分子印迹与杂交技术

分子印迹技术

1.4.3 传统分子印迹技术 传统分子印迹聚合物的制备一般包括以下四个过程:(1) 按一定比例将功能单体与模板分子混合,使两者通过共价键或非共价键作用结合,形成主-客体配合物;(2) 加入合适的交联剂,在引发剂、热或光的引发下,使单体产生聚合反应,即可制得“捕获”模板分子的高交联度的刚性聚合物合物;(3) 将聚合物中的模板分子洗脱或解离,从而在聚合物内部留下大量与模板分子空间大小、形状结构完全一致的三维空穴,同时空穴内按一定顺序排列的功能基团能提供具有一定方向性、与模板分子作用位置相对应的作用位点;(4) 印迹聚合所得的产物均为大块物料,要经过粉碎、研磨及筛分去杂后得到粒度适合的印迹聚合物微粒。MIPs分子印迹的原理图如图1.5所示。 图1.5 分子印迹基本原理示意图 Fig 1.5 The sketch map of preparing MIPs 传统分子印迹聚合物的制备方法主要是包埋法,该方法存在以下问题:(1)粉碎过程可控性差,破坏部分印迹位点,造成大量印迹空穴损坏,经筛分后获得的合格粒子一般低于制备总量的50%,造成载药量低。(2)由于所制备的是高度交联的聚合物网络,对模板药物分子包埋过深、过紧,洗脱比较困难。(3)印迹位点分布不均一,位于印迹聚合物孔道壁上的,模板分子向其传质速率较快;而包埋于聚合物本体中的印迹空穴,受位阻影响,可接近性差,从而降低了印迹位点的利用率。并且,传统印迹聚合物的制备过程比较费时、复杂,不

利于该技术的推广及工业化。 1.4.4新型分子表面印迹技术 分子表面印迹技术是把具有识别位点的印迹层结合在基质表面的印迹方法。近年来,采用分子表面印迹技术来制备分子印迹聚合物越来越受到人们的重视。分子表面印迹聚合物能有效地克服传统印迹技术中印迹空穴包埋过深与过紧的现象、结合位点不均一、可接近性差、识别动力学慢和产物需要粉碎研磨等缺点。本课题组曾采用“接枝到”法或“接枝出”法,创建了一种“先接枝聚合后吸附再印迹”新型的分子表面印迹方法。该方法是先将与模板分子具有次价键力的功能大分子,接枝到硅胶(微米级)微粒表面,得到功能接枝微粒;再凭借模板分子与接枝微粒表面的功能大分子形成次价键力,饱和吸附模板分子;再使用两端具有双反应性基团的特殊交联剂使功能大分子交联,并实现模板分子的印迹;将模板分子除去,在硅胶微粒表面的接枝聚合物薄层中,就留下了大量与模板分子匹配的印迹空穴,获得了对模板分子具有特异识别选择性和高度亲和性的高性能印迹聚合物微粒。该方法制备的分子表面印迹聚合物已经广泛应用于生物代谢分子、生物碱、农药分子、氨基酸、稀土离子等的识别得到了非常满意的结果。 分离研究,都 在分子设计的基础上,本课题组又提出并建立了另一种新型的分子表面印迹方法。该方法是基于“表面引发接枝聚合”,以药物分子为模板分子在固体微粒表面单体的接枝聚合与药物分子的表面印迹同步进行,制得了5-氟尿嘧啶与甲硝唑两种药物分子表面印迹材料,用于结肠定位释放系统,实验结果显示具有良好的结肠定位效果。

蛋白免疫印迹杂交技术手册

蛋白免疫印迹杂交(Western Blot)技术手册 蛋白免疫印迹杂交(Western Blot. WB)是将蛋白样本通过聚丙烯酰胺电泳按分子量大小分离,再转移到杂交膜(blot)上,然后通过一抗/二抗复合物对靶蛋白进行特异性检测的方法。WB是进行蛋白质分析最流行和成熟的技术之一。 本指南讨论Western Blot操作方法及常见问题分析,有助于成功完成WB。 A 蛋白样本提取制备 1 细胞或组织裂解 2 蛋白酶和磷酸酶抑制剂 3 蛋白定量 4 电泳上样样品的准备 B 电泳 1 PAGE胶的制备 2 蛋白分子量Marker 3 阳性对照 4 内参对照 5 上样与电泳 C 转膜与显色(Western Blot) 1 胶中蛋白的检测 2 蛋白转膜 3 膜上蛋白的检测:丽春红 4 膜的封闭 5 一抗的孵育 6 二抗的孵育 7 显色 D 常见问题分析与解决方案 附录1 WB实验试剂配制方法 附录2 SDS-PAGE胶的配制

WB概述:检测原理 Western Blot过程示意图 聚丙烯酰胺凝胶电泳 转膜 封闭 孵育1小时或过夜 孵育一抗 孵育1小时或过夜 孵育酶标二抗 1小时 洗膜 3×5min/1×10min 孵育底物(如为显色法,则直接孵育至显色即可) 1min 胶片曝光显影 1-30min

A 蛋白样本提取制备 蛋白样品制备是Western Blotting的第一步,更是决定WB成败的关键步骤,总体原则和注意事项: 1:尽可能提取完全或降低样本复杂度只集中于提取目的蛋白 (通过采用不同提取方法或选择不同的试剂盒产品) 2:保持蛋白的处于溶解状态(通过裂解液的PH 盐浓度表面活性剂、还原剂等的选择)3:提取过程防止蛋白降解、聚集、沉淀、修饰等,(低温操作,加入合适的蛋白酶和磷酸酶抑制剂) 4:尽量去除核酸,多糖,脂类等干扰分子(通过加入核酸酶或采取不同提取策略) 5:样品分装,长期于-80℃中保存,避免反复冻融。 A-1 细胞或组织裂解 A-1-1 细胞裂解 细胞裂解操作方法: 1. 培养的细胞经预冷的PBS漂洗2次,裂解液中加入蛋白酶和磷酸酶抑制剂(种类与量见本节2); 2. 吸净PBS,加入预冷的裂解液,(1 ml per 107 cells/100mm dish/150cm2 flask; 0.5ml per 5x106 cells/60mm dish/75cm2 flask); 3. 用细胞刮子刮取贴壁细胞,将细胞及裂解液温和地转移至预冷的微量离心管中; 4. 4℃摇动30 min; 5. 4℃离心12,000 rpm,20 min(根椐细胞种类不同调整离心力); 6. 弃沉淀,轻轻吸取上清,转移至新预冷的微量离心管中置于冰上,即为蛋白样本; A-1-2 组织裂解 1 用灭菌的预冷的工具分离目的组织,尽量置于冰上以防蛋白酶水解; 2 将组织块放在圆底的微量离心管或Eppendorf管中,加入液氮冻结组织于冰上均质研磨,长期可保存于-80°C;

