏离正法向不同θ角度,光强也随之变化。发光强度随着不同封装形状而强度依赖角方向。

2.1.2 发光强度的角分布I θ是描述LED 发光在空间各个方向上光强分布。它主要取决于封装的工艺(包括支架、模粒头、环氧树脂中添加散射剂与否) ⑴ 为获得高指向性的角分布(如图1) ①

LED 管芯位置离模粒头远些;

② 使用圆锥状

(子弹头)的模粒头;

③ 封装的环氧树脂中勿加散射剂。 采取上述措施可使LED 2θ1/2 = 6°左右,大大提高了指向性。

⑵ 当前几种常用封装的散射角(2θ1/2角) 圆形LED :5°、

相对亮度

I

F

10°、30°、45°

2.2 发光峰值波长及其光谱分布

⑴LED发光强度或光功率输出随着波长变化而不同,绘成一条分布曲线——光谱分布曲线。当此曲线确定之后,器件的有关主波长、纯度等相关色度学参数亦随之而定。

LED的光谱分布与制备所用化合物半导体种类、性质及pn结结构(外延层厚度、掺杂杂质)等有关,而与器件的几何形状、封装方式无关。

1蓝光InGaN/GaN 2 绿光 GaP:N 3 红光 GaP:Zn-O

4 红外GaAs

5 Si光敏光电管

6 标准钨丝灯

①是蓝色InGaN/GaN发光二极管,发光谱峰λp = 460~465nm;

②是绿色GaP:N的LED,发光谱峰λp = 550nm;

③是红色GaP:Zn-O的LED,发光谱峰λp = 680~700nm;

④是红外LED使用GaAs材料,发光谱峰λp = 910nm;

⑤是Si光电二极管,通常作光电接收用。

由图可见,无论什么材料制成的LED,都有一个相对光强度最强处(光输出最大),与之相对应有一个波长,此波长叫峰值波长,用λp表示。只有单色光才有λp波长。

⑵谱线宽度:在LED谱线的峰值两侧±△λ处,存在两个光强等于峰值(最大光强度)一半的点,此两点分别对应λp-△λ,λp+△λ之间宽度叫谱线宽度,也称半功率宽度或半高宽度。

半高宽度反映谱线宽窄,即LED单色性的参数,LED半宽小于40 nm。

⑶主波长:有的LED发光不单是单一色,即不仅有一个峰值波长;甚至有多个峰值,并非单色光。为此描述LED色度特性而引入主波长。主波长就是人眼所能观察到的,由LED发出主要单色光的波长。单色性越好,则λp也就是主波长。

如GaP材料可发出多个峰值波长,而主波长只有一个,它会随着LED长期工作,结温升高而主波长偏向长波。

2.3 光通量

光通量F是表征LED总光输出的辐射能量,它标志器件的性能优劣。F为LED向各个方向发光的能量之和,它与工作电流直接有关。随着电流增加,LED光通量随之增大。可见光LED 的光通量单位为流明(lm)。

LED向外辐射的功率——光通量与芯片材料、封装工艺水平及外加恒流源大小有关。目前单色LED的光通量最大约1 lm,白光LED的F≈1.5~1.8 lm(小芯片),对于1mm×1mm的功率级芯片制成白光LED,其F=18 lm。

2.4 发光效率和视觉灵敏度

① LED效率有内部效率(pn结附近由电能转化成光能的效率)与外部效率(辐射到外部的效率)。前者只是用来分析和评价芯片优劣的特性。

LED光电最重要的特性是用辐射出光能量(发光量)与输入电能之比,即发光效率。

②视觉灵敏度是使用照明与光度学中一些参量。人的视觉灵敏度在λ = 555nm处有一个最大值680 lm/w。若视觉灵敏度记为Kλ,则发光能量P与可见光通量F之间关系为P=∫Pλdλ;F=∫KλPλdλ

③发光效率——量子效率η=发射的光子数/pn结载流子数=(e/h c I)∫λPλdλ

若输入能量为W=UI,则发光能量效率ηP=P/W

若光子能量h c=ev,则η≈ηP,则总光通F=(F/P)P=KηP W 式中K= F/P

④流明效率:LED的光通量F/外加耗电功率W=KηP

它是评价具有外封装LED特性,LED的流明效率高指在同样外加电流下辐射可见光的能量较大,故也叫可见光发光效率。

以下列出几种常见

实上,LED向外发光仅是内部发光的一部分,总的发光效率应为

η=ηiηcηe,式中ηi向为p、n结区少子注入效率,ηc为在势垒区少子与多子复合效率,ηe为外部出光(光取出效率)效率。

由于LED材料折射率很高ηi≈3.6。当芯片发出光在晶体材料与空气界面时(无环氧封装)若垂直入射,被空气反射,反射率为(n1-1)2/(n1+1)2=0.32,反射出的占32%,鉴于晶体本身对光有相当一部分的吸收,于是大大降低了外部出光效率。

为了进一步提高外部出光效率ηe可采取以下措施:①用折射率较高的透明材料(环氧树脂n=1.55并不理想)覆盖在芯片表面;②把芯片晶体表面加工成半球形;

③用Eg大的化合物半导体作衬底以减少晶体内光吸收。有人曾经用n=2.4~2.6的低熔点玻璃[成分As-S(Se)-Br(I)]且热塑性大的作封帽,可使红外GaAs、GaAsP、GaAlAs的LED效率提高4~6倍。

