聚氨酯合成知识

聚氨酯合成知识
聚氨酯合成知识

硬泡虽不比软泡、自结皮、弹性体:处处离不开计算----却也并不都是漫无目标地“试”探,个中诀窍想摸出个大概至少要半年。对于身处关键岗位的朋友(比如管配料、检验、产品开发)来说这些都不是难事-----(有条件)大不了多做试验呗!但对于那些刚涉足这个领域的或者条件不太好的弟兄,难度就忒大;毕竟认知的最佳途径是“比对”,有几个参照物理解起来省力气多了。知道“什么是合适的、正常的”已经很不错了,但能解析出“为什么是合适的、为什么不正常”那就要付出多倍的汗水与心血。

前些日子就想把“大郎烧饼手艺”拿出来献丑,总在最后关头叹息止步:谁不怕出丑呀!本人终究没在学院里研究过硬泡,设计、计算的那一套全是有异于大师著作。好在做过现场工作,现在也想通了:都不干技术活了,要是出了丑还是能弄明白自己“为什么技术饭吃不下去了”----就这一点,值!

以上是废话,下面说正事

[ 关于计算]

一、硬泡组合料里最需要计算的东西是黑白料比例(重量比)是不是合理,另一个正规的说法好像叫“异氰酸指数”合理,翻译成土话就是“按比例混合的白料和黑料要完全反应完”。因此,白料里所有参与跟-NCO反应的东西都应该考虑在内。

理论各组分消耗的-NCO摩尔量计算如下

㈠主料:聚醚、聚酯、硅油(普通硬泡硅油都有羟值,据说是因为加了二甘醇之类的)配方数乘以各自的羟值,然后相加得数Q

S1 = Q÷56100

㈡水:水的配方量w

S2 = W÷9

㈢参与消耗-NCO的小分子物:配方量为K,其分子量为M,官能度为N

K × N

S3 = ————(用了两种以上小分子的需要各自计算再相加)

M

S = S1+S2+S3

基础配方所需粗MDI份量 [(S×42)÷0.30 ] ×1.05 (所谓异氰酸指数1.0)

其实以上计算只是一个最基本的消耗量,由于黑白料反应过程复杂,实际-NCO 消耗量肯定不止这个数,比如有三聚催化剂的情况下到底额外消耗了多少-NCO,这个没人说得清楚。另外,聚醚里有水分,偏高0.1%就好严重的;聚醚羟值也是看人家宣传单的,我见过有聚醚羟值范围跨度90mgKOH/g,那个计算数出来后只能参考,不能认真!

[试验设计] 之“冰箱、冷柜”类

本组合料体系重要要求及说明

1、流动性要好,密度分布“尽量”均匀。首先要考虑粘度,只有体系粘度小了,初期流动性才会好(主份平均粘度6000mPa.S以下,组合料350mPa.S以下),其次体系中的钾、钠杂离子要控制在一个低限(20ppm以内),从而可控制避免三聚反应提前,即:体系粘度过早变大。如果流动性欠佳,发泡料行进至注料口远端就会出现拉丝痕致使泡孔结构橄榄球化,这个位置一定抗不住低温收缩。

2、泡孔细密,导热系数要低。不难理解泡孔细密是导热系数低的第一前提,此时首先考虑加有403或某些芳香胺醚进入体系(它们所起的作用是首先与-NCO反应,其生成物与其它组份互溶、乳化稳定性提升,并保证发泡体系初期成核稳定,也就是避免迸泡,从而使泡孔细密)其次聚醚本身单独发泡其泡孔结构要好(例如以山梨醇为起始的635SA比蔗糖为起始的1050泡孔要细密均匀得多,还有含有甘油为起始剂的835比1050细密,即便是所谓的4110牌号的聚醚,含丙二醇起始的比二甘醇的好。聚醚生产的聚合催化剂不同,所生产出的聚醚性状也有差异:氢氧化钾催化的聚醚分子量分布比二甲胺催化的要窄。另外:聚醚生产时的工艺控制-----温控、拉真空、PO--也就是环氧丙烷流量控制、PO原料质量、后处理等等-----也都会直接影响聚醚发泡的泡孔结构)第三,可以考虑加入一些可以改善泡孔细密度的聚酯成份。第四,适当加入低粘度物调整总体粘度(如210聚醚)

3、耐低温抗收缩性要好这个无须赘言。一是官能度,总体平均要4以上。其次是发泡体成型后空间交联点分布均匀(直观解释是:主聚醚反应活性尽量相差不大,连续的近似的空间结构要稳定得多。)

4、粘结性好。所谓粘结性表面上是指泡沫体与冰箱、冷柜外壳和内胆之间的粘合,其实是指泡体柔韧性,以及抗收缩性,(水份用量、降低总体羟值,添加柔性结构成分,如210、330N之类都可以改进泡沫对壳体的粘附性)

5、成本较低。目前冰箱、冷柜行业竞争白热化,性能极佳价格昂贵的组合料没人用的起,所以我们必须为成本考虑(比如芳香聚酯价位要比聚醚的低,可以加一些。)

6、安全性。这是对环戊烷体系的特别要求(至少环戊烷不象F11那样想加多少就加多少,不难理解加多环戊烷的更具有安全隐患)

7、保证发泡生产工艺的连续稳定性冰箱、冷柜连续生产线一般控制很稳定,但不排除偶尔的工艺参数波动,比如料温、环境温度高个一两度,黑白料比例在小范围内波动等等,所以要求组合料有一定的“宽容性”

8、黑料配伍。各款黑料自身性状、活性不同,那么,白料体系调整一下有时就显得异常必要。(配合5005的没事,绝不代表与44v20可以任意切换)

主聚醚聚酯的选取方向

1、相溶性。指“ 聚醚、聚酯/硅油/水/催化剂/物理发泡剂”所组成的体系要互溶性好,均相稳定-----至少存放一段时间不能分层。

2、官能度构成及骨架类型。原则上说官能度

越高,所发泡体的物理性能数值(尺寸稳定、抗压强度等)就越“理想”,但往往官能度高的聚醚粘度偏大(多挂PO也能降低粘度,价格又下不来),所以,平均一下,4个官能度马马虎虎可以对付了;另外,如果聚醚体系中有芳香结构(苯环)引入,无疑也会提升泡体的物理性能。

3、反应活性含有伯羟基结构的聚醚(和诸如三乙醇胺之类的小分子交联剂)活性高,却多多少少会影响发泡反应的中后期流动性。所以,其加入量一定要控制在某环围内。

4、羟值搭配。根据水用量、黑白料比例预设,可以大体反算出主份平均羟值范围,一般为380-410mgKOH/g

5、经济性。不仅是指聚醚、聚酯采购价格低,还应综合其他方面考虑黑白料比例,毕竟现在黑料价格高企。

6、市售采购之方便性。好不容易调整出一个配方,结果原料市面上只是你有用别人不会问津,除非财大气粗每月用量惊人,否则配料供货能不能保障就只得看“交情”浅薄。

匀泡剂(硅油)的选择

1、与组合料其它成份的配伍性。这个不难理解,否则,生产硅油的厂家就不会编出那么多型号了------什么F11型、141B型、环戊烷型、全水型、聚酯型、蔗糖聚醚型等等。硅油型号选配得当,可以明显控制导热系数低限化。

2、与黑料的配伍性、核化能力。这个关注的人不多。其实多数情况下“泡孔不好”就是硅油对“黑白料整个体系的乳化能力不够”所致。

3、流动性。能使发泡体系泡孔细密的硅油可以明显提升发泡流动性,同时另外一个佐证是:发泡速度略有加快。

4、稳定性及用量。有些硅油遇见水、碱性催化剂、含氯发泡剂或含氯阻燃剂时会逐渐变质;有些则必须加大用量(用量2.5%以上)才会显示它是硅油。

5、价位。能用22元/kg搞定的就不必去用进口的45元/kg,要知道每吨组合料中硅油14kg那差价就是过200元了。

水份额的确定

1、粘结性。水用量多,泡体表面偏脆,与壳面的粘结性就差,一般冰箱、冷柜料水用量1.7-2.3%(专指141B体系和环戊烷体系)

2、物理发泡剂体系的选取。现在到处喊着环保,141B早就说要限量使用了,可市面下居然还有F11型(或勾兑型F11)组合料交易。水用量只好随行论价:F11型的---0.6/1.6, 141B型的---1.7/2.2, 环戊烷型的---2.0/2.4

3、经济性. 水确实很便宜的,不过它用多了,黑料量就得加上去,于是还是不合算的机会大(自然,是使用组合料的客户买单).

