磨削硬质合金刀具的磨料粒度选择

磨削硬质合金刀具的磨料粒度选择

磨削硬质合金刀具的磨料粒度选择,主要是考虑表面粗超度要求和磨削效率,以及还要考虑硬质合金材料的导热性较差,容易产生磨削裂纹这一重要因素,因而一般可根据以下原则选择:

1.表面粗糙度要求细(即精磨)时,应选用粒度较细的砂轮,粗磨时,加工余量和采用的磨削深度较大,应选用粒度较粗的砂轮,这是因为选用粒度较细的砂轮磨削时,由于砂轮的粒度越细,砂轮工作表面的单位面积上的磨粒数越多,同时参加切削的磨粒数也越多,在磨削表面上的刻痕也越密越细,所以可获的较细的粗糙度。但是,磨削的效率较低,在选用粒度较粗的砂轮磨削时,磨削效率较高,但获得的表面粗糙度较粗。当然,粒度对粗糙度的这种影响只能就一定的条件来说,不是绝对的。磨削表面粗糙度除砂轮粒度的影响外,还与机床的调整,砂轮的平衡,砂轮的修整,磨削速度等因素有很大关系,所以,砂轮粒度的选择还必须和采用的磨削条件结合起来考虑。

2.砂轮和硬质合金刀具接触面积较大时,应选用粒度较粗一些的砂轮,例如,磨削相同的平面,用砂轮的断面磨削比用砂轮的周边磨削的粒度要粗些,接触面积较小时,可选用粒度较细一些的砂轮,湿磨比干磨用的砂轮。粒度可以细一些。这样选择主要从磨削热易使硬质合金产生磨削裂纹的因素来考虑。

硬质合金刀具基础知识

硬质合金刀具材料基础知识 文章来源:中国刀具信息网添加人:阿刀 硬质合金是使用最广泛的一类高速加工(HSM)刀具材料,此类材料是通过粉末冶金工艺生产的,由硬质碳化物(通常为碳化钨WC)颗粒和质地较软的金属结合剂组成。目前,有数百种不同成分的WC基硬质合金,它们中大部分都采用钴(Co)作为结合剂,镍(Ni)和铬(Cr)也是常用的结合剂元素,另外还可以添加其他一些合金元素。为什么有如此之多的硬质合金牌号?刀具制造商如何为某种特定的切削加工选择正确的刀具材料?为了回答这些问题,首先让我们了解一下使硬质合金成为一种理想刀具材料的各种特性。 硬度与韧性 WC-Co硬质合金在兼具硬度和韧性方面具有独到优势。碳化钨(WC)本身具有很高的硬度(超过刚玉或氧化铝),而且在工作温度升高时其硬度也很少下降。但是,它缺乏足够的韧性,而这对于切削刀具是必不可少的性能。为了利用碳化钨的高硬度,并改善其韧性,人们利用金属结合剂将碳化钨结合在一起,从而使这种材料既具有远远超过高速钢的硬度,同时又能够承受在大多数切削加工中的切削力。此外,它还能承受高速加工所产生的切削高温。 如今,几乎所有的WC-Co刀具和刀片都采用了涂层,因此,基体材料的作用似乎显得不太重要了。但实际上,正是WC-Co材料的高弹性系数(衡量刚度的指标,WC-Co的室温弹性系数约为高速钢的三倍)为涂层提供了不变形的基底。WC-Co基体还能提供所需要的韧性。这些性能都是WC-Co材料的基本特性,但也可以在生产硬质合金粉体时,通过调整材料成分和微观结构而定制材料性能。因此,刀具性能与特定加工的适配性在很大程度上取决于最初的制粉工艺。 制粉工艺 碳化钨粉是通过对钨(W)粉进行渗碳处理而获得的。碳化钨粉的特性(尤其是其粒度)主要取决于原料钨粉的粒度以及渗碳的温度和时间。化学控制也至关重要,碳含量必须保持恒定(接近重量比为6.13%的理论配比值)。为了通过后续工序来控制粉体粒度,可以在渗碳处理之前添加少量的钒和/或铬。不同的下游工艺条件和不同的最终加工用途需要采用特定的碳化钨粒度、碳含量、钒含量和铬含量的组合,通过这些组合的变化,可以产生各种不同的碳化钨粉。例如,碳化钨粉生产商ATI Alldyne公司共生产23种标准牌号的碳化钨粉,而根据用户要求定制的碳化钨粉品种可达标准牌号碳化钨粉的5倍以上。 在将碳化钨粉与金属结合剂一起进行混合碾磨以生产某种牌号硬质合金粉料时,可以采用各种不同的组合方式。最常用的钴含量为3%-25%(重量比),而在需要增强刀具抗腐蚀性的情况下,则需要加入镍和铬。此外,还可以通过添加其他合金成分,进一步改良金属结合剂。例如,在

硬质合金超精密镜面磨削的实验研究

硬质合金超精密镜面磨削的实验研究 作者:大连理工大学 周曙光 徐中耀 关佳亮 由于硬质合金的硬度高、脆 性大、韧性差,加工性能差,采用传统方法难以满足精密及超精密加工的技术要求,而且工序多、效率低、成本高。运用ELID 精密镜面磨削技术加工各种硬质合金,一次磨削成形,效果良好,表面粗糙度普遍达Ra10~20μm ,且效率高、成本低,对机床精度要求不高,具有极大的推广价值和应用前景。 一、硬质合金超精密镜面磨削实验 1. 实验材料 实验材料见表1。 表1 几种典型硬质合金的物理机械性能 2. 实验条件及参数 在MM7120型卧轴矩台平面磨床上,加装自行设计的ELID 平面磨削装置,对上述牌号硬质合金进行ELID 超精密镜面磨削实验。实验条件及参数见下列: 1) 实验设备