2.5发光亮度

亮度是LED发光性能又一重要参数,具有很强方向性。其正法线方向的亮度B O=I O/A,指定某方向上发光体表面亮度等于发光体表面上单位投射面积在单位立体角内所辐射的光通量,单位为cd/m2 或Nit。

若光源表面是理想漫反射面,亮度

B O 与方向无关为常数。晴朗的蓝天和荧

光灯的表面亮度约为7000Nit (尼特),从地面看太阳表面亮度约为14×108Nit 。

LED 亮度与外加电流密度有关,一般的LED ,J O (电流密度)增加B O 也近似增大。另外,亮度还与环境温度有关,环境温度升高,ηc (复合效率)下降,B O 减小。当环境温度不变,电

流增大足以引起pn 结结温升高,温升后,亮度呈饱和状态。 2.6寿命

老化:LED

发光亮度随着长

时间工作而出现光强或光亮度衰减现象。器件老化程度与外加恒流源的大

小有关,可描述为B t =B O e -t/

τ,B t 为t 时间后的亮度,B O 为初始亮度。

t O 管的寿命。测定t 要花很长的时间,通常以推算求得寿命。测量方法:给LED 通以一定恒流源,点燃103 ~104 小

时后,先后测得B O ,B t =1000~10000,代入B t =B O e -t/

τ求出τ;再把B t =1/2B O 代入,可求出寿命t 。

长期以来总认为LED 寿命为106小时,这是指单个LED 在I F =20mA 下。随着功率型LED 开发应用,国外学者认为以LED 的光衰减百分比数值作为寿命的依据。如LED 的光衰减为原来35%,寿命>6000h 。 3 热学特性

LED 的光学参数与pn 结结温有很大的关系。一般工作在小电流I F <10mA ,或者10~20 mA 长时间连续点亮LED 温升不明显。若环境温度较高,LED 的主波长或λp 就会向长波长漂移,B O 也会下降,尤其是点阵、大显示屏的温升对LED 的可靠性、稳定性影响应专门设计散射通风装置。

LED 的主波长随温度关系可表示为λp ( T′)=λ0(T 0)+△T g ×0.1nm/℃

由式可知,每当结温升高10℃,则波长向长波漂移1nm ,且发光的均匀性、一致性变差。这对于作为照明用的灯具光源要求小型化、密集排列以提高单位面积上的光强、光亮度的设计尤其应注意用散热好的灯具外壳或专门通用设备、确保LED 长期工作。

GaP :N

GaP :Zn-O

A/cm

常用稳压二极管大全,

常用稳压管型号对照——(朋友发的) 美标稳压二极管型号 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7 1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V 需要规格书请到以下地址下载, 经常看到很多板子上有M记的铁壳封装的稳压管,都是以美标的1N系列型号标识的,没有具体的电压值,刚才翻手册查了以下3V至51V的型号与电压的对 照值,希望对大家有用 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9

1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V DZ是稳压管的电器编号,是和1N4148和相近的,其实1N4148就是一个0.6V的稳压管,下面是稳压管上的编号对应的稳压值,有些小的稳压管也会在管体 上直接标稳压电压,如5V6就是5.6V的稳压管。 1N4728A 3.3 1N4729A 3.6 1N4730A 3.9 1N4731A 4.3 1N4732A 4.7 1N4733A 5.1 1N4734A 5.6 1N4735A 6.2 1N4736A 6.8 1N4737A 7.5 1N4738A 8.2 1N4739A 9.1 1N4740A 10 1N4741A 11 1N4742A 12 1N4743A 13

晶体二极管的主要参数

晶体二极管的主要参数: 1 电阻 ⑴直流电阻 在晶体二极管上加上一定的直流电压V,就有一对那个的直流电流I,直流电压V与直流电流I的比值,就是晶体二极管的等效直流电流。 ⑵动态电流 在晶体二极管上加一定的直流电压V的基础上,再加上一个增量电压,则晶体二极管也有一个增量电流△I。增量电压△V与增量电流△I的比值,就是晶体二极管的动态电阻,即动态电阻为晶体二极管两端电压变化与电流变化的比值。 二极管的正向直流电阻和动态电阻都是随工作点的不同而发生变化的。 普通晶体二极管反响运动时,其直流电阻和动态电阻都很大,通常可以尽是为无穷大。 2 额定电流 晶体二极管的额定电流是指晶体二极管长时间连续工作时,允许通过的最大正向平均电流。在二极管连续工作时,为使PN结的温度不超过某一极限值,整流电流不应超过标准规定的允许值。 例如:2AP1 的额定电流为12mA; 2AP5为16mA;2AP9为5mA。 对于大功率晶体二极管,为了降低它的温度,增大电流,必须加装散热片。 3 反向击穿电压 反向击穿电压是指二极管在工作中能承受的最大反向电压,它也是使二极管不致反响击穿的电压极限值。在一般情况下,最大反向工作电压应小于反向击穿电压。选用晶体二极管时,还要以最大反向工作电压为准,并留有适当余地,以保证二极管不致损坏。 例如:2AP21型二极管的反向击穿电压为15V最大反向工作电压小于10V;2AP26的反向