催化体系确定

1、前期要求。以前很多朋友认为乳白起发慢一些,等料子稀哩哗啦地流到各自“岗位”底下后再直发起来。其实不然,其一:

液态料子极易从箱体缝隙中漏出去造成污物粘模;其二:影响泡孔细密度和整体结构,从而拔高泡体导热系数;其三:起发速度加快反而会加快发泡料行进速度。一般说来,出枪乳白时间6-8秒最好。

2、中期流动。在发泡定型期间,中期流动时间段(拉丝减去乳白时间)越长越好,可以保证泡体填充箱体各个角落,又不至于泡孔变形严重。最理想的状态是拉丝开始前3-5秒钟,泡料已经充填到位,最远端排气孔有明显逸料出现。

3、后期固化。这个要求不必太严,反正连续生产中模具不是冰冷的,如果生产线有保温炕道,不怕到期收不了庄稼。

4、建议搭配。 Am-1 + 环己胺。

工艺确认

1、发泡体系确定:141B的还是环戊烷的。水量/物理发泡剂量的范围预定

2、首先闹清楚目标生产线的工艺细节:发泡机类型、灌注流量、灌注前的温控数值、炕道保温温控值及保温时间、箱体灌注口在哪及发泡料流经路线行程、灌注后合模封洞操作过程。

3、目前(工作)环境温度、湿度变化情况。

4、向现场作业员、质检员求询目前现行工艺、原料有什么缺陷和请他们提出什么其他具体要求。

具体试验

1、相溶性:①100ml小烧杯加一短玻璃棒,归零,依次倒入主聚醚(聚酯)搅匀看是否透明。②加入硅油、催化剂、水,搅匀,看是否透明。③加入物理发泡剂搅匀看是否透明(注意搅拌后挥发的物理发泡剂要补回)。④预配的组合料样品要存放至少3天透明不分层才好。⑤组合料样分别放在35、15℃下贮存24hr看是否透明⑥有条件时,需要测设计中的组合料粘度(25℃及正常生产状态下的温度)看是不是粘度随温度变化有大幅度的波动。

2、抗收缩:自由发泡样1hr后切成规则方形体,量取定边尺寸后放在-20℃冰柜中24hr 看尺寸变化情况,2%以内的线性收缩可以接受

3、自由发泡:按设计的黑白料比例、温控执行自由发泡,关注料速、芯密度和拉丝痕迹。

4、流动性:自由泡密度、速度确定后,一定要进行流动性试验。简易方法是:定量发泡料(一般为200g)搅匀后立即在发泡杯口套上稍大一点的长筒塑料袋,拉直垂直向上任由泡料向上生长直至定型(要两个人操作)。杯口至顶高度L与料重G的比值将作为一个重要参数来评估组合料的流动性,L/G越大,流动性越好,此后还要分段测取芯密度作为辅助参考(自低向高密度差不能太大,否则流动性也不能视作良好,特别是最高点那一段)

其实,如果试验做多了,在正常自由泡发泡时,可以看杯中残留泡的形状来大致判断流动性的优劣:泡提出杯后越象蘑菇越好,越象直棍则越差。

5、工艺条件宽容性:①执行预设温控+3、-3℃的发泡,看是否还保持良好的流动性及泡孔结构(“快料”与“慢料”的泡孔不能落差太大)②进行白料恒定量,黑料量+10%、-10%的自由发泡试验,常温下30min时泡体没有明显收缩的就算过得去。

[试产] 之“冰箱、冷柜”类

这个简单了,整桶料子上机试产,按预定(或现实执行)的工艺条件生产,成品装机打冷,看箱体收缩情况和保温情况。一般程序:试产箱中成品泡体要取样测试导热系数等综合数据。现场需要微调的一般是:泡料温控、黑白料比例、添加催化剂、熟化温度调整

(以上内容得到曾伟铝、肖峰二位师弟、刘明凯刘工、王新德大哥的指点,在此特别致谢!)

仿木产品之组合料/工艺控制(内部讨论版)

[白料体系要求及制品要求]

1、白料粘度:涉及到出枪后的初始流动性(机发泡型)、搅拌混合效果(包括手工发泡型)以及出枪流量大小和黑白料比例,原则上不应高于 2000mPa.S(25℃,以下同),高密度的(自由泡密度130kg/m3以上者)例外。

2、相容性:除非现配现用或是白料整桶上机边搅边打,白料应该均相透明不分层(如果选用浊点较低的硅油白料低温状态下也可能不透明,但不可以分层),手工料更是如此。

3、流动性:一般仿木料流动性要求不太高,这取决于其自身生产工艺的合理安排。对于特型尺寸闭模浇注的产品还是要求料子发泡过程中要有不错的流动性,至少它会影响产品密度分布。

4、适应黑料品种与黑白料比例变化:白料体系最好能在稍作工艺参数(料温、管压等)调整的情况下切换黑料品种(M20S、44V20、5005等)或是在黑白料比例合理波动范围内保证制品合乎要求。

5、制品外表结皮厚度与硬度:仿木制品至少要保证表面“够硬”,一般都要求表皮有一定的厚度以保证表面硬性。具体指标由于涉及到产品密度要求和作业环境温度、湿度变化等因素而难以量化。有些特型产品则要求里、外都要刚硬,甚至能打自攻螺丝而不滑丝。

6、制品表面光洁度与气泡:制品表面应光洁,不能有气泡、针眼、暗泡(有些产品的背面可以降低要求,如画框、壁挂)

7、白线:这是最容易出现的缺陷(制品表面出现不规则的偏白块斑、长线斑,该处明显偏软),要尽量避免,至少白斑处要足够硬。

8、泡孔细密度:制品内部泡孔致密、匀称,鹤立鸡群的大泡眼(直径0.2mm以上)越少越好。

9、上漆及贴金箔:制品喷漆或粘贴金箔后不剥落、鼓泡。

10、耐形变:制品稳定,长尺寸毛胚品开模后不仅不能“见冷回缩”,终产品飘洋过海历经严寒酷暑也不能变形。

11、抗冲击:有足够的韧性(通常可耐1米高的平摔、抛摔)。

12、制品表面耐溶蚀:上漆贴箔前,制品往往需要用溶剂洗去脱模剂、粗糙化处理,过不了这关肯定不行

[原料选取简述]

一、主聚醚(聚酯):

①多数情况是“4110”为主(多数份额是60%以上)。作为一个最为广泛应用的硬泡聚醚品种,它具有较为理想的刚性骨架和柔性长链(蔗糖与二元醇为起始季接挂环氧丙烷),价格也合适。市场上适用于仿木的并不多,至少要求质量稳定,那些掺杂的、羟值/粘度随PO价格阴晴不定的、泡孔不够细密的最好不要选用。就4110的生产配方来说,最适合做仿木的是[蔗糖+甘油]起始型(可惜,截止目前我只用过两次,现在好像没得卖),其次是[蔗糖+丙二醇]起始型,剩下的是[蔗糖+乙二醇或二甘醇]起始型。其他勾兑型的真的不好用。4110的规格指标也有讲究粘度:一般是2500-3500mPa.S,用作全水发泡体系的还要低一些羟值:高于430mgKOH/g的做出来的产品只硬不韧,需要掺加其他低羟值的聚醚配合,最好是380-420mgKOH/g这个范围内的。色度外观:颜色太深的本身就说明聚醚生产过程中控制不好,再者由此做出来的产品外观也会偏暗并使白线对比更刺眼,多数客户对此不会满意。

②403。建议多少要加一些(3-12%)。有了它,泡孔会细密,产品表面的气泡、针眼、暗泡就少得多,产品的整体硬度也会提升。毛病是太粘不利于白料粘度控制。目前市场上的403也是良莠不齐,真正的403应该是乙二胺起始的,原料确实贵了一些(好像是超过20元/kg),就有人打歪主意,起始剂里加有尿素、甘油,或是把PO量加大来降低成本。加尿素的氨气味很重,泡孔偏粗,加甘油的硬度受影响,多接PO的403粘度较低也是硬性不够。

③山梨醇型。以635系列为代表(10-20%)。成本考虑可以不加,但是用后也可以明显改进产品整体硬度和表面效果(光洁、针眼等什么的)。也有麻烦:这类聚醚粘度不小价格也偏高。

④软泡聚醚。220、210、330N、甚至接枝聚醚(36/28之类)。普通硬质仿木料可以不加。做高档品、花盆类的一定要加。这类聚醚羟值低,产品柔韧性好,产品的表面结皮厚度会改善。缺点:除了210外,其他的与主聚醚互溶性差,爱分层闹独立。

⑤聚酯类。芳香聚酯类(视原料的质量、品性,5-20%)。原则上不鼓励使用。添加最大的目的是成本“合算”,不过要是小料配合不当麻烦也多多。酸值偏高会造成泡孔粗、针孔多甚至制品表面会出现“白雾”