Southern&northern&western杂交原理

Southern杂交 Southern印迹杂交是进行基因组DNA特定序列定位的通用方法。一般利用琼脂糖凝胶电泳分离经限制性内切酶消化的DNA片段,将胶上的DNA变性并在原位将单链DNA片段转移至尼龙膜或其他固相支持物上,经干烤或者紫外线照射固定,再与相对应结构的标记探针进行杂交,用放射自显影或酶反应显色,从而检测特定DNA分子的含量 基本原理是:具有一定同源性的两条核酸单链在一定的条件下,可按碱基互补的原则形成双链,此杂交过程是高度特异的。由于核酸分子的高度特异性及检测方法的灵敏性,综合凝胶电泳和核酸内切限制酶分析的结果,便可绘制出DNA分子的限制图谱。 Southern印迹杂交技术包括两个主要过程:一是将待测定核酸分子通过一定的方法转移并结合到一定的固相支持物(硝酸纤维素膜或尼龙膜)上,即印迹(blotting);二是固定于膜上的核酸同位素标记的探针在一定的温度和离子强度下退火,即分子杂交过程。该技术是1975年英国爱丁堡大学的E.M.Southern首创的,Southern印迹杂交故因此而得名。 Northern 印记杂交 Northern blot 是一种通过检测RNA的表达水平来检测基因表达的方法,通过northern blot 的方法可以检测到细胞在生长发育特定阶段或者胁迫或病理环境下特定基因表达情况。 原理:在变性条件下将待检的RNA样品进行琼脂糖凝胶电泳,继而按照同Southern Blot相同的原理进行转膜和用探针进行杂交检测。 Western杂交 原理:是将蛋白质电泳、印迹、免疫测定融为一体的特异性蛋白质的检测方法。其原理是:生物中含有一定量的目的蛋白。先从生物细胞中提取总蛋白或目的蛋白,将蛋白质样品溶解于含有去污剂和还原剂的溶液中,经SDS-PAGE电泳将蛋白质按分子量大小分离,再把分离的各蛋白质条带原位转移到固相膜(硝酸纤维素膜或尼龙膜)上,接着将膜浸泡在高浓度的蛋白质溶液中温育,以封闭其非特异性位点。然后加入特异抗性体(一抗),膜上的目的蛋白(抗原)与一抗结合后,再加入能与一抗专一性结合的带标记的二抗(通常一抗用兔来源的抗体时,二抗常用羊抗兔免疫球蛋白抗体),最后通过二抗上带标记化合物(一般为辣根过氧化物酶或碱性磷酸酶)的特异性反应进行检测。根据检测结果,从而可得知被检生物(植物)细胞内目的蛋白的表达与否、表达量及分子量等情况。

Northern杂交技术

Northern blot技术 经乙二醛和二甲基亚砜变性处理后进行的RNA电泳 这一方法原于McMaster和Carmichael(1977)。含有乙二醛-DMSO的凝胶比含有甲醛的凝胶更难于进行电泳,因为前者泳动速率较慢而且需将电泳液时行循环以避免电泳过程中形成过高的H+梯度。尽管上述两种凝胶具有近乎相等的分辨率(Miller,1987),但用含朋乙二醛-DMSO的凝胶对RNA进行分级离,通常Northern杂交所显示的RNA条带更为锐利。1)在灭菌的微理离心管内,混匀下列液体: 6mol/L乙二醛 5.4μl DMSO 16.0μl 0.1mol/L磷酸(pH7.0) 3.0μl RNA(多达10μl) 5.4μl市售乙二醛通常为40%溶液(6mol/L)。由于接触空气的后乙二醛易于氧化,所以使用前需通过混合床树脂(Bio-Rad AG 501-X8 对乙三醛溶液进行去离子处理,直至溶液pH值大于5.0为止,然后可分装在小份,用盖紧的小管贮存于-2 0℃。每小份乙二醛溶液只用1次,剩余液体应予丢弃。0.1mol/L磷酸钠(pH7. 0)的配法如下:将3.9ml 1mol/L磷酸二氢钠、6.1ml 1mol/L磷酸氢二钠和90ml 水混合,用DEPC处理上述溶液后高压灭菌。每一泳道至多可分析10μg RNA,通常用10- 20 μg 细胞总RN A进行Northern杂交,可以检测高丰度mRNA(占mRNA总量的0.1%以上),如等测RNA含量极微,每个泳道应加0.5-3.0μg poly(A)+RNA。 2)将微量离心管盖严,将RNA溶液置于%0℃温育50℃温育60分钟后,用冰水浴冷却样品,离心5秒钟,使管内所有液体沉降至管底。 3)于50℃温育RNA溶液的同时,灌制琼脂糖水平凝胶,用1.4 %琼脂糖分析1kb 以下的R NA样品,而用1%琼脂糖分析1kb 以上的RNA样品。用0mmol/L 磷酸钠(pH7. 0 )后,降温至70 ℃,加入碘乙酸钠固体至终浓度为10mmol/L(使RNA酶失活),再降温至50℃,制胶,加入RNA样品前一至少放置30分钟使其凝固。用于RNA电泳的电泳槽需用去污剂溶液洗净,用水冲洗,用乙醇干燥,然后灌满3%H2O2,于室温放置10分钟后,用经D EPC处理的水彻底冲洗电泳槽。因乙二醛可与溴化乙锭发生化学反应,所以制胶和电泳过程中诮避免作用溴化乙锭。 4)将RNA样品冷却至0℃,加入4μl 灭菌的并经用DEPC处理的戊二醛-DMSO凝胶中样缓冲液,随后立即将上述样品加至凝胶加样孔。用已知大小的乙醛酰RNA作为分子量标准参照物,如用18S和28S rRNA或或9S兔β-珠蛋白mRNA,上述RNA长度分别为6322、2 366和710个碱基。也可以从BRL购置已知大小的RNA混合物作为分子量标准照物。通常分子量标准参照物的泳道位于凝胶边缘,便于电泳后将其切去进行溴化乙锭染色,可能的话应在分子量标准参照物以及欲转移至硝酸纤维素滤膜或尼龙膜的样品之间留空一个泳道。 乙二醛-DMSO凝胶加样缓冲液 50%甘油