击穿电压为150V,最大反向工作电流小于100V。 4 最高工作频率 最高工作频率是指晶体二极管能正常工作的最高频率。选用二极管时,必须使它的工作频率低于最高工作频率。 例如:2AP8BD 最高工作频率为150MHz;2CZ12的最高工作频率为3kHz;2AP16的最高工作频率为40MHz。 晶体二极管的分类: 按用途分: 检波二极管

半导体发光二极管工作原理、特性及应

LED发光二极管 半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、M字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、M字管及矩阵管中的每个发光单元都是一个发光二极管。 一、半导体发光二极管工作原理、特性及应用(一)LED发光原理发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。

假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。(二)LED的特性 1.极限参数的意义(1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。(2)最大正向直流

常用二极管型号_大全

常用整流二极管型号大全lzg 极管型号:4148安装方式:贴片功率特性:大功率 二极管型号:SA5.0A/CA-SA170A/CA安装方式:直插 二极管型号:IN4007/IN4001安装方式:直插功率特性:小功率频率特性:低频 二极管型号:70HF80安装方式:螺丝型功率特性:大功率频率特性:高频 二极管型号:MRA4003T3G安装方式:贴片 二极管型号:1SS355安装方式:贴片功率特性:大功率 二极管型号6A10安装方式:直插功率特性:大功率;型号:2DHG型安装方式:直插功率特性:大功率 二极管型号B5G090L安装方式:直插功率特性:小功率频率特性:超高频 型号最高反向峰值电压(v) 平均整流电流(a) 最大峰值浪涌电流(a 最大反向漏电流(Ua) 正向压降(V) 外型 IN4001 50 1.0 30 5.0 1.0 DO--41 IN4002 100 1.0 30 5.0 1.0 DO--41 IN4003 300 110 30 5.0 1.0 DO--41 IN4004 400 1.0 30 5.0 1.0 DO--41 IN4005 600 1.0 30 5.0 1.0 DO--41 IN4006 800 1.0 30 5.0 1.0 DO--41 IN4007 1000 1.0 30 5.0 1.0 DO--41 IN5391 50 1.5 50 5.0 1.5 DO--15 IN5392 100 1.5 50 5.0 1.5 DO--15 IN5393 200 1.5 50 5.0 1.5 DO--15 IN5394 300 1.5 50 5.0 1.5 DO--15 IN5395 400 1.5 50 5.0 1.5 DO--15 IN5396 500 1.5 50 5.0 1.5 DO--15 IN5397 600 1.5 50 5.0 1.5 DO--15 IN5398 800 1.5 50 5.0 1.5 DO--15 IN5399 1000 1.5 50 5.0 1.5 DO--15 RL151 50 1.5 60 5.0 1.5 DO--15 RL152 100 1.5 60 5.0 1.5 DO--15 RL153 200 1.5 60 5.0 1.5 DO--15 RL154 400 1.5 60 5.0 1.5 DO--15 RL155 600 1.5 60 5.0 1.5 DO--15 RL156 800 1.5 60 5.0 1.5 DO--15 RL157 1000 1.5 60 5.0 1.5 DO--15 普通整流二极管参数(二) 型号最高反向峰值电压(v) 平均整流电流(a) 最大峰值浪涌电流(a 最大反向漏电流(Ua) 正向压降(V) 外型 RL201 50 2 70 5 1 DO--15 RL202 100 2 70 5 1 DO--15 RL203 200 2 70 5 1 DO--15 RL204 400 2 70 5 1 DO--15

LED发光二极管工作原理、特性及应用演示教学

LED发光二极管工作原理、特性及应用 半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。 一、半导体发光二极管工作原理、特性及应用 (一)LED发光原理 发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。

理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 (二)LED的特性 1.极限参数的意义 (1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。 (3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。 2.电参数的意义 (1)光谱分布和峰值波长:某一个发光二极管所发之光并非单一波长,其波长大体按图2所示。由图可见,该发光管所发之光中某一波长λ0的光强最大,该波长为峰值波长。 2)发光强度IV:发光二极管的发光强度通常是指法线(对圆柱形发光管是指其轴线)方向上的发光强度。若在该方向上辐射强度为(1/683)W/sr时,则发光1坎德拉(符号为cd)。由于一般LED的发光二强度小,所以发光强度常用坎德拉(mcd)作单位。 (3)光谱半宽度Δλ:它表示发光管的光谱纯度.是指图3中1/2峰值光强所对应两波长之间隔. (4)半值角θ1/2和视角:θ1/2是指发光强度值为轴向强度值一半的方向与发光轴向(法向)的夹角。半值角的2倍为视角(或称半功率角)。 图3给出的二只不同型号发光二极管发光强度角分布的情况。中垂线(法线)AO的坐标为相对发光强度(即发光强度与最大发光强度的之比)。显然,法线方向上的相对发光强度为1,离开法线方向的角度越大,相对发光强度越小。由此图可以得到半值角或视角值。