⑥其他多元醇。(8%以内)。有多种天然植物油或其改性衍生物可以用,能改进产品柔韧性,还可以稍微降低成本。风险同⑤,用不好后果自负。

⑦其他思路:如果产品属于高附加值的产品,可以考虑用进口的相似聚醚,特别是全水发泡体系的,国产聚醚原料很难达到Dow的水准。

二、辅助小分子物:(0.5-3%)

有甘油及其起始的小分子聚醚、N乙醇胺(N:一、二、三)、小分子二元醇类、甚至MOCA(这个致癌,最好别碰)

功用是先期反应、整体加硬、或是加表皮厚度硬度、缩短生产周期。也是要选取合适型号、用量合理。

三、硅油:(1.5-2.5%)

这个是跟着其他原料走的(原料搭配),一般的硬泡硅油都可以用,但要想改进产品的一些品性(泡孔细密、白线、流动性)还是应该费点神好好选择。价格24元/kg以下的最好不要用。尤其注意聚醚(酯)主体变化后硅油型号可能要换。

四、催化剂:

①前期型的:A-1、Am-1 功用是控制起发时间,带动其他催化剂发挥功效、改善泡孔细密度、改善发泡过程的流动性。用量0.5%以内,视“水”的用量而定,天气状况稳定时最好是个“定数”

②平稳型的:环己胺用量0.3-0.6%,目前性价比最高的硬泡催化剂,各期催化能力很平均。

③主催化剂: A-33 仿木料中必不可少的催化剂,直接影响结皮效果和产品硬度,用量至少0.4% 。这里的A-33是指固胺(三乙烯二胺)加小分子二元醇溶解的,不是市售的海绵上用品(有很多假冒品)。

④有机锡:进口的T-12最好,用量极少(万分之一)就可以明显改进结皮效果和缩短开模时间。需要注意的是:小心白料的储存周期,因为普通有机锡都是不耐水解的,会慢慢失效,像T-12,用在组合料中一周以后失效迹象就很明显了,建议动用耐水解型的T-120/T-6。

⑤三聚类的:最好用PC-41 (0.3-0.5%)加硬而不影响泡孔结构。有一段时间用过DMP-30 0.5% 效果不太理想。有人用二甲基乙醇胺,据说蛮好用的,我试验一下发现泡孔有变粗迹象就没敢玩火(不过那时所用4110也太不像是人做出来的)。

⑥其他类型的:二甲基苄胺(0.5%)改进制品品质并不好,除非用于较低密度的、尺寸偏长的、闭模灌注的装饰用线角板,可以改善料子的流动性。资料显示:“N-甲基、二环己胺”可以加厚结皮,可惜找了好几年我连样品都没弄到手! DBU试用过,可以加厚结皮,太贵了还不如加大A-33用量划算。

五、发泡剂配合

现在多数是141B/水发泡体系。水量0.2-0.7%,普通仿木料141B一般不要超过10份。141B的使用量会直接影响结皮厚度与硬度,用多了也会造成表面有暗泡

六、其他助剂降粘度、色料、抗黄变等

可以加点不反应的东西降低白料粘度,比如DBP之类的来个3% 。色料、抗氧化剂等直接加进去就行了,无须多虑。

MDI 体系聚氨酯弹性体的合成及性能

MDI 体系聚氨酯弹性体的合成及性能 作者:刘锦春,肖建斌 聚氨酯弹性体是一种由低聚物多元醇柔性链段构成软段,二异氰酸酯及扩链剂构成硬段,硬段和软段交替排列,形成重复结构单元的嵌段聚合物,它具有硬度范围宽、耐磨性能好、机械强度高、回弹性好等特点,所以在许多领域得到了广泛的应用。通常情况下,合成聚氨酯弹性体主要有一步法、预聚物法和半预聚物法3 种方法[1 ] ,对TDI 体系,由于TDI 易挥发,毒性较大,一般采用预聚物法,预聚物中游离的-NCO 百分含量较低;而对于MDI 制备的预 聚物,虽然没有TDI 体系较大刺激气味,但MDI 体系预聚物粘度较高,操作困难,故多采用半预聚物法,该方法制得的半预聚体粘度低,其中游离-NCO 百分含量较高,可使扩链剂组分与半预聚物的粘度和混合比例相匹配。同时,针对常用聚氨酯扩链剂MOCA 使用不便的缺点,采用新型液体胺类扩链剂DMTDA[2~4 ] 制备弹性体,通过配方调整,得到配比接近、粘度接近的MDI体系双组分聚氨酯弹性体体系,可广泛用于制作聚氨酯胶辊、聚氨酯筛板等制品。 1 实验部分 1. 1 原材料 聚醚多元醇TDIOL - 1000 , 羟值为110 ±5mgKOH/ g ,聚醚多元醇TDIOL - 2000 ,羟值为56 ±5mgKOH/ g ,均为天津石化三厂生产;四氢呋喃均聚醚二醇羟值为112mgKOH/ g ,为Bayer公司产品; 4 , 4′2 二苯基甲烷二异氰酸酯( 纯MDI) ,为烟台万华聚氨酯股份有限公司产品;扩链剂DMTDA ,为杭州崇禹公司产品; 1 , 4-BDO和催化剂二月桂酸二丁基锡为市售品。 1. 2 合成及工艺 1. 2. 1 A 组分的合成 将聚醚多元醇加入三口烧瓶中, 在100 ~200 ℃,0. 096MPa 的负压下减压脱水1. 5~2h ,冷却至60 ℃,加入称量并熔化好的MDI ,在80 ±2 ℃左右反应1. 5h ,然后再脱气至无气泡,降温密封得预聚物(或半预聚物) 待用。 1. 2. 2 B 组分的制备 将聚醚多元醇、DMTDA 、1 ,4-BDO 等按一定比例称量、混匀并加热至100~120 ℃,真空脱水后加入催化剂,搅拌均匀待用。

环保型水性聚氨酯合成革浆料

环保型水性聚氨酯合成革浆料 (温州寰宇高分子材料有限公司浙江温州325000) 摘要:回顾了PU革浆料的发展状况,分析了我国现行工艺存在的问题,展望了我国PU革的发展前景。作者在不改变现行生产工艺的条件下,研究开发了新一代环保型水性聚氨酯浆料。研究表明,该浆料节约成本,完全能替代溶剂型浆料,性能达到甚至超过溶剂型和国外同类水性浆料。 关键词:PU革浆料;水性聚氨酯;环保 1 PU革浆料的发展与现状 在我国PU皮革是一个新兴的产业,它的发展仅20年左右。由于其具有优异的耐磨性、良好的抗撕裂强度和伸长率,同时赋予PU皮革表面平坦、手感丰满、舒适、回复性良好、价格适中等特性,PU皮革不但替代了很多原来价格昂贵的天然皮制品,而且也逐渐取代低档、廉价的PVC人造革,现已成为人们日常生活中一种不可或缺的消费品。近十几年发展迅速蓬勃。据报道,我国的PU皮革市场的每年增长幅度已达15%~25%,仅温州合成革行业,已从初始的一家企业发展到如今的100多家企业,300多条干式、湿式生产线,整个行业的固定投资已达100多亿元,产量和市场份额已占全国70%,日产能力300多万平方米,品种发展到上千种,年产值近100亿元。因此有人说我国的PU皮革市场逐渐成为推动全球的PU皮革,甚至整个聚氨酯市场发展的主要动力之一。 目前国内合成革生产过程中,均采用有机溶剂型的PU树脂作为生产革品基层和面层的基本原料,这种类型的PU树脂均通过甲苯、二甲苯、丙酮、丁酮(MEK)、乙酸乙酯和二甲基甲酰胺(DMF)等作为主要溶剂以溶剂聚合法制得。这些占整个树脂成分60%以上的有机溶剂都是有害物质,而且对人体造成的危害是多方面的。其中,甲苯等芳香烃溶剂对造血器官具有危害性,在高浓度环境下长期接触,可能发生急性中毒而休克,慢性中毒将出现血小板和白血球减少,并出现相应的病症。丁醇、丁酮、丙酮、乙酸乙酯和二甲基甲酰胺等溶剂都有相当大的毒副作用,其中乙酸乙酯对眼和粘膜有刺激性,并有麻醉性;合成革生产中用量最大的二甲基甲酰胺,对皮肤、眼部粘膜有强刺激性,吸入高浓度蒸汽时,会刺激咽部引起恶心,经常接触,经皮肤侵入,会导致肝功能障碍;而且有机溶剂对女性孕育下一代将产生严重的负面影响。 据统计,一条合成革生产线日均需消耗10t左右溶剂型PU树脂,其中占溶剂型PU树脂总用量60%以上的是溶剂,虽然湿法生产线中85%左右的溶剂被回收,但湿法生产线中仍有15%左右、干法生产线中95%的溶剂无法回收,将通过水和空气排放到周边的河流和天空中,势必会严重污染当地的环境,给人们的生产、生活,公众的生命健康构成重大威胁。如果以温州市300条生产线计算,年均需要的溶剂型PU树脂用量为70多万t,每年将会有数以万吨的溶剂排放到空气和周边的河流中,造成的污染将不可想象。由于苯、甲苯等有害溶剂易燃、易爆,极易引发火灾,造成伤残,甚至死亡,近年已屡见报道。 在大力发展经济的同时,保持优良的环境,健康的身体是当今社会发展的一个重要目标。正确处理“保护”和“促进”的关系,减少工业生产对环境和人类本身的伤害,是不可逆转的潮流,也是历史赋予我们的责任。人类只有一个地球,保护我们的家园,保持可持续性地发展经济的问题,已成为全球的共识,引起了各国政府的高度重视。在美国、意大利、日本、韩国等合成革主要生产国,已逐渐淘汰溶剂型PU树脂产品,采用环保型PU树脂。我国也先后制定、出台了许多相关的法律、法规。如:《环境保护法》、《劳动保护条例》、《职业病防治法》等等,为化工产业的发展提出了要求,严格了规范。随着我国加入世贸组织,我们企业参与国际市场竞争,客观上也要求我们生产和使用无公害的产品,消除国际上“绿色贸易壁垒”对我国产品的非贸易壁垒限制。 从源头上杜绝污染,对于PU革行业来讲已迫在眉睫。温州寰宇高分子材料有限公司,通过长期不懈的努力,已成功开发出国内首创的环保型聚氨酯合成革树脂产品。其主攻方向为:

热塑性聚氨酯材料概述

热塑性聚氨酯材料概况 1、热塑性聚氨酯的概述 热塑性弹性体也可称为热塑性橡胶,是一种兼有塑料和橡胶的优异特性、在常温下显示橡胶的高弹性、高温下又能塑化成型的多相高分子材料,因而又称作第三代橡胶,简称TPE或TPR。由于热塑性弹性体具有以上的众多优点,所以,近十余年来,随着电子电器、通信与汽车等行业的快速发展,热塑性弹性体得到高速发展。 热塑性聚氨酯弹性体(thermoplastic polyurethane elastomer,简称TPU),又称PU热塑胶,是一种由低聚物多元醇软段与二异氰酸酯和扩链剂硬段构成的线性嵌段共聚物。可熔可溶的,具备高强度、高弹性和优良耐磨、耐油、耐低温等特性的高分子材料。与混炼型聚氨酯(MPU)和浇注型(CPU)相比,TPU化学结构没有或很少有化学交联,分子链基本上是线性的,靠分子间的氢键构成物理交联,具有较高的物理强度。热塑性聚氨酯与浇注性聚氨酯的主要差别在于成型方法的不同以及扩链剂种类的不同。热塑性聚氨酯可由本体熔融法聚合或溶液法聚合。可采用热塑性塑料的加工方法,如挤出、注射、压延、吹塑、模压等。 2、热塑性聚氨酯制备的原料 2.1 低聚合度多元醇 聚酯多元醇包括常规聚酯多元醇、聚己内酯多元醇和聚碳酸酯二醇;聚酯多元醇是通过羟基和羧基缩聚反应制得。 聚醚多元醇分子结构中,由于醚键具有较低内聚能,且醚键具有易旋转的性质,所以其使得制备的产物在低温下具有比较好的柔顺性,虽然材料的力学性能方面不及聚酯型聚氨酯,但可以使得材料粘度低,较聚酯型容易与配合剂和异氰酸酯等发生互溶,使得其在加工性方面也有不错的性能。

2.2 多异氰酸酯 多元异氰酸酯根据是否存在苯环可分为芳香族和脂肪族两类,芳香族类异氰酸酯较脂肪族反应活性更为突出。 2.3 扩链剂 常用的扩链剂可以分为两大类:二醇类和二胺类。一般常用的二醇类扩链剂1,4-丁二醇(BDO)、丙二醇(PG)、乙二醇(EG)、1,6’-己二醇(HDO);而在工业上常用的二胺类扩链剂有3,3’-二氯-4,4’-二氨基二苯甲烷(MOCA)、二甲硫基甲苯二胺(DMTDA)等。 2.4 其他原料 ①填料填料的种类很多,一般来说加入不同的填料所达到的效果也是不同的。通常情况下我们加入填料的目的是为了提高产品的一些性能或者是降低产品的生产成本。在CPU的合成过程中填料的加入一般选择原位法,而TPU制备时则常采用熔融混合法。 ②水解稳定剂酯基在湿热环境下的稳定性极低,它易与水发生水解反应,所以为了避免实验条件对实验结果产生较大的影响,在聚氨酯弹性体的制备过程中通常需要加入水解稳定剂。 ③其他助剂聚氨酯材料属于易燃类,所有关于它的防火问题需要引起人们的重视,某些在特殊的聚氨酯弹性体,在制定配方时,通常需要加入一些阻燃剂,提高其阻燃性能,以防失火。其它助剂还有可以改善材料的可塑性提高其柔性的增塑剂、能阻缓材料变质的稳定剂以及能够延缓聚合物氧化的抗氧剂等。增塑剂的加入可以使预聚体粘度降低,并且可以减少成本。

聚氨酯弹性体介绍

聚氨酯弹性体介绍 一、了解聚氨酯弹性体 浇注刑聚氨酷弹性体〔Pu)是一种新兴的有机高分子材料,聚氨酯产品具有耐磨、弹性好、耐冲击、耐腐蚀的特性,聚氨酚有”耐磨王”之称。在实际应用中,其结构特点使其只有优异的耐磨性,以”耐磨橡胶".着称,‘它与金属材料相比具有重量轻、噪音低、耐损耗、加工费用低及耐腐蚀等优点;与塑料相比具有不发脆、多作为橡胶制品的更新换代产品,。并且还具有耐油,耐酸、碱,耐射线辐射等优异性能。因其卓越的性能而被广泛应用干国民经济众多领域:耐磨性(弹性体中最好),高强度〔是普通橡胶的3-5倍),高伸长率(500%-土1500%),高弹性〔负载支撑容量大,减震效果好),硬度范围宽(邵氏A20扩邵氏D70) ‘耐磨性浇注型聚氨酷乳液Pu弹性体具有杰出的耐磨性能,因此在磨损问题严重的场合有很多重要用途,特别是在采矿,石油,天然气工业。在现场使用和实验测试中,聚氨酯的耐磨性明显超过许多其他材料。“应力/应变性能浇注刑聚氨酯Pu弹性体具有较高的模量,高抗张强度及高拉伸率这些性能使得浇注的聚氨酯零件具有很好的韧性和耐用性。‘压缩性能浇注型聚氨酯弹性体与硬度相当的一般橡胶相比具有高得多的承载能力。这种高承载能力与优异的耐磨性和韧性相结合使得聚氨酯在工业实芯轮胎和工业辊筒等应用方面的优点非常突出。‘撕裂强度拼板胶撕裂强度用于实际评估这些弹性体对割裂发展的抵抗能力在实际用途中尤其是涉及冲击磨损的用途,高防撕破力是重要的,空吸塑胶浇注性聚氨酯PU弹性体在这方面远较传统的橡

胶占优势。“耐油性注性聚氨酯Pu弹性体对许多环境的影响有极佳的抵抗能力。‘它在油类和溶剂中的稳定性比普通的橡胶要好的多。产品应用:产品应用领域涉及轻工、化工、电子、纺织、医疗、建筑、建材、汽车、国防、航天、航空.机械,交通、油田矿山、、印刷机棍筒,实芯轮、体育等领域;如:板材、棒材、缓冲器、衬胶管道、同步齿形带、洁管器、工业脚轮、密封圈、防震片、筛网、胶辊、纺织罗拉片等: 聚氨酯弹体的主要优点 1、性能的可调节范围大。多项物理铸造机械性能指标均可通过对原材料的选择和配方的调整,在一定范围内变化,从而满足用户对制品性能的不同要求二譬如硬度,往往是用户对制品的一个重要指标,聚氨酯弹性体既可制成邵尔A硬度20左右的软质印刷胶辊,又可制成邵尔D硬度70以上的硬质轧钢胶棍,这是一般弹性体材料所难以做到的。聚氨酯弹性体是由许多柔性链段和刚性链段组成的极性高分子材料,随着刚性链段比例的提高和极性基团密度的增加,弹性体原强度和硬度会相应提高。 2、耐磨性能优越。特别是在有水、油等润滑介质存在的工作条件下,其耐磨性往往是普通橡胶材料的几倍到几倍到几十倍,金属材料如钢铁等虽然很坚硬,但并不一定耐磨如黄河灌溉区的大型水泵,其过流部件金属口环和保护圈经过大量泥沙的冲刷,用不了几百小时就严重磨损漏水,而采用聚氨酷弹性体包覆的口环和保护圈则连续运行1800小时仍未磨损’其他如碾米用的剥谷机胶棍、选煤用的振动筛筛板、运动场的竞赛跑道、吊车铲车用的动态油密封圈、电梯轮和旱冰鞋轮等等也都是聚氨酯弹性体的用武地。在此需提到的一点是,要提高中低硬度的聚氨酯弹性体制件的摩擦系数,改善在承载负荷下的耐磨性能,