分子印迹技术原理及其在分离提纯上的应用

. . 生物分离的新技术——分子印迹 —创新论坛—工业生物技术专家报告会 2008级生命学院3班微生物与生化药学专业 2008001243 宋汉臣

目录 1分子印迹技术的原理与方法 (3) 1.1 MIP的制备过程 (3) 1.2制备MIP的方法 (3) 1.2.1预组装法——共价键作用 (4) 1.2.2自组装法——非共价作用 (4) 1.2.3 共价作用与非共价作用联合法 (5) 2 分子印迹技术在分离上的应用 (5) 2.1 MIP作为固定相的分离技术 (6) 2.1.1MIP作为固定相分离天然产物 (6) 2.1.2MIP作为固定相检测食品中药物的残留 (7) 2.2分子印迹膜(MIM)分离技术 (7) 3问题与展望 (8) 4 参考文献 (9)

摘要:分子印迹技术[1](Molecular Imprinting technique,MIT)是一种新的、很有发展潜力的分离技术。由于其具有选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用围广等优点,分子印迹聚合物已广泛应用于生物工程、临床医学、环境监测及食品工业等众多领域,在分离提纯、免疫分析、酶模型以及生物模拟传感器等许多方面显示出良好的应用前景,引起了人们的广泛关注,其有望在三聚氰胺的快速痕量检测上发挥作用。 关键字:分子印迹生物分离分子印迹聚合物

前言: 分子印迹技术最初出现源于 20世纪 40年代的免疫学,当时Pauling[3]首次提出抗体形成学说为分子印迹理论的产生奠定了基础, 1993年Mosbach等人有关茶碱分子印迹聚合物的研究报道,使这一技术在生物传感器、人工抗体模拟及色谱固相分离等方面有了新的发展,得到世界注目并迅速发展。基于该技术制备的分子印迹聚合物具有亲和性和选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用围广等特点,因此分子印迹技术在许多领域,如色谱分离、固相萃取、仿生传感、模拟酶催化、临床药物分析、膜分离等领域得到日益广泛的研究和开发,有望在生物工程、临床医学、天然药物、食品工业、环境监测等行业形成产业规模化的应用。目前,全世界[3]至少有包括瑞典、日本、德国、美国、中国、澳大利亚、法国在的 10多个国家、100个以上的学术机构和企事业团体在从事分子印迹聚合物的研究和开发。

southern

Southern印迹杂交

Southern印迹杂交是进行基因组DNA特定序列定位的通用方法。一般利用琼脂糖凝胶电泳分离经限制性内切酶消化的DNA片段,将胶上的DNA变性并在原位将单链DNA片段转移至尼龙膜或其他固相支持物上,经干烤或者紫外线照射固定,再与相对应结构的标记探针进行杂交,用放射自显影或酶反应显色,从而检测特定DNA分子的含量

实验原理 核酸分子杂交技术是分子生物学领域中最常用的具体方法之一。其基本原理是:具有一定同源性的两条核酸单链在一定的条件下,可按碱基互补的原则形成双链,此杂交过程是高度特异的。由于核酸分子的高度特异性及检测方法的灵敏性,综合凝胶电泳和核酸内切限制酶分析的结果,便可绘制出DNA分子的限制图谱。但为了进一步构建出DNA分子的遗传图,或进行目的基因序列的测定以满足基因克隆的特殊要求,还必须掌握DNA分子中基因编码区的大小和位置。有关这类数据资料可应用Southern印迹杂交技术获得。

Southern印迹杂交技术包括两个主要过程:一是 将待测定核酸分子通过一定的方法转移并结合到一定 的固相支持物(硝酸纤维素膜或尼龙膜)上,即印迹(blotting);二是固定于膜上的核酸同位素标记的探针 在一定的温度和离子强度下退火,即分子杂交过程。 该技术是1975年英国爱丁堡大学的E.M.Southern首创的,Southern印迹杂交故因此而得名。 早期的Southern印迹是将凝胶中的DNA变性后, 经毛细管的虹吸作用,转移到硝酸纤维膜上。近年来 印迹方法和固定支持滤膜都有了很大的改进,印迹方 法如电转法、真空转移法;滤膜则发展了尼龙膜、化 学活化膜(如APT、ABM纤维素膜)等。利用Southern 印迹法可进行克隆基因的酶切、图谱分析、基因组中 某一基因的定性及定量分析、基因突变分析及限制性 片断长度多态性分析(RFLP)等。