齐纳二极管(稳压二极管)工作原理及主要参数

齐纳二极管(稳压二极管)工作原理及主要参数 齐纳二极管也叫稳压二极管.一般二极管处于逆向偏压时,若电压超过PIV(逆向峰值电压)值时二极管将受到破坏,这是因为一般二极管在两端的电位差既高之下又要通过大量的电流,此时所产生的功率所衍生的热量足以使二极管烧毁。 齐纳二极管就是专门被设计在崩溃区操作,是一个具有良好的功率散逸装置,可以当做电压参考或定电压组件。若利用齐纳二极管作为电压调节器,将使附载电压保持在Vz附近且几乎唯一定值,不受附载电流或电源上电压变动影响。一般二极管之崩溃电压,在制作时可以随意加以控制,所以一般齐纳二极管之崩电压(Vz)从数伏特至上百伏特都有。一般齐纳二极管在特性表或电路上除了标住Vz外,均会注明Pz也就是齐纳二极管所能承受之做大功率,也可由Pz=Vz*Iz 换算出奇纳二极管可通过最大电流Iz。dz3w上有个在线计算器,电路设计时可以用来计算稳压二极管的相关参数. 齐纳二极管工作原理 齐纳二极管主要工作于逆向偏压区,在二极管工作于逆向偏压区时,当电压未达崩溃电压以前,二极管上并不会有电流产生,但当逆向电压达到崩溃电压时,每一微小电压的增加就会产生相当大的电流,此时二极管两端的电压就会保持于一个变化量相当微小的电压值(几乎等于崩溃电压),下图为齐纳二极管之电压电流曲线,可由此应证上述说明。 齐纳二极管(又叫稳压二极管)它的电路符号是:此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 在通常情况下,反向偏置的PN结中只有一个很小的电流。这个漏电流一直

稳压二极管型号对照表

稳压二极管型号对照表 美标稳压二极管型号 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7 1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V 需要规格书请到以下地址下载, https://www.360docs.net/doc/bb3445521.html,/products/Rectifiers/Diode/Zener/ 经常看到很多板子上有M记的铁壳封装的稳压管,都是以美标的1N系列型号标识的,没有具体的电压值,刚才翻手册查了以下3V至51V的型号与电压的对照值,希望对大家有用 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3

1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V DZ是稳压管的电器编号,是和1N4148和相近的,其实1N4148就是一个0.6V 的稳压管,下面是稳压管上的编号对应的稳压值,有些小的稳压管也会在管体上直接标稳压电压,如5V6就是5.6V的稳压管。 1N4728A 3.3 1N4729A 3.6 1N4730A 3.9 1N4731A 4.3 1N4732A 4.7 1N4733A 5.1 1N4734A 5.6 1N4735A 6.2 1N4736A 6.8 1N4737A 7.5 1N4738A 8.2 1N4739A 9.1 1N4740A 10 1N4741A 11 1N4742A 12

1N系列常用整流二极管的主要参数

1N 系列常用整流二极管的主要参数
反向工作 峰值电压 URM/V 额定正向 整流电流 整流电流 IF/A 正向不重 复浪涌峰 值电流 IFSM/A 正向 压降 UF/V 反向 电流 IR/uA 工作 频率 f/KHZ 外形 封装
型 号
1N4000 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 1N5100 1N5101 1N5102 1N5103 1N5104 1N5105 1N5106 1N5107 1N5108 1N5200 1N5201 1N5202 1N5203 1N5204 1N5205 1N5206 1N5207 1N5208 1N5400 1N5401 1N5402 1N5403 1N5404 1N5405 1N5406 1N5407 1N5408
25 50 100 200 400 600 800 1000 50 100 200 300 400 500 600 800 1000 50 100 200 300 400 500 600 800 1000 50 100 200 300 400 500 600 800 1000
1
30
≤1
<5
3
DO-41
1.5
75
≤1
<5
3
DO-15
2
100
≤1
<10
3
3
150
≤0.8
<10
3
DO-27
常用二极管参数: 05Z6.2Y 硅稳压二极管 Vz=6~6.35V,Pzm=500mW,

发光二极管特性参数(精)

发光二极管特性参数 IF 值通常为 20mA 被设为一个测试条件和常亮时的一个标准电流,设定不同的值用以测试 二极管的各项性能参数,具体见特性曲线图。 IF 特性: 1. 以正常的寿命讨论,通常标准 IF 值设为 20 - 30mA ,瞬间( 20ms )可增至 100mA。 2. IF 增大时 LAMP 的颜色、亮度、 VF 特性及工作温度均会受到影响,它是正常工作时的一个先决条件, IF 值增大:寿命缩短、 VF 值增大、波长偏低、温度上升、亮度增大、 角度不变,与相关参数间的关系见曲线图; 1.VR ( LAMP 的反向崩溃电压) 由于 LAMP 是二极管具有单向导电特性,反向通电时反向电流为 0 ,而反向电压高到一定程度时会把二极管击穿,刚好能把二极管击穿的电压称为反向崩溃电压,可以用 “ VR ”来表示。 VR 特性: 1. VR 是衡量 P/N 结反向耐压特性,当然 VR 赿高赿好; 2. VR 值较低在电路中使用时经常会有反向脉冲电流经过,容易击穿变坏; 3. VR 又通常被设定一定的安全值来测试反向电流( IF 值),一般设为 5V ; 4. 红、黄、黄绿等四元晶片反向电压可做到 20 - 40V ,蓝、纯绿、紫色等晶片反向 电压只能做到 5V 以上。 2.IR (反向加电压时流过的电流) 二极管的反向电流为 0 ,但加上反向电压时如果用较精密的电流表测量还是有很小的电流,只不过它不会影响电源或电路所以经常忽略不记,认为是 0 。 IR 特性: 1. IR 是反映二极管的反向特性, IR 值太大说明 P/N 结特性不好,快被击穿; IR 值 太小或为 0 说明二极管的反向很好; 2. 通常 IR 值较大时 VR 值相对会小, IR 值较小时 VR 值相对会大; 3. IR 的大小与晶片本身和封装制程均有关系,制程主要体现在银胶过多或侧面沾胶, 双线材料焊线时焊偏,静电亦会造成反向击穿,使 IR 增大。