a. 改装的MM7120型平面磨床 b. 自制CIFB砂轮W10,W5,W1.5 c. 自制HDMD-II型ELID磨削专用 d. 高频直流脉冲电源 e. 自制HDMY-201型磨削液 2) 磨削参数 a. 主轴转速1440r/min b. 横向进给速度0.1~3mm/行程 c. 工作台速度0.05~0.08m/s d. 磨削深度0.001~0.005mm 3) 电解参数 a. 电压45~125V b. 电流0.5~6.5A c. 电极间隙0.1~0.75A 3. 实验结果 应用上述设备条件,通过调节电解参数和磨削参数,进行ELID超精密镜面磨削。采用日本KosakaLaboratory Ltd.公司制造的SE-3H型轮廓仪进行表面粗糙度的检测,微观尺寸放大倍数V=20000~50000,走纸方向放大倍数H=10,采样长度Ro0.25~0.3mm,测量长度L=2.5mm。磨后工件达到Ra6~17nm的镜面。检测结果见表2。

磨料种类

磨料的种类 磨料可以分为天然磨料和人造磨料两大类。 一、天然磨料 自然界一切可以用于磨削或研磨的材料统称为天然磨料。常用的天然磨料有以下几种: 1.金刚石 金刚石是目前已知最硬的物质,其显微硬度为98.59Gpa。金刚石是碳的同素异型体,主要成份是碳,另外还含有0.02~4.8%的杂质,比重为3.15~3.53g/cm3。其产地非常有限,不但价格昂贵,而且极为缺乏。 金刚石因含杂质的不同而呈黑色、黑褐色、灰黑色等,脆性较大,易沿结晶面裂开,结晶越大抵抗外力的作用越强,金刚石的计量单位是克拉,1克拉=0.2g。 天然金刚石作为磨料主要用途有两个方面: 郑州玉发集团是中国最大的白刚玉生产商,专注白刚玉和煅烧α氧化铝近30年,因为专注所以专业,联系QQ2596686490,电话156390七七八八一。 (1)用于修整砂轮; (2)磨削和研磨难加工材料(如硬质合金、宝石、玻璃、石料等)。 2.天然刚玉 天然刚玉的主要矿物成份为α——Al2O3,其显微硬度为20.58Gpa,比重为3.93~4.00g/cm3。自然界存在的天然刚玉主要有以下三种: (1)优质刚玉(俗称宝石)有蓝宝石(含钛)、红宝石(含铬)等; (2)普通刚玉,呈黑色或棕红色; (3)金刚砂,可分为绿宝石金刚砂和褐铁矿金刚砂,它是一种集合晶体,硬度较低。 在上述三种天然刚玉中,第一种主要用于首饰,而后二种可以作为磨料,用来制造砂轮、油石、砂纸、砂布或微粉、研磨膏等。 3.石榴石 石榴石的晶形较好,显微硬度为13.33Gpa。属于石榴石的矿物种类很多,但适合于作磨料的仅有铁铝

石榴石一种,其矿物组成这:3FeO.Al2O3.3SiO2,含量不低于85~90%。 4。石英 石英的化学成份为SiO2,常夹杂有Al2O3、Fe2O3、 CaO MgO Fe2O3等。显微硬度为8.04 Gpa,可用作磨料的石英矿有脉石英、石英岩及石英砂等。 随着科学技术的发展,人造磨料的品种已达几十种之多,天然磨料由于自身的缺陷,已被越来越多的人造磨料所取代,目前除了天然金刚石、石榴石外,其它种类的天然磨料用量甚微。 二、人造磨料 人造磨料分刚玉系列、碳化物系列、超硬系列等几大类。现将各类磨料的简要制造方法、特性及磨削对象分别叙述如下。 1.刚玉系列人造磨料 属于刚玉系的人造磨料有棕刚玉、白刚玉、锆刚玉、微晶刚玉、单晶刚玉、铬刚玉、镨钕刚玉、黑刚玉及矾土烧结刚玉等。 (1)棕刚玉(A) 棕刚玉是以铝矾土、无烟煤和铁屑为原料,在电弧炉内经高温冶炼而成。在冶炼过程中,无烟煤中的碳将矾土中的氧化硅、氧化铁和氧化钛等杂质还原成金属,为些金属结合在一起成为铁合金,由于其比重较刚玉熔液大而沉降至炉底与刚玉熔液分离。仅有少量的杂质夹杂在刚玉熔快中。 棕刚玉的主要矿物成份为物理刚玉,三方晶系,少量的矿物杂质有:硅酸钙、钙斜长石、富铝红柱石(又称莫来石)、钛化物、玻璃体及少量铁合金等。 棕刚玉的抗破碎能力较强,抗氧化、抗腐蚀,具有良好的化学稳定性,是一种用途广泛的磨料。适用于磨削抗张强度高的金属材料,如普通碳素钢、硬青铜、合金钢的细磨和精磨,磨加工螺纹和齿轮等,白刚玉还可用于精密铸造及高级耐火材料。 (3)铬刚玉(PA) 铬刚玉的冶炼工艺与白刚玉相同,只是在冶炼过程中加入一定量的氧化铬,呈浅紫色或玫瑰色。 铬刚玉中由于引入Cr3+改善了磨料的韧性,其韧性较白刚玉高,而硬度与白刚玉相近,用于加工韧性