(完整word版)分子印迹技术-1

分子印迹技术 分子印迹,又称分子烙印(molecular imprinting),属超分子化学范畴,是源于高分子化学,生物化学,材料科学等学科的一门交叉学科。分子印迹技术(molecular imprinting technique, MIT)是指制备对某一特定的目标分子(模板分子,印迹分子或烙印分子)具有特异选择性的聚合物的过程。它可以被形象地描绘为制造识别“分子钥匙”的“人工锁”的技术。 分子识别在生物进化中起着特别重要的作用,是从分子水平研究生物现象的重要化学概念,已成为当今研究的热点课题之一。选择性是分子识别的重要特征。人们利用一些天然花合屋如环糊精,或合成化合物如冠醚,杯芳烃和金刚烷等模拟生物体系进行分子识别研究,取得了一些可惜的进展,一定意义上构成了分子印迹技术的雏形。 分子印迹技术的出现直接来源于免疫学的发展,早在20世纪30年代,Breinl,Haurowitz和Mudd就相继提出了一种当抗体侵入时生物体产生抗体的理论。后来在20世纪40年代,由著名诺贝尔奖获得者Pauling对上述理论做了进一步的阐述,并提出了以抗原为模板来合成抗体的理论。该理论认为:抗原物质进入机体后,蛋白质或多肽链以抗原为模板进行分子自组装和折叠形成抗体。虽然Pauling的理论被后来的“克隆选择理论”所推翻,但是在他的理论中仍有两点具有一定的合理性,也为分子印迹的发展奠定了一定的理论基础,同时激发了人们以抗原或待测物为模板合成抗体模拟物的设想;(1)生物体所释放的物质与外来物质在空间上相互匹配。 1949年,Dickey首先提出了“专一性吸附”这一概念,实际上可以视为“分子印迹”的萌芽,但在很长一段时间内没有引起人们足够的重视。直到1972年由德国Heinrich Heine大学的Wulff研究小组首次报道了人工合成分子印迹聚合物之后,这项技术才逐步为人们所认识。特别是1993年瑞典Lund大学的Mosbach等在《Nature》上发表有关茶碱分子印迹聚合物(molecularly imprinted polymers,MIPs)的研究报道后,分子印迹技术得到了蓬勃的发展。迄今,在分子印迹技术的作用机理,分子印迹聚合物制备方法以及分子印迹技术和分子印迹聚合物在各个领域的应用研究都取得了很大的进展,尤其是分析化学方面的应用更是令人瞩目。分子印迹技术的应用研究所涉及的领域非常宽泛,包括分离纯花,

northern印迹杂交

northern印迹杂交 Northern印迹杂交(Northern blot)。这是一种将RNA从琼脂糖凝胶中转印到硝酸纤维素膜上的方法。DNA印迹技术由Southern于1975年创建,称为Southern 印迹技术,RNA印迹技术正好与DNA相对应,故被称为Northern印迹杂交,与此原理相似的蛋白质印迹技术则被称为Western blot。Northern 印迹杂交的RNA吸印与Southern印迹杂交的DNA吸印方法类似,只是在进样前用甲基氢氧化银、乙二醛或甲醛使RNA变性,而不用NaOH,因为它会水解RNA的2'-羟基基团。RNA变性后有利于在转印过程中与硝酸纤维素膜结合,它同样可在高盐中进行转印,但在烘烤前与膜结合得并不牢固,所以在转印后用低盐缓冲液洗脱,否则RNA会被洗脱。在胶中不能加EB,因为它会影响RNA与硝酸纤维素膜的结合。为测定片段大小,可在同一块胶上加分子量标记物一同电泳,之后将标记物切下、上色、照相,样品胶则进行Northern转印。标记物胶上色的方法是在暗室中将其浸在含5μg/ml EB的0.1mol/L醋酸铵中10min,光在水中就可脱色,在紫外光下用一次成像相机拍照时,上色的RNA胶要尽可能少接触紫外光,若接触太多或在白炽灯下暴露过久,会使RNA信号降低。琼脂糖凝胶中分离功能完整的mRNA时,甲基氢氧化银是一种强力、可逆变性剂,但是有毒,因而许多人喜用甲醛作为变性剂。所有操作均应避免RNase的污染。 RNA甲醛凝胶电泳和吸印方法。 <1>试剂: 10×MSE缓冲液:0.2mol/L吗啉代丙烷磺酸(MOPS),pH7.0,50mmol/L醋酸钠,1mmol/L EDTA pH8.0。 5×载样缓冲液:50%甘油,1mmol/L EDTA,0.4%溴酚蓝。 甲醛:用水配成37%浓度(12.3mol/L),应在通风柜中操作,pH高于4.0。 20×SSC; 去离子甲酰胺; 50mmol/L NaOH(含10mmol/L NaCl); 0.1mol/L Tris,pH7.5。 <2>步骤: [1]40ml水中加7g琼脂糖,煮沸溶解,冷却到60℃,加7ml10×MSE缓冲液,11.5ml 甲醛,加水定容至70ml,混匀后倒入盛胶槽。 [2]等胶凝固后,去掉梳子和胶布,将盛胶槽放入1×MSE缓冲液的电泳槽。 [3]使RNA变性(最多20μg),RNA4.5ml,10×MSE缓冲液20ml,甲醛3.5ml,去离子甲酰胺10ml。 [4]55℃加热15min,冰浴冷却。 [5]加2ml5×载样缓冲液。 [6]上样、同时加RNA标记物。