稳压二极管参数大全

稳压二极管参数大全 稳压二极管的主要参数 (1)稳定电压Vz:稳定电压就是稳压二极管在正常工作时,管子两端的电压值。这个数值随工作电流和温度的不同略有改变,既是同一型号的稳压二极管,稳定电压值也有一定的分散性,例如2CW14硅稳压二极管的稳定电压为6~7.5V。 (2)耗散功率PM:反向电流通过稳压二极管的PN结时,要产生一定的功率损耗,PN结的温度也将升高。根据允许的PN结工作温度决定出管子的耗散功率。通常小功率管约为几百毫瓦至几瓦。 最大耗散功率PZM:是稳压管的最大功率损耗取决于PN结的面积和散热等条件。反向工作时,PN结的功率损耗为:PZ=VZ*IZ,由PZM和VZ可以决定IZmax。 (3)稳定电流IZ、最小稳定电流IZmin、大稳定电流IZmax 稳定电流:工作电压等于稳定电压时的反向电流;最小稳定电流:稳压二极管工作于稳定电压时所需的最小反向电流;最大稳定电流:稳压二极管允许通过的最大反向电流。 (4)动态电阻rZ:其概念与一般二极管的动态电阻相同,只不过稳压二极管的动态电阻是从它的反向特性上求取的。rZ愈小,反映稳压管的击穿特性愈陡。

rz=△VZ/△IZ (5)稳定电压温度系数:温度的变化将使VZ改变,在稳压管中,当|VZ| >7 V时,VZ具有正温度系数,反向击穿是雪崩击穿。 当|VZ|<4V时,VZ具有负温度系数,反向击穿是齐纳击穿。 当4V<|VZ|<7V时,稳压管可以获得接近零的温度系数。这样的稳压二极管可以作为标准稳压管使用。 稳压二极管1N992B 齐纳电压--Vz(Nom):200Vz取值为每一项时的齐纳电流--Iz:650μ最大功率--Pdmax:400m基准电压的容限率--Tol:5每 10KΩ的温度系数--TempC11 齐纳电压--Vz(Nom):200 Vz取值为每一项时的齐纳电流--Iz:650μ 最大功率--Pdmax:400m 基准电压的容限率--Tol:5 每10KΩ的温度系数--TempC11 稳压二极管1N992A 齐纳电压--Vz(Nom):200Vz取值为每一项时的齐纳电流--Iz:650μ最大功率--Pdmax:400m基准电压的容限率--Tol:10每10KΩ的温度系数--TempC 齐纳电压--Vz(Nom):200

LED特性测量实验

LED特性测量实验 【实验目的】 1、了解LED的发光机理、光学特性与电学特性,并掌握其测试方法。 2、设计简单的测试装置,并对发光二极管进行V-I特性曲线、P—I特性曲线的测量。 【实验装置】: LED(白光和黄绿光),精密数显直流稳流稳压电源,积分球(Φ=30cm),多功能光度计,光功率计,直尺,万用表,导线、支架等。 【实验原理】 1、发光二极管的发光原理 发光二极管的核心部分是由p型半导体和n型半导体组成的芯片。p型半导体和n型半导体在相互接触的时候,由于两者的功函数或者说是费米能级的不同,p区中的空穴就会流向n 区,而n区中的电子也会扩散到p区中去,同时产生建电势差,产生耗尽层,当载流子的扩散运动和漂移运动平衡时候pn结就达到平衡状态,如图3所示。pn结正向偏置的时候,建电势差变小,势垒的高度变小,以载流子的扩散运动为主,电子和空穴就会更容易克服势垒分别流向p区和n区。在p-n结耗尽层处,电子和空穴相遇,复合,电子由高能级跃迁到低能级,电子将多余的能量以发射光子的形式释放出来,产生电致发光现象。这就是发光二极管的发光理论。 图3 图4 2、发光二极管的主要特性 (1)光通量