硬质合金刃磨技巧

硬质合金刃磨技巧 硬质合金刀片硬度高、脆性大、导热性差、热收缩率大,通常应采用金刚石砂轮进行刃磨。但因金刚石砂轮价格昂贵,磨损后不易修复,因此很多工厂仍采用普通砂轮 进行刃磨。在刃磨过程中,由于硬质合金硬度较高,普通砂轮的磨粒极易钝化,剧烈 的摩擦使刀片表面产生局部高温,形成附加热应力,极易引起热变形和热裂纹,直接 影响刀具使用寿命和加工质量。因此,应采取必要措施防止刃磨裂纹的产生。通过加 工实践,总结出以下可有效防止或减少刃磨裂纹的工艺措施。 1 负刃刃磨法 负刃刃磨法是指在刃磨刀具前,先在前刀面或后刀面上磨出一条负刃带。硬质合金 属于硬脆材料,刃磨时因砂轮振动使刀具受到冲击载荷,容易发生振裂;同时,磨削 区的瞬间升温与冷却使热应力可能超过硬质合金的强度极限而产生热裂纹。采用负刃 刃磨法可提高刀片强度,增强刀片抗振性和承受冲击载荷的能力,并增大受热面积, 防止磨削热大量导向刀片,从而减少或防止裂纹产生。 2 用二硫化钼浸润砂轮 在常温状态下,将粉状二硫化钼与无水乙醇制成混合溶液,然后在密闭容器内(防 止乙醇挥发)将新的普通砂轮浸泡在混合溶液中,14小时后取出,自然干燥18~20 小时,使砂轮完全晾干。经上述处理的砂轮内部空隙中充满二硫化钼,对磨粒可起到 润滑作用,使砂轮排屑良好,不易堵塞。试验证明,用二硫化钼浸润过的砂轮磨削硬 质合金刀片时,磨削锋利,磨粒不易钝化,工件变形小,排屑顺畅,磨屑形状基本呈 带状,可带走大部分磨削热,从而改善磨削效果,提高刀片成品率。 3 合理选用磨削用量 若刃磨过程中摩擦力过大,可导致磨削温度急剧上升,刀片易发生爆裂,因此合理 选用磨削用量十分重要。常用的合理磨削用量为:圆周速度v=10~15m/min,进给量f纵=0.5~1.0m/min,f横=0.01~0.02mm/行程。手工刃磨时,纵向和横向进给量均 不宜过大。 4 其它工艺措施 刀杆刚性不足、刀具夹持不稳、机床主轴跳动等均可能引起刃磨裂纹的产生,因此,由机床、砂轮、夹具和刀具组成的加工系统应具有足够刚性,且应控制砂轮的轴向和 径向跳动。 造成硬质合金刀具产生刃磨裂纹的因素较多,只有选用合适的砂轮,同时采用合理的 磨削工艺,才能有效避免裂纹产生,提高刃磨质量。

硬质合金刀具牌号

焊接刀、焊接刀片:A1型:A116、A118、A120、A122、A125、A130、A136、A140等 A2型:A216 A220 A225等 A3型:A315 A320 A325 A330 A340等 A4型:A416 A420 A425 A430等 B2型:B214 B216 B220 B225等 C1型:C116 C120 C122 C125等 C3型:C304 C305 C306 C308 C310 C312 C316等 C4型:420 C425 C430 C435等 D2型:D216 D220 D224 D226 D228 D230等 E3型:E325 E330等 F2型:F216 F216A F220 F230 F230A等 机夹刀片主要型号: 3A型:31305A 31605A等 3C型:31303C 31603C等 3D型:31303D 31603D 31903D等 3V型:31305V 31310V 31320V 31605V 31610V 31620V等 C-H型:C1610H6 C1610H6Z C1910H6 C1910H6Z等 T3A型:T31305A T31605A T31905A等 T3F型:T31305F T31605F T31905F等 T3V型:T31305V T31310V T31605V T31610V T31910V等 4A型:41305A 41315A 41605A 41905A等 4F型:41305F 41605F 41905F等 4H型:41305H 41605H 41905H 41910H 42210H8 42510H8等 4V型:41305V 41310V 41605V 41610V 41620V等 铣刀片主要型号: 3-0型:313100 316100等 3-8型:313058 313108等 3-11型:3100511 3130511 3131011等 4-0型:413050 413100 416050 416100 419100 419200等 4-8型413058 416058 416108 416158 419108等 4-11型:4130511 4131011 4160511 4161011 4161511 4191011等 G3-0型:G307050 G310050 G313050 G316050等

普通磨料磨具及选择使用

普通磨料磨具的选择与使用 磨削过程就是磨具中的磨粒对工件的切削过程。选择磨具就是要充分利用磨粒的切削能力去克服工件材料的物理力学性能产生的抗力。由于磨具的品种规格繁多,而每一种磨具都不是万能的切削工具,只有一定的适用范围。因此对每一种磨削工作,都必须适当选择磨具的特性参数,才能达到良好的磨削效果。磨具特性主要包括磨粒、粒度、硬度、结合剂、组织、形状和尺寸。这里从磨具特性方面叙述选择磨具的一般原则。一. 磨料的选择 磨料种类很多,其选择原则与被加工材料物理力学性能直接关系。 一般来说,磨削抗拉强度较高的工件材料时,选择韧性较大的刚玉类磨料为宜,磨削抗拉强度低的工件材料,则以选择脆性较大而硬度较高的碳化硅类磨料为宜。部分材料的抗拉强度值与选用的磨料如表一。 表一磨料的选用 在选择磨料时,要考虑工件材料与磨料之间的化学反应性能、磨料和工件材料之间的化学亲和作用以及磨料的热稳定性(即红硬性) 下面介绍各种磨料的性能及适用范围 1.棕刚玉(A) 棕刚玉(A)磨料的韧性大,硬度高。颗粒锋锐。因此它适合于磨削抗拉强度较高的材料,如碳素钢、普通合金钢、可锻铸铁、硬青铜等。棕刚玉价格便宜,应用十分广泛,被视通用磨料。 2. 白刚玉(WA)