热塑性聚氨酯论文

热塑性聚氨酯TPU 的发展现状 摘要:TPU 全称热塑性聚氨酯弹性体(Thermoplastic Polyurethane ),它是由二异氰酸酯和大分子多元醇、扩链剂共同反应生成的线性高分子材料。同时,它也是一种能够在一定热度下反复变软或改变的塑胶材料,而在常温下它却可以保持形状不变,能起个支撑、保护的作用.TPU 为热塑性聚氨酯,有聚酯型和聚醚型之分,TPU 成型品的用途广泛: 汽车部件,机械·工业用部件,管材·软管,薄膜·板材,电线·电缆等等,本文主要叙述TPU 聚合工艺,各项性能,市场应用,TPU 国内外发展的现状及其生产厂家等方面。 关键词:TPU 共混改性 聚氨酯 发泡剂 扩链剂 环保 一.TPU 的聚合工艺 TPU 全称热塑性聚氨酯弹性体(Thermoplastic Polyurethane ),它是由二异氰酸酯和大分子多元醇、扩链剂共同反应生成的线性高分子材料。它在分子组成上以重复氨基甲酸酯基团为特征,同时含有脲基甲酸酯、缩二脲、及酯键、醚键等其它基团;从分子结构上看,它由刚性链段与柔性链段交替构成,其中刚性链段是由二异氰酸酯和扩链剂反应得到的,柔性链段则是由二异氰酸酯和大分子多元醇反应得到的。这种特殊的分子结构使TPU 具有其它各类热塑性弹性不可比拟的优良性能。 可采用注射、挤出、吹塑等方法生产加工。挤出成型、注射成型是TPU广为采用的加工方法。挤出和注射成型的熔体温度范围较宽,一般在180-245摄氏度之间.塑化效果好,熔料均匀,易于成型加工。适合所有塑料生产加工工艺。 挤出成型的工艺过程: 将固体颗粒或粉末加入挤出机的料斗,在料简预热,干燥;物料在运动过程中与料筒、螺杆、以及物料与物料之间相互摩擦、剪切,产生大量的热,这时物料由玻璃态→高弹态→粘流态转变;熔融物料被螺杆输入通过具有一定形状口模后成型,进入冷却定型装置,再经过牵引,获得最终的制品尺寸。最后根据需要切割成一定长度的制品,再堆放在堆放架上。这就是TPU 的聚合过程。 二. TPU 的各项性能 1. 耐磨性,抗撕裂性 TPU 主要优点之一是其耐磨性很好,因此常用于制造鞋底和电缆护套。同时,抗撕裂性也很好,在很宽的温度范围内均具有柔顺性。 聚酯型TPU 的耐磨性、抗撕裂性以及拉伸强度、撕裂强度都优于聚醚型TPU ;聚醚型TPU 适合于对耐水解性、耐微生物降解性和低温性、柔顺性要求较高的场合;而通过特殊方法合成聚合物 塑化 成型 定型 牵引 切割 堆放 冷却 成品

水性聚氨酯的合成与改性_闫福安

CHINA COATINGS 2008年第23卷第7期 15 0 引 言 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控,配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行必不可少的材料之一,其本身就已经形成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。 据有关报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右。美国人均年消耗聚氨酯材料约5.5 kg,西欧约4.5 kg,而我国的消费水平 还很低,年人均不足0.5 kg。 溶剂型的聚氨酯涂料品种众多、用途广泛,在涂料产品中占有非常重要的地位。水性聚氨酯的研究始自20世纪50年代,60、70年代,对水性聚氨酯的研究、开发迅速发展,70年代开始工业化生产用作皮革涂饰剂的水性聚氨酯。进入90年代,随着人们环保意识以及环保法规的加强,环境友好的水性聚氨酯的研究、开发日益受到重视,其应用已由皮革涂饰剂不断扩展到涂料、黏合剂等领域,正在逐步占领溶剂型聚氨酯的市场。在水性树脂中,水性聚氨酯仍然是优秀树脂的代表,是现代水性树脂研究的热点之一。 水性聚氨酯的合成与改性 □ 闫福安,陈 俊 (武汉工程大学化工与制药学院,武汉 430073) 摘要:对水性聚氨酯的合成单体、合成原理、合成工艺及改性方法作了介绍。水性聚氨酯合成技术不断完善,市场正在推进,国内相关企业和研究机构应加强合作,从分子设计出发,不断推进水性聚氨酯产业的技术进步和市场推广。 关键词:水性聚氨酯;合成;改性 中图分类号:TQ630 文献标识码:A 文章编号:1006-2556(2008)07-0015-08 Synthesis and modifi cation of water-borne PU Yan fuan, Chen jun (School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, Hubei Province) Abstract: This paper introduces water-borne PU about its monomers, synthesis mechanism, and synthesis technology and modifi cation methods. Relevant enterprises and research institutes China should strengthen the work cooperatively on molecule design, to promote the continuously progressing synthesis technology and the growing market of water-borne PU. Keywords: water-borne PU, synthesis, modifi cation 编者按:本文搜集了相关的情报资料,比较全面地阐述水性聚氨酯的合成技术。相应地,嘉宝莉朱延安、中国科技大章鹏进行了这方面的研发和实验实践。相比之下,为改善PUD分散体涂膜力学性能,选用聚碳酸酯型方向是可行的,但在水性木器涂料中的应用,应综合考虑制造成本、涂料使用范围、对涂膜光泽大小不同要求等方面因素;软段多元醇的选用不可能单一型,可以选用混合型,如PCD与PCL混合,或PCD与聚醚型混合,否则单用PCD,因价格太贵或存在功能过剩,影响水性聚氨酯涂料的推广应用与市场定位。 TECHNICAL PROGRESS DOI:10.13531/https://www.360docs.net/doc/bb8659159.html,ki.china.coatings.2008.07.007

聚_己内酯型热塑性聚氨酯弹性体的合成

研究 开发 弹性体,2006 04 25,16(2):24~27 CHINA EL AST OM ERICS 收稿日期:2005-11-14 作者简介:贾林才(1963-),男,高级工程师,硕士导师,山西省化工研究院副院长,从事聚氨酯的研究开发及管理工作20余年,在各类期刊及行业会议上发表文章10余篇。 聚 -己内酯型热塑性聚氨酯弹性体的合成 贾林才1,赵雨花2 (1.山西省化工研究所,山西太原030021;2.中国科学院山西煤化所,山西太原030001) 摘 要:简单介绍了聚 -己内酯型热塑性聚氨酯弹性体的合成工艺,研究了聚 -己内酯分子量、硬段含量、n ( N CO )/n ( OH)和异氰酸酯结构对其性能的影响。结果表明,n ( NCO)/n ( OH)和异氰酸酯结构对热塑性聚氨酯弹性体的熔融指数、微相形态结构和物理机械性能有较大的影响。 关键词:聚 -己内酯(PCL );热塑性聚氨酯弹性体(T PU E);硬段含量 中图分类号:T Q 334.1 文献标识码:A 文章编号:1005 3174(2006)02 0024 04 热塑性聚氨酯弹性体(TPU E)是由含活泼氢的低聚物二元醇、有机二异氰酸酯化合物和小分子二醇(或二胺)扩链剂通过逐步加成聚合反应制成的线状或稍有支化或交联的高分子材料。它不仅具有交联性聚氨酯的高强度、高耐磨等橡胶特性,而且因具备线性高分子材料的热塑性能,从而使其应用得以扩展到塑料的应用领域。 早在1956年,Young [1]及其合作者首先报道了聚己内酯型TPU E 的合成。之后,Velanker S,Cooper S L [2~ 4] 对聚 -己内酯(PCL)型聚氨酯 弹性体流变性能和微相形态结构进行了研究。聚己二酸酯类和聚醚型TPU E 以其原料来源广、价格低、综合性能优良及易加工性而在机械制造业、汽车工业、纺织业、皮革制造业及涂料、胶粘剂领域得到广泛应用。而PCL 型TPU E 因原料来源所限而使其应用受到限制。我国加入WTO 以后,市场逐步与国际接轨,原材料品种更加繁多,质量更加稳定,供应渠道更加畅通,从而为新产品和新市场的开发奠定了坚实的基础。笔者对PCL 型TPUE 的合成、组成与性能的关系进行了研究和讨论,将有助于PCL 型TPUE 的加工和应用。 1 实验部分 1.1 原材料 聚 -己内酯二醇(M n =1000,2000):进口;MDI:烟台万华聚氨酯股份有限公司;甲苯二异氰酸酯(T-80):进口;1,4-丁二醇(BDO):进口。1.2 合成 T PUE 的合成有预聚体法和一步法两种。本文采用一步法合成 [5] 。 将计量的聚 -己内酯二醇加入配有机械搅拌及温度计的三口烧瓶中,在搅拌下将温度加热到100~120!,在-0.85~-0.1MPa 脱水1~2h,然后将温度降至80~90!,搅拌下加入干燥并计量的BDO,混合均匀后,加入熔化并计量的MDI,在强烈搅拌下混合30~60s,倒入预先涂有脱模剂的不锈钢盘中,再放入120!的鼓风烘箱中硫化3~4h 。然后在辊温150~180!的开炼机上反复混炼5~10min,制成1~2mm 的薄片。在170~190!的平板硫化机上压制成2mm 厚的试片,室温下放置一周后测其性能。1.3 性能表征 将上述制得的试片在拉力试验机上测其物理机械性能。拉伸强度、300%定伸模量、扯断伸长率按照GB/T 528 92测定;扯断永久变形按照GB/T 529 91测定;撕裂强度按照GB/T531 92测定;邵氏硬度按照GB/1681 82测定。