LED 光源发射的辐射波长为λ的单色光,在人眼观察方向上的辐射强度和人眼瞳孔对它所的立体角的乘积,称为光通量ΦV (单位是流明lm ),具体是指LED 向整个空间在单位时间发射的能引起人眼视觉的辐射通量。 光通量的测量以明视觉条件作为测量条件,测量光通量必须要把LED 发射的光辐射能量收集起来,可以用积分球来收集光能。测量的探测器应具有CIE 标准光度观测者光谱效率函数的光谱响应。LED 器件发射的光辐射经积分球壁的多次反射,使整个球壁上的照度均匀分布,可用一置于球壁上的探测器来测量这个光通量成比例的光的照度。基于实验室提供的资料,由积分原理,积分球任一没有光直接照明的点的光照度为:2 41E R ρ πρ Φ= -。其中Φ为光源的光照度,R 为积分球的半径,ρ为积分球壁的反射率。所以测量得到球壁上任一点的光照度就可以求得光源的光通量了。 (2) 发光强度 发光强度表示在指定方向上光源发光的强弱。若某个光源在法线方向上,辐射强度为(1/683)W/sr (即一单位立体角度光通量为1流明时),则称其发光强度为1坎德拉(candela ),符号为cd 。 要求光源是一个点光源,或者要求光源的尺寸和探测器的面积与离光探测器的距离相比足够小(这种要求被称为远场条件)。一般使用CIE 推荐的“平均发光强度”的概念:照射在离LED 一定距离处的光探测器上的通量,与探测器构成的立体角的比值。 CIE 对近场条件下的LED 测量,有两个推荐的标准条件:CIE 标准条件A 和B 。两个条件都要求所用的探测器有一个面积为1cm 2 的圆入射孔径,LED 面向探测器放置,并且保证LED 的机械轴通过探测器的孔径中心。本实验中使用的是亮度比较低的LED ,所以使用条件B ,使LED 顶端到探测器的距离为100mm 。 (3) 发光效率 (4) V -I 特性 由于在耗尽层中的载流子复合有一定的几率,在正向电压小于阈值电压时,耗尽层中的载流子很少,复合几率也比较低,正向电流极小,不发光。当电压超过阈值后,正向电流随电压迅速增加。由V -I 曲线可以得出LED 的正向电压,反向电流以及反向电压等参数。

常用稳压管型号参数大全

常用稳压管型号 2009-12-06 22:56 美标稳压二极管型号 TLV4732运算放大器,可饱和输出。当单电源供电时,可作为0V和5V的稳压器。 其他的如LM358等放大器,输出均不能达到0V或者5V,一般为4V。 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7 1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V

1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V 需要规格书请到以下地址下载, https://www.360docs.net/doc/bb3445521.html,/products/Rectifiers/Diode/Zener/ 经常看到很多板子上有M记的铁壳封装的稳压管,都是以美标的1N系列型号标识的,没有具体的电压值,刚才翻手册查了以下3V至51V的型号与电压的对照值,希望对大家有用 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7

1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V

常用二极管型号及参数大全

1.塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs 1 1A1-1A7 1A 50-1000V 1.1 R-1 2 1N4001-1N4007 1A 50-1000V 1.1 DO-41 3 1N5391-1N5399 1.5A 50-1000V 1.1 DO-15 4 2A01-2A07 2A 50-1000V 1.0 DO-15 5 1N5400-1N5408 3A 50-1000V 0.95 DO-201AD 6 6A05-6A10 6A 50-1000V 0.95 R-6 7 TS750-TS758 6A 50-800V 1.25 R-6 8 RL10-RL60 1A-6A 50-1000V 1.0 9 2CZ81-2CZ87 0.05A-3A 50-1000V 1.0 DO-41 10 2CP21-2CP29 0.3A 100-1000V 1.0 DO-41 11 2DZ14-2DZ15 0.5A-1A 200-1000V 1.0 DO-41 12 2DP3-2DP5 0.3A-1A 200-1000V 1.0 DO-41 13 BYW27 1A 200-1300V 1.0 DO-41 14 DR202-DR210 2A 200-1000V 1.0 DO-15 15 BY251-BY254 3A 200-800V 1.1 DO-201AD 16 BY550-200~1000 5A 200-1000V 1.1 R-5 17 PX10A02-PX10A13 10A 200-1300V 1.1 PX 18 PX12A02-PX12A13 12A 200-1300V 1.1 PX 19 PX15A02-PX15A13 15A 200-1300V 1.1 PX 20 ERA15-02~13 1A 200-1300V 1.0 R-1 21 ERB12-02~13 1A 200-1300V 1.0 DO-15 22 ERC05-02~13 1.2A 200-1300V 1.0 DO-15 23 ERC04-02~13 1.5A 200-1300V 1.0 DO-15 24 ERD03-02~13 3A 200-1300V 1.0 DO-201AD 25 EM1-EM2 1A-1.2A 200-1000V 0.97 DO-15 26 RM1Z-RM1C 1A 200-1000V 0.95 DO-15 27 RM2Z-RM2C 1.2A 200-1000V 0.95 DO-15 28 RM11Z-RM11C 1.5A 200-1000V 0.95 DO-15 29 RM3Z-RM3C 2.5A 200-1000V 0.97 DO-201AD 30 RM4Z-RM4C 3A 200-1000V 0.97 DO-201AD 2.快恢复塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs (1)快恢复塑封整流二极管 1 1F1-1F7 1A 50-1000V 1.3 0.15-0.5 R-1 2 FR10-FR60 1A-6A 50-1000V 1. 3 0.15-0.5 3 1N4933-1N4937 1A 50-600V 1.2 0.2 DO-41 4 1N4942-1N4948 1A 200-1000V 1.3 0.15-0. 5 DO-41 5 BA157-BA159 1A 400-1000V 1.3 0.15-0.25 DO-41 6 MR850-MR858 3A 100-800V 1.3 0.2 DO-201AD