白刚玉磨料的硬度略高于棕刚玉,但其韧性差一些。硬的磨料容易切入工件,可以减少工件的变形和磨削热量。。白刚玉磨料最适于精磨,刀具的刃磨,螺纹的磨削及磨削容易变形及烧伤的工件。但价格高于棕刚玉。 3. 单晶刚玉(SA) 单晶刚玉磨料具有良好的多棱切削刃,并有较高的硬度及韧性。这种磨料在磨削时不易破碎,切削能力强、寿命长,适于加工较硬的金属材料。单晶刚玉磨料生产量较小,只推荐用于耐热合金及难磨金属材料的磨削。 4. 微晶刚玉(MA) 微晶刚玉的外观、色泽、化学成份均与棕刚玉相似,所不同的是它的颗粒是由许多微小晶粒体集合组成,它具有强度高、韧性大,自锐性良好的特点,磨削过程中不易成大颗粒地脱落。由它制成的磨具磨损小,适于不锈钢、碳素钢、轴承钢、特种球磨铸铁等材料的磨削,还用于重负荷磨削和精磨磨削。 5. 铬刚玉(PA) 铬刚玉磨料的硬度与白刚玉相近,韧性比白刚玉稍高,切削性能较好,具有较高的强度和足够的脆性,因此磨削工件的表面不容易烧伤和产生裂纹,并能提高生产效率。适合用于成形磨削、淬火钢、合金工具钢、螺纹的磨削加工、量具及仪表零件的精磨磨削。 6. 锆刚玉(ZA) 锆刚玉是Al 2O 3 和ZrO 2 的复合氧化物,韧性较好,适合重负荷磨削、耐热合金钢、钛 合金、奥氏体不锈钢的磨削。 7. 黑刚玉(BA) 黑刚玉磨料外观呈黑色,具有一定的韧性,硬度比棕刚玉低,多用于自由研磨,如电镀前、抛光的打磨或粗磨,用于喷砂、制作树砂轮、砂布、砂纸等。 8. 黑碳化硅(C) 黑碳化硅的硬度比刚玉类磨料高,切削刃锋利,但性脆。导热性良好,散热快,自锐性能优于刚玉磨料。适宜磨削抗拉强度较低的材料,如灰口铸铁、青铜、黄铜、矿石、耐火材料、骨材、玻璃、陶瓷、皮革、橡皮、塑料等,还适于磨削热敏性材料。 9. 绿碳化硅(GC) 绿碳化硅磨料性质比黑碳化硅硬而脆,较锋利,具有尖锐的切削刃,很容易切入被加工工件。但韧性不高。主要适合硬质合金刀具和工件磨削,螺纹磨削及其工件的精磨。

磨料的粒度

磨料的粒度 磨料的粒度是指磨料颗粒的粗细程度,磨料的粒度规格用粒度号来表示。 *粒度号用目或粒度表示,是1英寸*1英寸的面积内有多少个颗粒数(是指磨料颗粒的大小相当于1平方英寸的多少分之一)。 例:1000,表示砂粒大小是微米。 磨料的国家标准把粒度规格分为两类:一类是用于固结磨具、研磨、抛光的磨料粒度规格,其粒度号以"F"打头,称为"F粒度号磨料";另一类是用于涂附磨料的磨粒粒度规格,其粒度号以"P"打头,称为"P粒度号磨料". (1)F粒度号规格 普通磨料粒度按颗粒尺寸大小,分为39个粒度号,其筛比为,即 粗磨粒F4、F5、F6、F7、F8、F10、F12、F14、F16、F20、F22、F24、F30、F36、F40、F46、F54、F60、F70、F80、F90、F100、F120、F150、F180、F220、微粉F230、F240、F280、F320、F360、F400、F500、F600、F800、F1000、F1200、F1500、F2000. 根据磨料生产工艺,磨料粒度在F4~F220部分的称为"粗磨粒"、其磨粒尺寸在63μm以上,多用筛分法生产;磨料粒度在F230~F2000范围内,磨粒尺寸小于63μm的称为"微粉",多用于水选法生产。 F4~F220粗磨粒磨料粒度组成、F230~F2000微粉磨料粒度组成(光电沉降粒度)及F230~F2000微粉磨料粒度组成参见GB-T 2481-2009标准。 (2)P粒度号规格 在涂附磨具中使用P粒度号磨料(P为popular的第一个字母)。国标规定磨料有28个粒度号,即

粗磨料P12、P16、P20、P24、P36、P40、P50、P60、P80、P100、P120、P150、P180、P220、 细磨料P240、P280、P320、P360、P400、P500、P600、P800、P1000、P1200、P1500、P2000、P2500. P12~P220磨料较粗,其筛比为磨料为粒度较系及分为磨料,所用筛分比为→→磨料粒度组成与P240~P250磨料粒度组成参见GB-T 9258-2000标准。 砂纸的型号 常用的有 400# 600# 1000# 1200# 1500# 2000#。 例如W10代表04#号砂纸,800目。其它型号砂纸各规格对照如下:

常用刀具材料分类特点及应用

金属切削原理读书报告 常用刀具材料分类特点及应用 姓名: 班级: 学号: 2014年5月7日

摘要 本文在阅读有关论文和专著的基础上对现阶段常用的刀具材料进行了总结和分析,总结出了碳素工具钢、合金工具钢、高速钢、硬质合金、陶瓷、金刚石、立方碳化硼等刀具材料的特点及应用范围,同时针对几种常见的切削工序中刀具材料的应用做了简单的分析。