四种分子杂交的原理及方法

Southern杂交 基本概念及原理:Southern印迹杂交(Southern blot)是1975年由英国人southern创建,是研究DNA图谱的基本技术,在遗传病诊断、DNA图谱分析及PCR产物分析等方面有重要价值。 Southern印迹杂交是进行基因组DNA特定序列定位的通用方法。一般利用琼脂糖凝胶电泳分离经限制性内切酶消化的DNA片段,将胶上的DNA变性并在原位将单链DNA 片段转移至尼龙膜或其他固相支持物上,经干烤或者紫外线照射固定,再与相对应结构的标记探针进行杂交,用放射自显影或酶反应显色,从而检测特定DNA分子的含量。 Southern印迹杂交技术是分子生物学领域中最常用的具体方法之一。其基本原理是:具有一定同源性的两条核酸单链在一定的条件下,可按碱基互补的原则形成双链,此杂交过程是高度特异的。由于核酸分子的高度特异性及检测方法的灵敏性,综合凝胶电泳和核酸内切限制酶分析的结果,便可绘制出DNA分子的限制图谱。但为了进一步构建出DNA分子的遗传图,或进行目的基因序列的测定以满足基因克隆的特殊要求,还必须掌握DNA分子中基因编码区的大小和位置。有关这类数据资料可应用Southern 印迹杂交技术获得。 Southern印迹杂交技术包括两个主要过程:一是将待测定核酸分子通过一定的方法转移并结合到一定的固相支持物(硝酸纤维素膜或尼龙膜)上,即印迹(blotting);二是固定于膜上的核酸同位素标记的探针在一定的温度和离子强度下退火,即分子杂交过程。该技术是1975年英国爱丁堡大学的E.M.Southern首创的,Southern印迹杂交故因此而得名。 早期的Southern印迹是将凝胶中的DNA变性后,经毛细管的虹吸作用,转移到硝酸纤维膜上。印迹方法如电转法、真空转移法;滤膜发展了尼龙膜、化学活化膜(如APT、ABM纤维素膜)等。利用Southern印迹法可进行克隆基因的酶切、图谱分析、基因组中某一基因的定性及定量分析、基因突变分析及限制性片断长度多态性分析(RFLP)等。 下面以哺乳动物基因组DNA为例,介绍Southern印迹杂交的基本步骤。 步骤:一、待测核酸样品的制备 (一)制备待测DNA 基因组DNA是从动物组织(或)细胞制备。1.采用适当的化学试剂裂解细胞,或者用组织匀浆器研磨破碎组织中的细胞;2.用蛋白酶和RNA酶消化大部分蛋白质和RNA;3.用有机试剂(酚/氯仿)抽提方法去除蛋白质。 (二)DNA限制酶消化 基因组DNA很长,需要将其切割成大小不同的片段之后才能用于杂交分析,通常用限制酶消化DNA。一般选择一种限制酶来切割DNA分子,但有时为了某些特殊的目的,分别用不同的限制酶消化基因组DNA。切割DNA的条件可根据不同目的设定,有时可采用部分和充分消化相结合的方法获得一些具有交叉顺序的DNA片段。消化DNA 后,加入EDTA,65℃加热灭活限制酶,样品即可直接进行电泳分离,必要时可进行乙醇沉淀,浓缩DNA样品后再进行电泳分离。

分子印迹技术原理及其在分离提纯上的应用

. . . . 生物分离的新技术——分子印迹 —创新论坛—工业生物技术专家报告会 2008级生命学院3班微生物与生化药学专业 2008001243 宋汉臣

目录 1分子印迹技术的原理与方法 (3) 1.1 MIP的制备过程 (3) 1.2制备MIP的方法 (3) 1.2.1预组装法——共价键作用 (4) 1.2.2自组装法——非共价作用 (4) 1.2.3 共价作用与非共价作用联合法 (5) 2 分子印迹技术在分离上的应用 (5) 2.1 MIP作为固定相的分离技术 (6) 2.1.1MIP作为固定相分离天然产物 (6) 2.1.2MIP作为固定相检测食品中药物的残留 (7) 2.2分子印迹膜(MIM)分离技术 (7) 3问题与展望 (8) 4 参考文献 (9)

摘要:分子印迹技术[1](Molecular Imprinting technique,MIT)是一种新的、很有发展潜力的分离技术。由于其具有选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用范围广等优点,分子印迹聚合物已广泛应用于生物工程、临床医学、环境监测及食品工业等众多领域,在分离提纯、免疫分析、酶模型以及生物模拟传感器等许多方面显示出良好的应用前景,引起了人们的广泛关注,其有望在三聚氰胺的快速痕量检测上发挥作用。 关键字:分子印迹生物分离分子印迹聚合物

前言: 分子印迹技术最初出现源于 20世纪 40年代的免疫学,当时Pauling[3]首次提出抗体形成学说为分子印迹理论的产生奠定了基础, 1993年Mosbach等人有关茶碱分子印迹聚合物的研究报道,使这一技术在生物传感器、人工抗体模拟及色谱固相分离等方面有了新的发展,得到世界注目并迅速发展。基于该技术制备的分子印迹聚合物具有亲和性和选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用范围广等特点,因此分子印迹技术在许多领域,如色谱分离、固相萃取、仿生传感、模拟酶催化、临床药物分析、膜分离等领域得到日益广泛的研究和开发,有望在生物工程、临床医学、天然药物、食品工业、环境监测等行业形成产业规模化的应用。目前,全世界[3]至少有包括瑞典、日本、德国、美国、中国、澳大利亚、法国在内的 10多个国家、100个以上的学术机构和企事业团体在从事分子印迹聚合物的研究和开发。

分子印迹技术

分子印迹技术研究进展 摘要分子印迹技术是结合高分子化学、生物化学等学科发展起来的一门边缘学科。它对于研究酶的结构、认识受体-抗体作用机理及在分析化学等方面有重要的意义。本文从分子印迹聚合物的识别机理、分子印迹聚合制备条件和制备技术三个方面综述了分子印迹的研究进展,最后展望了分子印迹发展前景。 关键词:分子印迹聚合物;印迹分子;综述 40年代,Pauling。试图用锁匙理论解释免疫体系。虽然他的理论经后人的实践证明是错误的,但是在他的这种错误的理论中仍有两点是正确的:(1)生物体所释放的物质与外来物质有相应的结合位点;(2)生物体所释放的物质与外来物质在空间上相互匹配。正是基于这两点假设,化学家们发展了一项有效的分析技术称为分子印迹技术(molecularimprinting, MIP),在国内也有人把它称为“分子烙印”。1949年,Dickey首先提出了“分子印迹”这一概念,但在很长一段时间内没有引起人们的重视。直到1972年由Wulff研究小组首次报道了人工合成的有机分子印迹聚合物之后,这项技术才逐渐人们所认识,并于近10年内得到了飞速的发展。 MIPs具有三个特性: (ⅰ)预定性,可根据不同目的制备相应的MIPs; (ⅱ)识别性,MIPs是依据模板定做的,它具有与模板分子的立体结构和官能团相符的孔穴,所以选择性地识别模板分子;(ⅲ)实用性,它可以与天然的生物识别系统如酶与底物、抗原与抗体等相媲美,具有抗恶劣环境、稳定性高和使用寿命长等优点。二十多年来,在固相萃取、膜分离技术、异构体的分离等方面获得广泛研究,展现了良好应用前景。本文综述了MIPs的识别机理、制备技术条件及应用方面新进展. 1.分子印迹技术的基本概念和原理 分子印迹技术是指为获得在空间结构和结合位点上与某一分子(模板分子)完全匹配的聚合物的实验制备技术。它是通过以下方法实现的:(1)首先以具有适当功能基的功