发光二极管主要参数与特性

发光二极管主要参数与特性 https://www.360docs.net/doc/bb3445521.html,发布日期:2007-2-5 17:12:17 信息来源:LED 发光二极管主要参数与特性 LED是利用化合物材料制成pn结的光电器件。它具备pn结结型器件的电学特性:I-V特性、C -V特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。 1、LED电学特性 1.1 I-V特性表征LED芯片pn结制备性能主要参数。LED的I-V特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。 如左图: (1) 正向死区:(图oa或oa′段)a点对于V0 为开启电压,当V<Va,外加电场尚克服不少因载流子扩散而形成势垒电场,此时R很大;开启电压对于不同LED其值不同,GaAs为1V,红色GaAsP为1.2V,GaP为1.8V,GaN为2.5V。 (2)正向工作区:电流I F与外加电压呈指数关系 I F = I S (e qVF/KT –1) -------------------------I S 为反向饱和电流。 V>0时,V>V F的正向工作区I F 随V F指数上升 I F = I S e qVF/KT (3)反向死区:V<0时pn结加反偏压 V= - V R 时,反向漏电流I R(V= -5V)时,GaP为0V,GaN为10uA。 (4)反向击穿区 V<- V R ,V R 称为反向击穿电压;V R 电压对应I R为反向漏电流。当反向偏压一直增加使V<- V R时,则出现I R突然增加而出现击穿现象。由于所用化合物材料种类不同,各种LED的反向击穿电压V R也不同。 1.2 C-V特性 鉴于LED的芯片有9×9mil (250×250um),10×10mil,11×11mil (280×280um),12×12mi l (300×300um),故pn结面积大小不一,使其结电容(零偏压)C≈n+pf左右。 C-V特性呈二次函数关系(如图2)。由1MH Z交流信号用C-V特性测试仪测得。 1.3 最大允许功耗PF m 当流过LED的电流为I F、管压降为U F则功率消耗为P=U F×I F LED工作时,外加偏压、偏流一定促使载流子复合发出光,还有一部分变为热,使结温升高。若结温为Tj、外部环境温度为Ta,则当Tj>Ta时,内部热量借助管座向外传热,散逸热量(功率),可表示为P = K T(Tj – Ta)。 1.4 响应时间 响应时间表征某一显示器跟踪外部信息变化的快慢。现有几种显示LCD(液晶显示)约10-3~1 0-5S,CRT、PDP、LED都达到10-6~10-7S(us级)。 ① 响应时间从使用角度来看,就是LED点亮与熄灭所延迟的时间,即图中t r 、t f 。图中t0值很小,可忽略。 ② 响应时间主要取决于载流子寿命、器件的结电容及电路阻抗。 LED的点亮时间——上升时间t r是指接通电源使发光亮度达到正常的10%开始,一直到发光亮度达到正常值的90%所经历的时间。

二极管的主要参数

二极管的主要参数 正向电流IF:在额定功率下,允许通过二极管的电流值。 正向电压降VF:二极管通过额定正向电流时,在两极间所产生的电压降。 最大整流电流(平均值)IOM:在半波整流连续工作的情况下,允许的最大半波电流的平均值。 反向击穿电压VB:二极管反向电流急剧增大到出现击穿现象时的反向电压值。 正向反向峰值电压VRM:二极管正常工作时所允许的反向电压峰值,通常VRM为VP的三分之二或略小一些。 反向电流IR:在规定的反向电压条件下流过二极管的反向电流值。 结电容C:电容包括电容和扩散电容,在高频场合下使用时,要求结电容小于某一规定数值。最高工作频率FM:二极管具有单向导电性的最高交流信号的频率。 2.常用二极管 (1)整流二极管 将交流电源整流成为直流电流的二极管叫作整流二极管,它是面结合型的功率器件,因结电容大,故工作频率低。 通常,IF在1安以上的二极管采用金属壳封装,以利于散热;IF在1安以下的采用全塑料封装(见图二)由于近代工艺技术不断提高,国外出现了不少较大功率的管子,也采用塑封形式。2.常用二极管 (1)整流二极管 将交流电源整流成为直流电流的二极管叫作整流二极管,它是面结合型的功率器件,因结电容大,故工作频率低。 通常,IF在1安以上的二极管采用金属壳封装,以利于散热;IF在1安以下的采用全塑料封装(见图二)由于近代工艺技术不断提高,国外出现了不少较大功率的管子,也采用塑封形式。 2)检波二极管 检波二极管是用于把迭加在高频载波上的低频信号检出来的器件,它具有较高的检波效率和良好的频率特性。 (3)开关二极管 在脉冲数字电路中,用于接通和关断电路的二极管叫开关二极管,它的特点是反向恢复时间短,能满足高频和超高频应用的需要。 开关二极管有接触型,平面型和扩散台面型几种,一般IF<500毫安的硅开关二极管,多采用全密封环氧树脂,陶瓷片状封装,如图三所示,引脚较长的一端为正极。 4)稳压二极管 稳压二极管是由硅材料制成的面结合型晶体二极管,它是利用PN结反向击穿时的电压基本上不随电流的变化而变化的特点,来达到稳压的目的,因为它能在电路中起稳压作用,故称为、稳压二极管(简称稳压管)其图形符号见图4 稳压管的伏安特性曲线如图5所示,当反向电压达到Vz时,即使电压有一微小的增加,反向电流亦会猛增(反向击穿曲线很徒直)这时,二极管处于击穿状态,如果把击穿电流限制在一定的范围内,管子就可以长时间在反向击穿状态下稳定工作。