水性聚氨酯性能优缺点

水性聚氨酯的优点: 聚氨酯的全名叫聚氨基甲酯。水性聚氨酯是以水代替有机溶剂作为分散介质的新型聚氨酯体系,其分子结构中含氨基甲酸酯基、脲键和离子键,内聚能高,粘结力强,且可通过改变软段长短和软硬段的比例调节聚氨酯性能。 水性聚氨酯乳液相比较与溶剂型聚氨酯具有以下优点: (1)由于水性聚氨酯以水作分散介质,加工过程无需有机溶剂,因此对环境无污染,对操作人员无健康危害,并且水性聚氨酯气味小、不易燃烧,加工过程安全可靠。 (2)水性聚氨酯体系中不含有毒的-NCO基团,由于水性聚氨酯无有毒有机溶剂,因此产品中无有毒溶剂残留,产品安全、环保,无出口限制。 (3)水性聚氨酯产品的透湿透汽性要远远好于同类的溶剂型聚氨酯产品,因为水性聚氨酯的亲水性强,因此和水的结合能力强,所以其产品具有很好的透湿透汽性。 (4)水作连续相,使得水性聚氨酯体系粘度与聚氨酯树脂分子量无关,且比固含量相同的溶剂型聚氨酯溶液粘度低,加工方便,易操作。 (5)水性聚氨酯的水性体系可以与其它水性乳液共混或共聚共混,可降低成本或得到性能更为多样化的聚氨酯乳液,因此能带来风格和性能各异的合成革产品,满足各类消费者的需求。 并且,由于近年来溶剂价格高涨和环保部门对有机溶剂使用和废物排放的严格限制,使水性聚氨酷取代溶剂型聚氨酷成为一个重要发展方向。 水性聚氨酯膜的优点: 水性聚氨酯树脂成膜好,粘接牢固,涂层耐酸、耐碱、耐寒、耐水,透气性好,耐屈挠,制成的成品手感丰满,质地柔软,舒适,具有不燃、无毒、无污染等优点。将成革的透氧气性、透湿性、低温耐曲折性、耐干湿擦性、耐老化性等,与溶剂型聚氨酯涂饰后的合成革进行了对比研究。结果表明,经水性聚氨酯涂饰的合成革的透氧量达到了4583.53mg/(em3·h),为溶剂型的1.5倍,且透水汽量达到了615.53mg/(cm3·h),约为溶剂型的8倍;低温耐曲折次数大于4万次,为溶剂型的2倍。采用水性聚氨酯替代传统的溶剂型聚氨酯完成合成革的

水性聚氨酯的制备

水性聚氨酯的制备 1、原料 聚醚二元醇(PPG,分子量为2000和1000),2,4-甲苯二异氰酸酯(TDI),二羟甲基丙酸,丙酮(工业品),2-甲基-2-氨基-7-丙醇。 2、合成 制备水性聚氨酯的主要方法有:丙酮法、预聚体直接分散法、熔融分散法、酮距胺法和酮丫嗪法等按照水性化方法不同,水性聚氨酯的制备又可以分为内乳化法和外乳化法。内乳化法,又称自乳化法,是因聚氨酯链段中含有亲水性成分,无需乳化剂即可得到稳定的乳液的方法。外乳化法,又称强制乳化法,若分了链中仅含少量或者不含亲水性链段或基团必须添加乳化剂,凭借外力进行乳化。 1)丙酮法 亲水的异氰酸酯预聚物和扩链剂的扩链反应在溶剂丙酮中进行,故称之为丙酮法。由于聚合物的合成反应在均相的溶液中进行,故再现性很好。水性聚氨酯树脂合成好以后,再加水乳化,最后减压抽出丙酮溶剂就可得到粒径较小的聚氨酯分敞体。这种方法是经典的方法,浚方法的优点是试验重现性好,得到的聚氨酯水分散体粒径小,稳定性好;但该方法也有缺点,那就是试验过程中丙酮的大量使用,而且还得将丙酮减压抽出,制备工艺复杂,生产成本较大。 2)预聚体直接分散法 该方法是合成聚氨酯分散体的一个普通方法。先制得亲水性的预聚体,当然预聚体含有游离的异氰酸酯基团,然后将预聚体和水混合,扩链反应是预聚体和扩链剂在水中进行。本人在这种方法基础上对此方法进行了改进,得到了一种方法把它罩尔之为边扩链边分散法,运用这种方法成功合成了长期稳定的水性聚氨酯分散体,而且在合成过程中不使用溶剂,简化了制备工艺,节约了合成成本。 3)熔融分散法 将聚酯或聚醚二醇、叔胺和异氰酸酯在熔融状态下制备预聚体,用过量尿素终止生成亲水性的双缩二脲离聚物,在将其在甲醛水溶液中分散,使发生羟甲基阳离子型水性聚氨酯发生反应。 4)外乳化法 外乳化法是最早使用的制备水性聚氯酯的方法,它是1953年美国Du Pont公司的、V Yandott发明。选取制成适当分子量的聚氨酯预聚体或其溶液,然后加入乳化剂,在强烈搅拌下强制性地将其分散于水中,制成聚氨酯乳液或分散体。外乳化法工艺简单,但存在以下缺点: a.在分散阶段需要强力搅拌设备,搅拌工艺对分散液性能影响很大; b.制得的分散液粒径较大,一般大于1.0mm,粒径分布宽,储存稳定性差; c.乳化剂的存在影响成膜后胶膜的耐水性、强韧性和粘结性等力学性能。 5)自乳化法 聚氨酯的自乳化过程实际上是一个相反转过程,在乳化过程中经历了一个从w/o 到o/w的转变过程,随着乳化的进行,聚集念结构也会发生相应变化,并且体现出物化性质(如粘度和电导率)改变。众所周知,聚氨酯材料内由于软链段和硬链段各自成相生微相分离,若将离子型水性聚氨酯中和成盐,那么它就属于离聚体。对离聚体的聚集态结构,许多人进行了研究,提出了很多模型,包括微离子点阵模型、各相同性模型、两相结构模型等。