Southern 印迹杂交实验报告

Southern 印迹杂交实验报告 姓名:陆叶学号:14211020062 专业:公共卫生 实验时间:12.18;12.25 带教老师:潘銮凤 【实验目的】 学习核酸杂交的基本过程和操作 【实验原理】 将待检测的DNA分子用或不用限制性内切酶消化后,通过琼脂糖凝胶电泳进行分离,继而将其变性并按其在凝胶中的位置转移到硝酸纤维素薄膜或尼龙膜上,固定后再与同位素或其它标记物标记的DNA或RNA探针进行反应,检测靶DNA片段中是否存在与探针同源的序列。如果待检物中含有与探针互补的序列,则二者通过碱基互补的原理进行结合,游离探针洗涤后用自显影或其它合适的技术进行检测,从而显示出待检的片段及其相对大小。 用途:检测样品中的DNA及其含量,了解基因的状态, 如是否有点突变、扩增重排等。【实验步骤】 1、基因组DNA的限制性内切酶酶切 取1个1.5ml离心管按下列量依次加入基因组DNA、10X酶缓冲液,酶,做好标记。老师给的HL60基因组DNA 10μg(7.6μL);10×Buffer E(10.4μL);EcoR I(10 u/μL)(2μL)。总体积20μL。37℃保温1.5小时。 2、1%琼脂糖电泳 先制备凝胶,称取1.2 g Agarose放入三角烧瓶中,加入60 mL TAE溶液,微波炉中加热令其完全溶解,稍作冷却后加入GelRed核酸染液6μL(稀释10,000倍)。浇板,水平放置,待凝。胶凝后按照以下顺序加样。两组共用一块凝胶,共7个样。 ①基因组DNA10 20μl (自己的) ②基因组DNA10 μg(老师的) ③酶切样品 ④阳性对照(c-myc 4.7 kb线性片段,30pg/μl, 10μl) ⑤酶切样品 ⑥基因组DNA10 μg (老师的) ⑦基因组DNA10 20μl (自己的) 插上电源,负极在样品槽一边,DNA将向阳极跑,80V电泳2小时左右,直到溴酚蓝染料跑到接近凝胶尾部,在电泳期间做好胶变性和转移准备。 3、变性 切胶,2—6孔,宽4.5cm,长7cm(从顶部开始,可用尼龙膜保护纸作为标尺) ①将凝胶浸在5倍体积的胶变性液中, 慢慢摇动20分钟。 ②ddH2O洗2次。 ③在胶中和液中慢慢摇动15分钟。 4、转移 ①在搪瓷盘中加入300 ml 10×SSC,放上培养皿和小玻璃板。 ②将3张长滤纸浸湿,逐张放在玻璃板上,用移液管的滚动,赶走气泡。 ③切除多余凝胶,小心地将凝胶放在滤纸上(加样孔面向下),赶走滤纸与胶之间的气泡。 ④再将与胶大小相同的尼龙膜(浸湿)放在胶上,同样不能有气泡,然后放上三张浸湿的 滤纸,赶走气泡。 ⑤紧贴凝胶四周各放一张X光片。 ⑥小心蒙上一张比搪瓷盘大的保鲜膜。保鲜膜要紧贴滤纸,但不能让滤纸移动。

分子印迹技术的原理与研究进展

分子印迹技术的原理与研究进展 (08生微(1)班雷丽文 080548011) 摘要分子印迹是制备具有分子特异识别功能聚合物的一种技术,近年来,这项技术取得了重大的突破和进展,影响到社会多方面的领域。本文介绍了分子印迹技术的基本原理,综述了该技术在环境领域、农药残留检测应用、食品安全检测、药学应用的研究进展。 关键词分子印迹技术,分子印迹聚合物,基本原理,研究进展 1 前言 分子印迹技术是二十世纪八十年代迅速发展起来的一种化学分析技术,属于泛分子化学研究范畴,通常被人们描述为创造与识别“分子锁匙”的人工“锁”技术[1]。分子印迹技术也叫分子模板技术,最初出现源于20世纪40年代的免疫学[1]。分子印迹聚合物以其通用性和惊人的立体专一识别性,越来越受到人们的青睐。近年来,该技术已广泛应用于色谱分离、抗体或受体模拟、生物传感器以及生物酶模拟和催化合成等诸多领域,并由此使其成为化学和生物学交叉的新兴领域之一,得到世界注目并迅速发展。 2 分子印迹技术的基本原理 分子印迹技术是将要分离的目标分子作为模板分子,将它与交联剂在聚合物单体溶液中进行聚合制备得到单体、模板分子复合物,然后通过物理或化学手段除去模板分子,便得到“印迹”下目标分子的空间结构的分子印迹聚合物(MIP) ,在这种聚合物中形成了与模板分子在空间和结合位点上相匹配的具有多重作用位点的空穴,这样的空穴对模板分子具有选择性[11]。 目前,根据印迹分子与分子印迹聚合物在聚合过程中相互作用的机理不同,分子印迹技术分为两种基本类型: (1) 共价法(预组织法,preorganization),主要由Wulff 及其同事创立。在此方法中,印迹分子先通过共价键与单体结合,然后交联聚合,聚合后再通过化学途径将共价键断裂而去除印迹分子[1]。使用的共价结合作用的物质包括硼酸酯、席夫碱、缩醛酮、酯和螯合物等[14]。其中最具代表性的是硼酸酯,其优点是能够生成相当稳定的三角形的硼酸酯,而在碱性水溶液中或在有氮(NH3、哌啶) 存在下则生成四角形的硼酸酯[1]。采用席夫碱的共价键作用也进行了广泛的研究。由于共价键作用力较强,在印迹分子自组装或识别过程中结合和解离速度较慢,难以达到热力学平衡,不适于快速识别,而且识别水平与生物识别相差甚远[13]。因此,共价法发展较为缓慢。