目录 摘要 (1) 1刀具材料的发展历史 ......................................................... 错误!未定义书签。 2 常用刀具材料及特点 ........................................................ 错误!未定义书签。 碳素工具钢 ................................................................... 错误!未定义书签。 合金工具钢 ................................................................... 错误!未定义书签。 高速钢 ........................................................................... 错误!未定义书签。 硬质合金 ....................................................................... 错误!未定义书签。 陶瓷 ............................................................................... 错误!未定义书签。 超硬材料 ....................................................................... 错误!未定义书签。 3 刀具材料的典型应用 ........................................................ 错误!未定义书签。 工件材料与刀具材料 ................................................... 错误!未定义书签。 加工条件与刀具材料 ................................................... 错误!未定义书签。 4 总结 .................................................................................... 错误!未定义书签。 5 参考文献 ............................................................................ 错误!未定义书签。

硬质合金刀具材料的研究现状与发展思路【深度解读】

硬质合金刀具材料的研究现状与发展思路【深度解读】

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500——600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢至今仍是一种常用刀具材料。高速钢是一种加

入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%——1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40——60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷 与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10——20倍,其红硬性比硬质合金高2——6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷材料的缺点是脆性大、横向断裂强度低、承受冲击载荷能力差,这也是近几十年来人们不断对其进行改进的重点。 陶瓷刀具材料可分为三大类:①氧化铝基陶瓷。通常是在Al2O3基体材料中加入TiC、WC、ZiC、TaC、ZrO2等成分,经热压制成复合陶瓷刀具,其硬度可达93——95HRC,

硬质合金刀具并使用高效率的切削条件

硬质合金刀具并使用高效率的切削条件 选择合适的硬质合金刀具并使用高效率的切削条件,这就是车削三要素。 1.切削深度(ap) 切削深度指未加工表面与已加工表面的差值,单位毫米。它是工件未加工直径与已加工直径差值的一半。 切削深度应根据工件的加工余量、形状、机床功率、刚性及刀具的刚性来确定。 切削深度变化对硬质合金刀具寿命影响不大。切削深度过小时,会造成刮擦,只切削工件表面的硬化层,缩短刀具寿命。当工件表面具有硬化的氧化层时,应在机床功率允许范围内选择尽可能大的切削深度,以避免硬质合金刀尖只切削工件表面硬化层,造成刀尖的异常磨损甚至破损。 2.进给量(fn) 进给量是指工件每旋转一周,刀具的移动量,单位为毫米/转。 进给量是决定被加工表面质量的关键因素,同事也影响加工时切屑形成的范围和切削的厚度。 在对硬质合金刀具寿命影响方面,进给量过小,后刀面磨损大,刀具寿命大幅度降低;进给量过大,切削温度升高,后刀面磨损也增大,但较之切削速度对硬质合金刀具寿命的影响要小。 3.切削速度(Vc)

工件在车床上旋转,将其每分钟的转数定义为主轴转速(n)。由于工件旋转,在其直径的切削点处产生切削速度,称为线速度,单位米/分钟。通常用线速度来参考切削速度对加工的影响。 切削速度对刀具寿命有非常大的影响。提高切削速度时,切削温度就上升,而使硬质合金刀具寿命大大减短。加工不同种类、硬度的工件,切削速度会有相应的变化。通过大量钨钢刀片切削试验得出: a.在通常情况下,切削速度提高20%,刀具耐用度降低1/2;切削速度提高50%,刀具耐用度降低至原来的1/5。 b.低速(20-40m/min)切削易产生震动,使刀具寿命缩短。

硬质合金刀具材料的研究现状与发展思路

硬质合金刀具材料的研究现状与发展思路 作者:佚名来源:不详发布时间:2008-11-21 23:35:38 发布人:admin 减小字体增大字体 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500~600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢 至今仍是一种常用刀具材料。高速钢是一种加入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%~1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40~60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷 与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10~20倍,其红硬性比硬质合金高2~6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷材料的缺点是脆性大、横向断裂强度低、承受冲击载荷能力差,这也是近几十年来人们不断对其进行改进的重点。 陶瓷刀具材料可分为三大类:①氧化铝基陶瓷。通常是在Al2O3基体材料中加入TiC、WC、ZiC、TaC、ZrO2等成分,经热压制成复合陶瓷刀具,其硬度可达93~95HRC,为提高韧性,常添加少量Co、Ni等金属。②氮化硅基陶瓷。常用的氮化硅基陶瓷为Si3N4+TiC+Co复合陶瓷,其韧性高于氧化铝基陶瓷,硬度则与之相当。③氮化硅—氧化铝复合陶瓷。又称为赛阿龙(Sialon)陶瓷,其化学成分为77%Si3N4+13%Al2O3,硬度可达1800HV,抗弯强度可达1.20GPa,最适合切削高温合金和铸铁。 3) 金属陶瓷 金属陶瓷与由WC构成的硬质合金不同,主要由陶瓷颗粒、TiC和TiN、粘结剂Ni、Co、M o等构成。金属陶瓷的硬度和红硬性高于硬质合金,低于陶瓷材料;其横向断裂强度大于