对苯二异氰酸酯型聚氨酯弹性体的合成及性能研究

对苯二异氰酸酯型聚氨酯弹性体的合成及性能研究文件类型: PDF/Adobe Acrobat 文件大小:字节 更多搜索:氰酸聚氨酯弹性体合成及性能研究 对苯二异氰酸酯型聚氨酯弹性体的合成及性能研究 黎艳飞庞坤玮区志敏 (广州华工百川自控科技有限公司 510640) 摘要:以对苯二异氰酸酯(PPDI),低聚物多元醇和小分子二元醇等为原料合成了PPDI浇注型聚氨酯弹性体,考察了不同低聚物多元醇对弹性体的物理机械性能,动态力学性能及热氧老化性能 的影响,并与MDI和TDI型聚氨酯弹性体进行了比较.结果表明,PPDI型聚氨酯弹性体较MDI, TDI型弹性体具有更低的内生热,更高的回弹性,可用于轮胎胎面材料的制备. 关键词:PPDI;聚氨酯弹性体;动态力学性能;内生热 聚氨酯弹性体(PUE)具有高强度,高模量,高伸 长率,高弹性,硬度可调以及很好的耐油,耐低温,耐 撕裂,耐化学腐蚀,耐辐射等特点,已成功地应用于 国防,矿山,机电,冶金,制鞋,纺织,汽车工业等领域 中.然而,通常的PUE长期使用温度不超过80℃, 短期使用温度不超过120℃,因此应用范围受到限 制[1].胎面材料作为轮胎与地面接触的部件,直接 承担着路面对轮胎的冲击与磨损,向路面传递汽车 的牵引和制动力,保护胎体帘线免受机械损伤,因此 对胎面材料物理机械性能要求极高,既要有高的耐 磨性,高弹性,又要内生热小,有很好的动态力学性 能.本研究根据对苯二异氰酸酯(PPDI)分子结构 对称,规整,扩链后的PUE硬段分子致密性高及良 好的相分离等特点,分别研究了不同低聚物多元醇 PPDI体系弹性体性能,并与TDI,MDI型弹性体动 态性能比较,制备了动态条件下仍然具有较好综合 力学性能的PPDI型聚氨酯弹性体,该类弹性体可

水性聚氨酯的合成

闫福安,陈俊 (武汉工程大学化工与制药学院,武汉430073) 摘要:对水性聚氨酯的合成单体、合成原理、合成工艺及改性方法作了介绍。水性聚氨酯合成技术不断完善,市场正在推进,国内相关企业和研究机构应加强合作,从分子设计出发,不断推进水性聚氨酯产业的技术进步和市场推广。 关键词:水性聚氨酯;合成;改性 0引言 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控,配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行必不可少的材料之一,其本身就已经形成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。据有关报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右。美国人均年消耗聚氨酯材料约5.5kg,西欧约4.5kg,而我国的消费水平还很低,年人均不足0.5kg。溶剂型的聚氨酯涂料品种众多、用途广泛,在涂料产品中占有非常重要的地位。水性聚氨酯的研究始自20世纪50年代,60、70年代,对水性聚氨酯的研究、开发迅速发展,70年代开始工业化生产用作皮革涂饰剂的水性聚氨酯。进入90年代,随着人们环保意识以及环保法规的加强,环境友好的水性聚氨酯的研究、开发日益受到重视,其应用已由皮革涂饰剂不断扩展到涂料、黏合剂等领域,正在逐步占领溶剂型聚氨酯的市场。在水性树脂中,水性聚氨酯仍然是优秀树脂的代表,是现代水性树脂研究的热点之一。 1水性聚氨酯的合成单体 1.1多异氰酸酯(polyisocynate) 多异氰酸酯可以根据异氰酸酯基与碳原子连接的部位特点,可分为四大类:芳香族多异氰酸酯(如甲苯二异氰酸酯,TDI)、脂肪族多异氰酸酯(六亚甲基二异氰酸酯,HDI)、芳脂族多异氰酸酯(即在芳基和多个异氰酸酯基之间嵌有脂肪烃基-常为多亚甲基,如苯二亚甲基二异氰酸酯,XDI)和脂环族多异氰酸酯(即在环烷烃上带有多个异氰酸酯基,如异佛尔酮二异氰酸酯,IPDI。芳香族多异氰酸酯合成的聚氨酯树脂户外耐候性差,易黄变和粉化,属于“黄变性多异氰酸酯”,但价格低,来源方便,在我国应用广泛,如TDI常用于室内涂层用树脂;脂肪族多异氰酸酯耐候性好,不黄变,其应用不断扩大,欧美发达国家已经成为主流的多异氰酸酯单体;芳脂族和脂环族多异氰酸酯接近脂肪族多异氰酸酯,也属于“不黄变性多异氰酸酯”。水性聚氨酯合成用的多异氰酸酯主要有TDI、IPDI、HDI、TMXDI(四甲基苯二亚甲基二异氰酸酯)。TMXDI可直接用于水性体系,或用于零VOC水性聚氨酯的合成。

热塑性聚氨酯热熔胶的合成与性能研究

龙源期刊网 https://www.360docs.net/doc/bb8659159.html, 热塑性聚氨酯热熔胶的合成与性能研究 作者:潘庆华叶胜荣 来源:《粘接》2014年第08期 摘要:以己二酸系聚酯二醇为软段,二异氰酸酯与扩链剂生成的链段为硬段,制备了聚氨酯热熔胶;研究了软硬段组成、结构、相对分子质量、扩链剂、异氰酸酯指数等对聚氨酯热熔胶的力学性能、结晶性能、粘接性能及耐热性能的影响。 关键词:热塑性聚氨酯;热熔胶;合成;性能 中图分类号:TQ436+.4 文献标识码:A 文章编号:1001-5922(2014)08-0035-05 聚氨酯胶粘剂以其优良的粘接性、突出的弹性、耐磨性、耐低温等特性得到了迅速的发展,已广泛用于制鞋、包装、木材加工、汽车、轻纺、机电、航天航空等工业部门中。目前市场上的聚氨酯胶粘剂大都为双组分及单组分溶液型,它们往往要耗费大量的有机溶剂,生产成本高;而且会造成环境污染,影响人身健康。随着环保法的日趋严格和人们环保意识的不断增强,环保型胶粘剂已成为合成胶粘剂发展的主流;聚氨酯热熔胶就是一类无溶剂、无污染的环保型胶粘剂,必将越来越受到人们的青睐[1~4]。本研究是以己二酸系聚酯二醇为软段,二异氰酸酯与扩链剂生成的链段为硬段,制备了热塑性聚氨酯热熔胶;研究了软硬段组成、结构、相对分子质量、扩链剂、异氰酸酯指数等对聚氨酯热熔胶的力学性能、结晶性能、粘接性能及耐热性能的影响,从而揭示出热塑性聚氨酯弹性体结构与性能之间的关系。 1 实验部分 1.1 主要原料 聚酯多元醇,自制;甲苯二异氰酸酯,上海试剂厂;二苯基甲烷二异氰酸酯、1,4-丁二醇,进口;乙二醇、一缩二乙二醇,上海试剂厂。 1.2 试样制备 将聚酯多元醇加入反应器中,加热至一定温度减压脱水,然后与二异氰酸酯反应生成预聚体,再与扩链剂反应生成聚氨酯。 1.3 性能测试 (1)DSC分析:10 mg左右的样品置于铝制样品池中,再在PERKIN ELMER Pyris1 DSC 差示扫描量热仪氮气气氛下测定,升温速度为10 ℃/min。

合成革用水性聚氨酯树脂技术应用现状及未来发展

合成革用水性聚氨酯树脂技术应用现状及未来发展 摘要: 通过对合成革水性聚氨酯的合成、生产应用配制、皮膜的性能进行比较详细的研究,结果表明我们的合成革用水性聚氨酯能在各种性能上达到甚至超过溶剂型树脂。且经济成本更低,更安全环保,它将可以逐渐取代溶剂型聚氨酯树脂。 关键词: 合成革用水性聚氨酯、交联、强度、耐屈挠、热水揉 一、国内合成革发展及现状 中国聚氨酯合成革的生产真正意义上的开始是1983年山东烟台合成革厂从日本引进聚氨酯合成革的生产技术及设备。但是中国合成革行业真正意义上的发展是在改革开放后实现的,特别是最近十年,合成革行业进入快速发展时期,行业整体平均每年都保持15%-20%的快速增长,无论是生产线的数量还是生产量在世界范围内都处于领先地位,到目前为止中国已成为世界上合成革的生产大国、使用大国。 目前全国共有人造革合成革企业2000多家,上千条生产线,其中规模以上干法生产线有516条,这些PU树脂主要都是以DMF、甲苯、丁酮、乙酸乙酯等为溶剂,这些溶剂的使用具有多方面的危害: (1)DMF经常接触会导致人体肝功能障碍;甲苯对皮肤粘膜有刺激作用,对中枢神经系统有麻醉作用;丁酮、乙酸乙酯等也都是长期吸入其蒸气会使眼、鼻、喉等粘膜受刺激,而引起炎症;长期接触这些有机溶剂势必影响人体健康。 (2)这些溶剂直接排放或者通过水性排放都会对周边环境造成极大的污染和破坏,进而影响整个地球生态环境。 (3)大多数这些有机溶剂都是易燃易爆的化学品,这样在储存、运输、操作上就存在了一定的安全隐患。 (4)使用有机化学作溶剂造成了资源的很大浪费。虽然现在有少数合成革企业对溶剂进行回收,但也仅仅局限于对干法生产线上部分DMF的回收。 因此,无毒、无污染、节能的水是溶剂最好的替代品,是经济、社会、资