分子印迹技术及应用

分子印迹技术及应用 林凯城1李永莲2 (1.揭阳职业技术学院化学工程系广东揭阳 522000;2.广东轻工职业技术学院科研处广东广州510300) 摘 要:分子印迹技术是构建高分子聚合物的有效方法,这种方法简便、成熟。所构建的纳米孔穴与印迹分子在空间形 状、大小以及作用点上相匹配,所以能被印迹分子高效地选择性识别出来。目前已广泛应用于各种离子、小分子、大分子等 的印迹。文中阐明了分子印迹技术的基本原理,简述了分子印迹技术的主要制备方法,并展望了光子晶体的应用前景。 关键词:分子印迹;聚合方法;应用 中图分类号:Q503文献标识码:B 文章编号:1674-4896(2012)12-0026-05 分子印迹技术最先应用于20世纪40年代Paulin首次提出抗体形成学说[1],为后来分子印迹理论的产生和发展奠定了理论基础。1972年,Wulff在分子印迹技术方面的研究取得了突破性进 展,首次成功制备出分子印记聚合物(MIPs )[2]。 1993年Mosbach开展的有关茶碱分子的分子印迹聚合物的研究也取得巨大成就,并在《Nature》上发表了相关的论文。从此,分子印迹聚合物引起了人们的广泛关注,因为其具有高度专一性和普适性,并且广泛地应用于化学和生物学交叉的新兴领域,如模拟酶、药物分析、催化剂、色谱分析与色谱分离、仿生传感器等方面,受到世界关注并迅速发展。 高分子聚合物的合成,在合成之前将印迹分子加入到功能单体之中,两者之间发生化学作用,与此同时,加入交联剂及引发剂,通过一系列的聚合反应形成一个固态高分子化合物,这个化合物是高度交联的,接着将印迹分子从高分子中移除,这个可以利用化学或物理的方法移除,经过这个步骤之后,大量的空腔结构就在高分子化合物的内部形成并存在了,通过这些空腔结构内各官能团的位置以及它们各自的形状,空腔结构可以与印迹高分子进行互补,并且还能发生具有特殊性能的作用。分子印迹技术各方面的研究也正是利 用这一原理开展工作的。功能单体和印迹分子之间存在的化学作用方式主要有两种,一是共价键,另外一个是非共价键,其中又以非共价键作用方式的应用较多,它包括离子键作用、疏水作用、氢键作用等。 图1典型的分子印迹步骤[3] 当前,利用分子印迹技术合成的聚合物,由于其具有广泛的通用性和惊人的立体专一识别性,全世界进行MIPs的研究与开发的国家至少有10多个国家,包括日本、美国、德国、中国等,另外还有企事业单位和学术机构,其总数也不少于100个。但是, 由于目前所利用的制备聚合物的分子印 收稿日期:2012-09-04作者简介:林凯城(1983-),男,广东揭阳人,助教,研究方向:化学传感材料。 第5卷第6期2012年12月清远职业技术学院学报JournalofQingyuanPolytechnicVol.5,No.6Dec.2012 26

分子印迹技术

分子印迹技术(molecular imprinting technology,MIT)是20世纪末出现的一种高选择性分离技术,这种技术的基本思想是源于人们对抗体-抗原专一性的认识,利用具有分子识别能力的聚合物材料——分子印迹聚合物(molecule imprinting polymer,MIP)来分离、筛选、纯化化合物的一种仿生技术。因为制备的材料有着极高的选择性及卓越的分子识别性能,很快在固相萃取、人工酶学、手性拆分、生物传感器、不对称催化等方面得到了广泛的应用。笔者现主要对MIT在中药提取分离中的应用作一概述。 1 分子印迹技术基本原理及聚合物的制备 1.1 基本原理 MIT是选用能与印迹分子产生特定相互作用的功能性单体,通过共价或非共价作用在溶剂中形成印迹分子-功能单体复合物,加入交联剂,在引发剂的引发下与带有特殊官能团的功能单体进行光或热的聚合,形成三维交联的聚合物网络,然后,用合适的溶剂除去印迹分子,在聚合物网络中形成空间和化学功能与印迹分子相匹配的空穴。这种空穴与印迹分子结构完全一样,可对印迹分子或与之结构相似的分子实现特异性的识别。 1.2 分子印迹聚合物的制备 分子印迹聚合物的制备过程可分为3步:第一步是印迹,将印迹分子和功能单体按比例混合,使其存在一定的分子间作用力;第二步是聚合,加交联剂,使复合物通过聚合反应形成聚合物;第三步是去除印迹分子,反复洗脱水解,使其形成具有一定空穴的分子印迹聚合物。根据功能单体和印迹分子间作用力的差异,MIP可分为以下3类。 1.2.1 共价键法 也称预先组织法。印迹分子与功能单体通过可逆的共价键结合,加入交联剂共聚后,印迹分子通过化学方法从聚合物上断开,再用极性溶剂将印迹分子洗脱下来,使其形成具有高密度空腔的分子印迹聚合物。其主要的反应类型有形成硼酸酯、西佛碱、缩醛(酮)、酯等。共价键法的优点是空间位置固定,选择性高,峰展宽和脱尾少,常用于诸如糖类、氨基酸类、芳基酮类等多种化合物的特定性识别。由于共价键比较稳定,因而会生成较多的键合位点,印迹效率要高于非共价键印迹法。其缺点是功能单体选择有限,使模板限制较大且难以除去。因此,在选择模板时共价键键能必须适当,否则会使在识别过程中结合与解离速度偏慢,难以达到热力学平衡。 1.2.2 非共价键法

分子印迹技术原理及其在分离提纯上的应用剖析

生物分离的新技术——分子印迹 —创新论坛—工业生物技术专家报告会 2008级生命学院3班微生物与生化药学专业 2008001243 宋汉臣

目录 1分子印迹技术的原理与方法 (3) 1.1 MIP的制备过程 (3) 1.2制备MIP的方法 (3) 1.2.1预组装法——共价键作用 (4) 1.2.2自组装法——非共价作用 (4) 1.2.3 共价作用与非共价作用联合法 (5) 2 分子印迹技术在分离上的应用 (5) 2.1 MIP作为固定相的分离技术 (6) 2.1.1MIP作为固定相分离天然产物 (6) 2.1.2MIP作为固定相检测食品中药物的残留 (7) 2.2分子印迹膜(MIM)分离技术 (7) 3问题与展望 (8) 4 参考文献 (9)