工件转速对硬质合金外螺纹磨削质量和效率的影响

龙源期刊网 https://www.360docs.net/doc/bb7747504.html, 工件转速对硬质合金外螺纹磨削质量和效率的影响 作者:马海军罗登银 来源:《科学与财富》2017年第30期 摘要:本文以硬质合金3/4-10UNC-3A外螺纹喷嘴磨削为研究对象,加工设备为数控车床EL6140n改造的螺纹磨床,在相同砂轮线速度和组合进给量的前提下,改变工件转速,对螺纹的中径、根径、螺距、牙侧角、槽底R、砂轮修整频率、加工时间等行分析,研究工件转速对磨削质量效率的影响;试验表明磨削效率随工件转速增加而逐渐提高,同时砂轮的消耗也随工件转速而加快,槽底R和牙侧角变化速度加快,砂轮修整一次后加工产品数量逐渐减少。 关键词:工件转速;砂轮线速度;组合进给量;中径;根径;螺距;牙侧角;槽底R;修整频率;磨削效率;磨削时间;加工时间 一、前言 2008年前,耐磨零件分厂深加工对象主要是硬质合金套类零件,产品单一、市场风险 大,在石油行业不景气的年份,整条生产线大量人员富裕、设备闲置;为了适应市场多元化硬质合金深加工产品需求,在08年分厂成立了硬质合金螺纹喷嘴开发小组,针对石油采掘市场开发PDC钻头上的硬质合金螺纹喷嘴,为减少设备投资费用,在数控车床上组装一个多用磨床的内磨头,实现硬质合金外螺纹的磨削。2011年我对不同的工件转速进行试验,找出工件 转速对磨削效率影响的规律,为批量化生产提供可行的试验数据。 二、试验方案 1、试验前提 1)研磨设备:EL6140n车改磨,砂轮线速度13.5m/s 2)产品型号:3/4-10UNC-3A外螺纹螺纹喷嘴嘴,螺纹3/4-10UNC-3A 中径,根径,槽底R0.25±0.05,螺距2.54±0.03,牙侧角30°±25′,粗糙度Ra0.8 3)同一生产厂家的砂轮,砂轮规格150×8×32×6×4×60°,砂轮前角,砂轮后角,顶宽 0.25~0.3 4)磨削方式:深切缓进 5)组合进给量

磨料粒度的分类及适用范围

第6章宝石加工常用的工艺耗材 第1节磨料 磨料指可用于是研磨或抛光的材料,它们是一些具有棱角和一定硬度及韧性的粉状物质,可直接研磨工件和制成磨具用。 6.1.1 磨料的基本特性 (1)硬度较高,一般不应低于被加工材料的硬度。 (2)韧性较好,不能因有研磨压力而易变形和被磨损。 (3)自锐性较好,即当受研磨压力而碎裂时,破碎后的各部分仍保持尖锐的多棱角状。 自锐性示意图 (4)熔点或软化点较高,在研磨发热作用下,磨料尖角不易熔化或变软。(5)化学稳定性较好,不与被加工的材料起反应。 (6)形状和粒度较均匀,每号磨料粒度在一定范围内。 6.1.2 磨料粒度的分类及适用范围

1、磨料的粒度等级 磨料粒度表示法:粒度号“#”、“w” 粒径尺寸“μm” 磨料粒度分类:磨粒 2000~40 μm (17种) 微粉 40~0.5 μm (12种) (1)磨粒分级:12#、14#、16#、20#、24#、30#、36#、 46#、60#、70#、80#、100#、120#、 150#、180#、240 # 、280# 磨粒的粒度号用筛号表示,例如: 12#表示12#筛以下~14#筛以上的颗粒级 (2)微粉分级:W40 W28 W20 W14W10 W7 W5 W3.5 W2.5 W1.5 W1.0 W0.5微粉的粒度号以微米值表示,例如: W40表示粒径40~28 μm级(上限) 磨料的粒度号与粒径尺寸的对应关系见下表:

2、不同磨料粒度的适用范围 在宝石加工中,不同粒度磨料的适用范围如下表: 6.1.3 磨料的种类和性能 磨料主要是一些具有一定硬度和韧性的粒状或粉状的矿物质材料。按成因可分为天然磨料和人造磨料两大类。 天然磨料:金刚石、刚玉、石榴石、石英,等等。 人造磨料:金刚石系、碳化物系、刚玉系,等三大系列。 1、金刚石 ?包括天然和人造金刚石。 ?Hm=10,Hv=10000kg/mm2。 ?有一定韧性,但脆性相对较大,因易沿八面体完全解理方向破裂,自锐性较高。因而,耐磨性强,磨削性能好。 ?耐热性良好,在无氧化条件下加热1000℃无变化。 ?化学性质稳定,与酸碱物质不起反应。 2、碳化硅(SiC) ?以石英、石油焦碳为主要原料在1800℃以上高温下炼成的结晶化合物,是一种常用人造成磨料。