常用二极管型号及参数手册范本

查询>> 二极管资料>> 二极管资料大全 硅双向触发二极管参数 二极管资料大全 常用快速恢复二极管资料稳压二极管参数 变容二极管参数 电视机\VCD\DVD用二极管发光二极管参数 发光二极管符号显示 圆形发光二极管参数 激光二极管参数 特殊模型发光二极管 光电二极管参数 七段发光二极管参数 九段发光二极管参数 字母发光二极管参数 4×4圆矩发光二极 5×7圆矩发光二极 5×8圆矩发光二极 6×8圆矩发光二极 8×8圆矩发光二极 16×16圆矩发光 装饰式七段发光二极 裸发光二极管灯参数 裸发光二极管显示器 圆形发光二极管参数 闪烁圆形发光二极管 通用激光二极管参数 带监视器激光二极管 圆形发光二极管参数 金属封装发光二极管 圆柱平顶发光二极管 1.塑封整流二极管 序号型号 I F V RRM V F Trr 外形 A V V μs 1 1A1-1A7 1A 50-1000V 1.1 R-1 2 1N4001-1N4007 1A 50-1000V 1.1 DO-41 3 1N5391-1N5399 1.5A 50-1000V 1.1 DO-15 4 2A01-2A07 2A 50-1000V 1.0 DO-15 5 1N5400-1N5408 3A 50-1000V 0.95 DO-201AD 6 6A05-6A10 6A 50-1000V 0.95 R-6 7 TS750-TS758 6A 50-800V 1.25 R-6 8 RL10-RL60 1A-6A 50-1000V 1.0 9 2CZ81-2CZ87 0.05A-3A 50-1000V 1.0 DO-41 10 2CP21-2CP29 0.3A 100-1000V 1.0 DO-41 11 2DZ14-2DZ15 0.5A-1A 200-1000V 1.0 DO-41 12 2DP3-2DP5 0.3A-1A 200-1000V 1.0 DO-41 13 BYW27 1A 200-1300V 1.0 DO-41 14 DR202-DR210 2A 200-1000V 1.0 DO-15 15 BY251-BY254 3A 200-800V 1.1 DO-201AD 16 BY550-200~1000 5A 200-1000V 1.1 R-5 17 PX10A02-PX10A13 10A 200-1300V 1.1 PX 18 PX12A02-PX12A13 12A 200-1300V 1.1 PX 19 PX15A02-PX15A13 15A 200-1300V 1.1 PX 20 ERA15-02~13 1A 200-1300V 1.0 R-1 21 ERB12-02~13 1A 200-1300V 1.0 DO-15 22 ERC05-02~13 1.2A 200-1300V 1.0 DO-15 23 ERC04-02~13 1.5A 200-1300V 1.0 DO-15 24 ERD03-02~13 3A 200-1300V 1.0 DO-201AD 25 EM1-EM2 1A-1.2A 200-1000V 0.97 DO-15 26 RM1Z-RM1C 1A 200-1000V 0.95 DO-15 27 RM2Z-RM2C 1.2A 200-1000V 0.95 DO-15 28 RM11Z-RM11C 1.5A 200-1000V 0.95 DO-15 29 RM3Z-RM3C 2.5A 200-1000V 0.97 DO-201AD 30 RM4Z-RM4C 3A 200-1000V 0.97 DO-201AD

发光二极管主要参数与特性(精)

发光二极管主要参数与特性 LED 是利用化合物材料制成 pn 结的光电器件。它具备pn 结结型器 件的电学特性:I-V 特性、C-V 特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。 1、LED 电学特性 1.1 I-V 特性 表征LED 芯片pn 结制备性能主要参数。LED 的I-V 特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。 如左图: (1) 正向死区:(图oa 或oa ′段)a 点对于V 0 为开启电压,当V <Va ,外加电 场尚克服 不少因载 流子扩散 而形成势垒电场,此时R 很大;开启电压对于不同LED 其值不同,GaAs 为1V ,红色GaAsP 为1.2V ,GaP 为1.8V ,GaN 为2.5V 。 (2)正向工作区:电流I F 与外加电压呈指数关系 I F = I S (e qV F /KT –1) -------------------------I S 为反向饱和电流 。 V >0时,V >V F 的正向工作区I F 随V F 指数上升 I F = I S e qV F /KT (3)反向死区 :V <0时pn 结加反偏压 V= - V R 时,反向漏电流I R (V= -5V )时,GaP 为0V ,GaN 为10uA 。 (4)反向击穿区 V <- V R ,V R 称为反向击穿电压;V R 电压对应I R 为反向漏电流。当反向偏压一直增加使V <- V R 时,则出现I R 突然增加而出现击穿现象。由于所用化合物材料种类不同,各种LED 的反向击穿电压V R 也不同。 1.2 C-V 特性 鉴于LED 的芯片有9×9mil (250×250um),10×10mil ,11×11mil (280×280um),12×12mil (300×300um),故pn 结面积大小不一,使其结电容(零偏压) C ≈n+pf 左右。 C-V 特性呈二次函数关系(如图2)。由1MH Z 交流信号用C-V 特性测试仪测得。 1.3 最大允许功耗PF m 当流过LED 的电流为I F 、

相关文档
最新文档