摘要:分子印迹技术[1](Molecular Imprinting technique,MIT)是一种新的、很有发展潜力的分离技术。由于其具有选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用范围广等优点,分子印迹聚合物已广泛应用于生物工程、临床医学、环境监测及食品工业等众多领域,在分离提纯、免疫分析、酶模型以及生物模拟传感器等许多方面显示出良好的应用前景,引起了人们的广泛关注,其有望在三聚氰胺的快速痕量检测上发挥作用。 关键字:分子印迹生物分离分子印迹聚合物

前言: 分子印迹技术最初出现源于 20世纪 40年代的免疫学,当时Pauling[3]首次提出抗体形成学说为分子印迹理论的产生奠定了基础, 1993年Mosbach等人有关茶碱分子印迹聚合物的研究报道,使这一技术在生物传感器、人工抗体模拟及色谱固相分离等方面有了新的发展,得到世界注目并迅速发展。基于该技术制备的分子印迹聚合物具有亲和性和选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用范围广等特点,因此分子印迹技术在许多领域,如色谱分离、固相萃取、仿生传感、模拟酶催化、临床药物分析、膜分离等领域得到日益广泛的研究和开发,有望在生物工程、临床医学、天然药物、食品工业、环境监测等行业形成产业规模化的应用。目前,全世界[3]至少有包括瑞典、日本、德国、美国、中国、澳大利亚、法国在内的 10多个国家、100个以上的学术机构和企事业团体在从事分子印迹聚合物的研究和开发。

SouthernBlot印记杂交常见问题解析

Southern Blot印记杂交常见问题解析 1、针对不同的实验材料,southern杂交实验难度有差异么?答:不同的实验材料,在进行试验过程中难度差异很大,例如玉米、 小麦、葡萄的Southern杂交检测难度要比普通的材料要大。 (1)、物种本身的基因组较大(例如小麦),检测操作难度大 (2)、材料本身含有高糖多酚(例如葡萄)严重影响酶切操作 (3)、物种品系复杂(例如玉米),在基因组信息研究层面还不透彻。 2、核酸质量对southern杂交实验的影响 答:核酸质量对实验的影响是直接的,既要求客户提供的总量足够——实验消耗(上样量),又要求保证质量——按要求准备材料。 上样量指的是基因组DNA酶切消化后,回收后的DNA片段的量。根据 不同物种的基因组大小不同,上样量也有所区别。基因组越大,上样 量越多。例如,拟南芥大概需要3ug ,酵母3ug,人8ug,小麦15ug。酶切消化之后不能直接上样,需要回收纯化。回收会有损失,最多能 损失一半,所以需要客户提供足够量的样品,一般要求至少20 ug的 基因组DNA。(以上上样量均为一个泳道) DNA 样品一般对 OD 值和浓度有如下要求:OD260/280=1.8~2.0, OD260/230>2.0,浓度≥100 ng/ul 。同时,需要对 DNA 样品进行琼 脂糖凝胶电泳,电泳结果显示该 DNA 样品无蛋白质和 RNA 等物质污染,无降解弥散,条带清晰。(如图所示)

3、探针设计是怎么回事,有哪些原则? 答:探针就是与待测目的基因序列同源的一段地高辛标记的DNA序列,可以和酶切后的基因组片段特异性的结合。探针设计有如下几个原则: (1)、长度适中。探针的片段长度一般控制在300-1000bp,探针太长时会导致非特异性结合的概率增加,探针太短时,探针结合的地高辛标 记物太少,会导致发光信号减弱。 (2)、特异性强。最佳的探针序列是仅与目的基因同源,与整个基因组 序列的同源片段低于30%。 (3)、ATGC含量均匀,无发卡结构和高度重复序列。

分子印迹技术及其研究进展

分子印迹技术及其研究进展 Malikullidin iz kaldurux tehnikisi wa uning tarakkiyati 分子印迹技术 近年来分子印迹学作为一门新兴的科学门类得到巨大的发展。分子印迹技术是 一种模拟抗体- 抗原相互作用的人工生物模板技术。它可为人们提供具有期望结构和性质的分子组合体,因此,分子印迹技术已成为当今化学研究领域的热点课题之一。分子印迹的出现源于免疫学,早在20世纪40年代由诺贝尔奖获得者Pauling 根据抗体与抗原相互作用时空穴匹配的“锁匙”现象,提出了以抗原为模板来合成抗体的理论。直到1972年德国科学家Wulff [18]研究小组首次成功制备出分子印迹聚合物,使这方面的研究得到了飞速的发展。1993年Mosbach[19]研究小组在美国《自然杂志》(《Nature》)上发表有关分子印迹聚合物的报道,更加速了分子印迹在生物传感器[20-24]、人工抗体模拟[25]及色谱固定相[26-30]分离等方面的发展,并由此使其成为化学和生物学交叉的新兴领域之一,得到了世界注目并迅速发展。分子印迹技术的应用研究所涉及的领域非常广泛,包括环境、医药、食品、 军事等。 1.分子印迹技术的基本原理及特点 分子印迹聚合物是具有特定功能基团以及孔穴大小和形状的新型高分子材料。是具有高度交联的结构,稳定性好,能够在高温、高压、有机溶剂以及耐酸碱的分子识别材料。它的制备是通过以下方法实现的:首先用功能单体(functional monomer)(funkissial tana)和模板分子(template)(izi kaldurlidigan malikulla)以共价键或非共价键形成复合物,再加入适当的交联剂 (cross-linker)(tutaxturguqi)和引发剂在加热、紫外光或其它射线照射的条件下聚合, 从而使模板分子在空间固定下来;最后通过一定的方法把模板分子洗脱,将模板分子从聚合物中除去, 这样就在聚合物中留下一个与模板分子在空间结构上完

相关文档
最新文档