整体硬质合金刀具磨削裂纹的原因分析及其工艺改进

整体硬质合金刀具磨削裂纹的原因分析及其工艺改进 硬质合金, 刀具, 裂纹, 工艺, 磨削 1 引言 整体硬质合金刀具在航空航天业、模具制造业、汽车制造业、机床制造业等领域得到越来越广泛的应用,尤其是在高速切削领域占有越来越重要的地位。在高速切削领域,由于对刀具安全性、可靠性、耐用度的高标准要求,整体硬质合金刀具内在和表面的质量要求也更加严格。而随着硬质合金棒材尤其是超细硬质合金材质内在质量的不断提高,整体硬质合金刀具表面的质量情况越来越受到重视。众所周知,硬质合金刀具的使用寿命除了与其耐磨性有关外,也常常表现在崩刃、断刃、断裂等非正常失效方面,磨削后刀具的磨削裂纹等表面缺陷则是造成这种非正常失效的重要原因之一。这些表面缺陷包括经磨削加工后暴露于表面的硬质合金棒料内部粉末冶金制造缺陷(如分层、裂纹、未压好、孔洞等)以及磨削过程中由于不合理磨削在磨削表面造成的磨削裂纹缺陷,而磨削裂纹则更为常见。这些磨削裂纹,采用肉眼、放大镜、浸油吹砂、体视显微镜和工具显微镜等常规检测手段往往容易造成漏检,漏检的刀具在使用时尤其是在高速切削场合可能会造成严重的后果,因此整体硬质合金刀具产品磨削裂纹缺陷的危害很大。因此对整体硬质合金刀具磨削裂纹的产生原因进行分析和探讨,并提出有效防止磨削裂纹的工艺改进措施具有很重要的现实意义。 2 整体硬质合金刀具磨削裂纹的原因分析 2.1 整体硬质合金刀具的磨削加工特点 硬质合金材料由于硬度高,脆性大,导热系数小,给刀具的刃磨带来了很大困难,尤其是磨削余量很大的整体硬质合金刀具。硬度高就要求有较大的磨削压力,导热系数低又不允许产生过大的磨削热量,脆性大导致产生磨削裂纹的倾向大。因此,对硬质合金刀具刃磨,既要求砂轮有较好的自砺性,又要有合理的刃磨工艺,还要有良好的冷却,使之有较好的散热条件,减少磨削裂纹的产生。一般在刃磨硬质合金刀具时,温度高于600℃,刀具表面层就会产生氧化变色,造成程度不同的磨削烧伤,严重时就容易使硬质合金刀具产生裂纹。这些裂纹一般非常细小,裂纹附近的磨削表面常有蓝、紫、褐、黄等颜色相间的不同氧指数的钨氧化物的颜色,沿裂纹敲断后,裂纹断口的断裂源处也常有严重烧伤的痕迹,整个裂纹断面常因渗入磨削油而与新鲜断面界限分明。传统碳化硅砂轮磨削硬质合金由于磨削效率很低、磨削力较大、自砺性差以及磨削接触区表面局部温度高(高达1100℃左右)等造成刀具刃口质量差、表面粗糙度差和废品率高等缺点已逐渐被淘汰使用;而金刚石砂轮则由于磨削效率高、磨削力较小、自砺性好、金刚石刃口锋利、不易钝化以及磨削接触区表面局部温度较低(一般在400℃左右)等优点被广泛应用于硬质合金刀具的磨削加工中。但在整体硬质合金刀具的金刚石砂轮磨削过程中,由于磨削余量很大,加工方法、金刚石工具特性和磨削制度如果选择不当,也会造成刀具磨削接触区表面局部瞬时温度偏高,从而产生磨削裂纹。 2.2 整体硬质合金刀具磨削裂纹的产生机理分析 制造硬质合金刀具采用的金刚石磨削处理可以使刀具表面层的物理—机械特性变坏或者改善。决定表面层质量的基本参数是:微观形貌(即表面粗糙度),表面层的结构和亚结构,第Ⅰ类残余应力值及其分布。烧结后的硬质合金通常具有不低于Rz5μm的表面粗糙度, 金刚石加工可以保证Rz不低于 2μm,在Rz= 1~5μm范围内显微粗糙度的深度实际上不影响硬质合金的寿命指标。在磨削加工中硬质合金晶粒内部的细微结晶结构参数也发生变化,嵌晶块发生破碎(相干分散区),其值减小一个数量级,由(10~15)×10-5mm降到(10~15)×10-6mm。晶粒显微畸变值(Δd/d,第Ⅱ类应力)发生变化,表面层性能也相应变化。但是,实际上细微结晶结构参数变化与硬质合金寿命之间并未发现直接关系。所以在循环载荷下(如铣削力)硬质合金的使用寿命既与表面层的结构和亚结构无直接关联,又首先不是决定于表面粗糙度,而是决定于表面层的残余应力状态,即第Ⅰ类残余应力值及其沿截面的分布对硬质合金的强度和寿命起着决定性因素。表面层残余压应力的形成促使断裂源迁移到距离表面更深的受载荷较小的层次,抑制了裂纹的萌生和扩展,这就使得强度和寿命增加;同时随着硬质合金表面层残余压应力层分布深度的增加,其强度和寿命逐渐提高。而表面层形成的残余拉应力则促进裂纹的萌生和扩展,是产生裂纹的必要条件,且使得强度和寿命降低。但磨削后的表面往往既有残余压应力又有拉应力,因此,理想的磨削表面层状态应是表面层残余压应力值越高越好,残余压应力层分布越深越好;近表面层残余拉应力值越低越好,残余拉应力层越薄越好,最大拉应力值距离表面越深越好。反之,表面层较浅的压应力分布和近表面层过高的拉应力值则是萌生磨削裂纹的主要原因。所以,在磨削加工过程中应尽量减小和避免残余拉应力的产生。 在多数情况下硬质合金制品烧结后在表面层产生残余拉应力(起源于热),这种拉应力值可达500~1000MPa。该应力层的深度不大于5~7μm,应力渗入深度不超过30~40μm。越接近表面,其值越高;钴含量越高,其值越高。因此烧结后的硬质合金抗弯强度值(TRS值)和疲劳寿命值很低。但磨削余量常大于0.1mm,因而随后的磨削加工在去除硬质合金表层后完全可以消除烧结合金中的残余拉应力,并形成新的应力状态。由此可见,烧结工艺引起的残余应力对在磨削过程中残余应力的形成没有影响。 在磨削加工过程中,影响刀具表面状态的有两个主要因素:施加的力和局部温度。施加的力对合金表面的作用会引起不可恢复的塑性变形、结构的变化和相变并伴随着单位体积的增大,从而导致形成残余压应力,提高抗弯强度、疲劳强度、冲击韧性、硬度、耐磨性和使用寿命等,亦即发生强化过程;局部温度对合金表面的作用会在表面层中产生不均匀的热塑性变形、结构和相的变化并伴随着单位体积的减小,从而导致形成残余拉应力、降低抗弯强度、疲劳强度、冲击韧性、硬度、耐磨性和使用寿命等,亦即发生弱化过程。因此,硬质合金刀具最终表面层状态是被强化还是被弱化,是残余压应力为主,还是残余拉应力为主,则取决于在磨削过程中对其表面的作用是以力为主还是以温度为主。当磨削过程中磨削接触区的局部瞬时温度达到一定程

F4-F220磨料粒度尺寸对照表

F4 - F220粒度尺寸對照表 單位:μm】 粒度號CHINA 中 國標準 (GB2477 -83) JAPAN 日 本標準 (JISR6001 -1998) U.S.A 美國 標準 ANSI(92) Federation of European of Producers Abrasives 歐洲 磨料協會 FEPA(84) International Standard Organization 國際標準 ISO(86) F4 5600 – 4750 5600 – 4750 5600 – 4750 5600 – 4750 F5 4750 – 4000 4750 – 4000 4750 – 4000 4750 – 4000 F6 4000 – 3350 4000 – 3350 4000 – 3350 4000 – 3350 F7 3350 – 2800 3350 – 2800 3350 – 2800 3350 – 2800 F8 2800 – 2360 2800 – 2360 2800 – 2360 2800 – 2360 2800 – 2360 F10 2360 – 2000 2360 – 2000 2360 – 2000 2360 – 2000 2360 – 2000 F12 2000 – 1700 2000 – 1700 2000 – 1700 2000 – 1700 2000 – 1700 F14 1700 – 1400 1700 – 1400 1700 – 1400 1700 – 1400 1700 – 1400 F16 1400 – 1180 1400 – 1180 1400 – 1180 1400 – 1180 1400 – 1180 F20 1180 – 1000 1180 – 1000 1180 – 1000 1180 – 1000 1180 – 1000 F22 1000 – 850 1000 – 850 1000 – 850 F24 850 – 710 850 – 710 850 – 710 850 – 710 850 – 710 F30 710 – 600 710 – 600 710 – 600 710 – 600 710 – 600 F36 600 – 500 600 – 500 600 – 500 600 – 500 600 – 500 F40 500 – 425 500 – 425 500 – 425 F46 425 – 355 425 – 355 425 – 355 425 – 355 425 – 355 F54 355 – 300 355 – 300 355 – 300 355 – 300 355 – 300

硬质合金刀具牌号

硬质合金常用牌号及用途介绍 牌号/相当标准ISO/ 物理机械性能(min):抗弯强度N/mm2;硬度HRA/用途。 1、YG3x/ K01/ 1420;92.5/适于铸铁、有色金属及合金、淬火钢合金钢小切削断面高速精加工。 2、YG6/ K20 /1900;90.5/适于铸铁、有色金属及合金、非金属材料中等到切削速度下半精加工和精加工。 3、YG6x /K15/ 1800;92.0/ 适于冷硬铸铁、球墨铸铁、灰铸铁、耐热合金钢的中小切削断面高速精加工、半精加工。 4、YG6A/ K10/ 1800;92.0 /适于冷硬铸铁、球墨铸铁、灰铸铁、耐热合金的中小切削断面高速精加工。 5、YG8/ K30/ 2200;90.0/ 适于铸铁、有色金属及合金、非金属材料低速粗加工。 6、YG8N/ K30/ 2100;90.5/适于铸铁、白口铸铁、球墨铸铁以及铬镍不锈钢等合金材料的高速切削。 7、YG15/ K40/ 2500;87.0 /适于镶制油井、煤炭开采钻头、地质勘探钻头。 8、YG4C/ 1600;89.5/ 适于镶制油井、煤炭开采钻头、地质勘探钻头。 9、YG8C/ 1800;88.5/适于镶制油井、矿山开采钻头一字、十字钻头、牙轮钻齿、潜孔钻齿。 10、YG11C/ 2200;87.0 /适于镶制油井、矿山开采钻头一字、十字钻头、牙轮钻齿、潜孔钻齿。 11、YW1/ M10/ 1400;92.0 /适于钢、耐热钢、高锰钢和铸铁的中速半精加工。 12、YW2/ M20/ 1600;91.0 /适于耐热钢、高锰钢、不锈钢等难加工钢材中、低速粗加工和半精加工。 13、GE1/ M30/ 2000;91.0 /适于非金属材料的低速粗加工和钟表齿轮耐磨损零件。 14、GE2 /2500;90.0 /硬质合金顶锤专用牌号。 15、GE3/ M40/ 2600;90.0 /适于制造细径微钻、立铣刀、旋转挫刀等。 16、GE4/ 2600;88.0/ 适于打印针、压缸及特殊用途的管、棒、带等。 17、GE5 /2800;85.0 /适于轧辊、冷冲模等耐冲击材料。 18、YT30 P01 92.5 适合碳钢、合金钢的精加工,小断面的精车,精镗,精扩等 硬质合金yìngzhìhéjīn 英文明:cemented carbide 硬质合金是以高硬度难熔金属的碳化物(WC、TiC)微米级粉末为主要成分,以钴(Co)或镍(Ni)、钼(Mo)为粘结剂,在真空炉或氢气还原炉中烧结而成的粉末冶金制品。IVB、VB、VIB族金属的碳化物、氮化物、硼化物等,由于硬度和熔点特别高,统称为硬质合金。下面以碳化物为重点来说明硬质含金的结构、特征和应用。 IVA、VA、VIA族金属与碳形成的金属型碳化物中,由于碳原子半径小,能填充于金属品格的空隙中并保留金属原有的晶格形式,形成间充固溶体。在适当条件下,这类固溶体还能继续溶解它的组成元素,直到达到饱和为止。因此,它们的组成可以在一定范围内变动(例如碳化钛的组成就在TiC0.5~TiC之间变动),化学式不符合化合价规则。当溶解的碳含量超过某个极限时(例如碳化钛中Ti∶C=1∶1),晶格型式将发生变化,使原金属晶格转变成另一种形式的金属晶格,这时的间充固溶体叫做间充化合物。 金属型碳化物,尤其是IVB、VB、VIB族金属碳化物的熔点都在3273K以上,其中碳化铪、碳化钽分别为4160K和4150K,是当前所知道的物质中熔点最高的。大多数碳化物的硬度很大,它们的显微硬度大于1800kg?mm2(显微硬度是硬度表示方法之一,多用于硬

相关文档
最新文档