TPU(热塑性聚氨酯)的分析

TPU(热塑性聚氨酯)的分析2010-01-21 16:52 TPU是电缆护套的优质材料,在军工产品和海洋电缆方面油广泛的应用,聚酯型和聚醚型TPU机械性能,前者比后者好,但是的耐湿气蒸发性、耐细菌性和耐低温冲击性,则后者比前者好,因此,电缆产品常选用聚醚型TPU。对于初次接触TPU或TPU加工品的电缆工作者来说,在区别聚醚性TPU与聚酯型TPU上有一些困惑。以下就聚酯与聚醚在性能、使用以及区别上做一个分析。 一、TPU简介 热塑性聚氨酯弹性体简称TPU,是一种由低聚物多元醇软段与二异氰酸酯-扩链剂硬段构成的线性嵌段共聚物。 TPU (Thermoplastic Polyurethane)按不同的标准进行分类。按软段结构可分为聚酯型、聚醚型和丁二烯型,它们分别含有酯基、醚基和丁烯基;按硬段结构分为氨酯型和氨酯脲型,它们分别由二醇扩链或二胺扩链获得。按合成工艺分为本体聚合和溶液聚合。在本体聚合中又可按有无预反应分为预聚法和一步法: 预聚法是将二异氰酸酯与大分子二醇先行反应一定时间再加扩链剂生成TPU;一步法二异氰酸酯与大分子二醇和扩链剂同时混合反应生成TPU。溶液聚合是将二异氰酸酯先溶于溶剂中再加入大分子二醇令其反应一定时间最后加入扩链剂生成TPU。按制品用途可分为异型件(各种机械零件)、管材(护套、棒型材)和薄膜(薄片、薄板),以及胶粘剂、涂料和纤维等。我想多大多数人所接触到的基本分类均为聚酯型和聚醚型。就我们作为TPU薄膜和TPU复合布的生产厂家来说日常用到的分类就是聚酯型和聚醚性,以聚酯型为主。 二、聚酯与聚醚在性能上的差异 聚醚型(Ether):高强度、耐水解和高回弹性,低温性能好。 聚酯型(Ester):较好的拉伸性能、挠曲性能、耐摩损性以及耐溶剂性能和耐较高温度。 从对比来看: 抗拉强度聚酯系>聚醚系 撕裂强度聚酯系>聚醚系 耐磨耗性聚酯系>聚醚系 耐药品性聚酯系>聚醚系 透明性聚酯系>聚醚系 耐菌性聚酯系<聚醚系 湿气蒸发性聚酯系<聚醚系 低温冲击性聚酯系<聚醚系 综上所述,聚醚型TPU具有高强度、耐水解和高回弹性,低温性能好的优点。通常用于软泡、硬泡,硬质塑料和表面涂料、高回弹软质泡沫的加工生产。而聚酯型TPU具有较好的拉伸性能、挠曲性能、耐摩损性以及耐溶剂性能,不易氧化和耐较高温度等优点。主要用于软泡、硬泡、低密度半硬泡、软质涂料、弹性体和胶粘剂、实芯和微孔弹性体的生产。就目前看来,我们公司在生产商使用上聚酯类TPU较多,而对于聚醚类TPU的使用较少,一般针对那些有特殊要求的客户,我们一般也推荐客户使用聚酯型TPU.聚醚型TPU与聚酯型TPU 产生差异的主要原因是由于其软段构成物分别为聚醚型低聚物多元醇及聚酯型低聚物多元醇,而TPU的软段成份又主要影响到热塑性聚氨酯的低温柔软性和长期耐老化性。其具体影响因素较为复杂故不作分析。

水性聚氨酯的制备及改性方法

聚氨基甲酸酯(polyurethane),简称聚氨酯(PU),是分子结构中含有重复氨基甲酸酯(-NHCOO-)结构的高分子材料的总称。聚氨酯一般由二异氰酸酯和二元醇或多元醇为基本原料经加聚反应而成,根据原料的官能团数不同,可制成线形或体形结构的聚合物,其性能也有差异。聚氨酯具有良好的力学性能、粘结性能及耐磨性等,在各领域得到了广发应用。 由于溶剂型聚氨酯的溶剂为有机物,具有挥发性,不仅污染环境,而且对人体有害。在人们日益重视环境保护的今天以及环保法规的确立,溶剂型涂料中的有机化合物的排放量受到了严格的控制,因此,开发污染小的水性涂料已成为研究的主要方向。水性聚氨酯(WPU)具有优异的物理机械性能,其不含或含有少量可挥发性有机物,生产施工安全,对环境及人体基本无害,符合环保要求。其生产方法分为外乳化法和内乳化法,外乳化法又称强制乳化法,由使用这种方法得到的乳液稳定性较差,所以使用较少。目前使用较多的是内乳化法,也称自乳化法,即在聚氨酯分子链上引入一些亲水性基团,使聚氨酯分子具有一定的亲水性,然后在高速分散下,凭借这些亲水基团使其自发地分散于水中,从而得到WPU。 然而,亲水基团的引入在提高聚氨酯亲水性的同时却降低了它的耐水性和拒油性。为了改善其耐水性和拒油性,通常是将强疏水性链段引入聚氨酯结构之中。有机硅、有机氟由于其表面能低和热稳定性好受到人们的重视,已经得到了广泛应用。同时利用纳米材料来提高涂膜的光学、热学和力学性能。纳米改性WPU 完美地结合了无机物的刚性、尺寸稳定性、热稳定性及WPU的韧性、易加工性,纳米改性WPU为涂料向高性能化和多功能化提供了崭新的手段和途径,是最有前途的现代涂料研究品种之一。[1] 1.2 水性聚氨酯的基本特征及发展历史 1937年德国的Otto Bayer博士首次将异氰酸酯用于聚氨酯的合成。直到1943年德国科学家Schlack在乳化剂或保护胶体存在的情况下,将二异氰酸酯在水中乳化并在强烈搅拌下加入二胺,首次成功制备了水性聚氨酯。1975年研究者们向聚氨酯分子链中引入亲水成分,从而提高了水性聚氨酯的乳液稳定性和涂膜性能,其应用领域也随之拓广。进入21世纪以来,随着水性聚氨酯乳液应用范围的进一步拓宽,世界范围内日益高涨的环保要求,进一步加快了水性聚氨酯工业发展的步伐。[2] 相对于国外,国内的水性聚氨酯发展较晚。我国水性聚氨酯的研究开始于上世纪七十年代,1976年沈阳皮革研究所最早研制出用于皮革涂饰用的水性聚氨

TPU(热塑性聚氨酯)与POM共混物的制备及性能

TPU(热塑性聚氨酯)与POM共混物的制备及性能 聚甲醛POM的情况: 性能特点: POM是一种坚韧有弹性的材料,即使在低温下仍有好的抗蠕变特性,几何稳定性和抗冲击特性。POM的高结晶程度导致它有相当高的收缩率,可高达2%-3.5%。对于不同的材料有不同的收缩率。 需要改进的性能: 聚甲醛在成形加工过程中极易结晶,生成尺寸较大的球晶,当材料受到冲击时,这些尺寸较大的球晶容易形成应力集中点,造成材料的破坏,所以POM缺口敏感性大,缺口冲击强度低,成型收缩率高,制品易产生内应力,难于紧密成型。 本实验制备TPU与POM共混物的目的: 为了更好地适应高速,高压,高温,高负荷等苛刻的工作环境,进一步扩大POM的应用范围,需进一步提高聚甲醛的冲击韧性,耐热和耐摩擦等性能。 TPU与POM共混物的制备和应用价值: 我国聚甲醛行业处在产业寿命周期的初始期,产品结构性短缺更加突出,高性能产品基本依赖进口或者由国内独资的大型跨国公司所掌控。汽车,通信,机械,电子,航空航天,核电,轨道交通,飞机,新能源等产业的技术升级对高性能工程塑料,结构性材料和复合材料的需求不断增长。 一,实验方案 1,TPU与POM共混物的制备 采用双螺杆挤出熔融共混的方法制备了聚甲醛和聚氨酯共混物。POM,TPU和增容剂分别以不同的比例混合均匀,在双螺杆挤出机上熔融共混,挤出造粒。 2,TPU与POM共混物的性能检测及表征 力学性能测试:缺口冲击强度按GB/T1843-1994测试;拉伸试验按GB/T1040-1992测试。 SEM:形态样品经液氮低温脆断,断口在常温下经N,N-二甲基酰胺刻蚀处理后喷金;磨损表面直接喷金,然后进行电子显微镜扫描实验。 二,实验结果预测 1,TPU与POM共混物形态分析 通过电子显微镜扫描可得,未加增容剂的共混物中橡胶粒子呈大小不等的球状且分布不均匀,说明POM与TPU的相容性较差,两相间的分子相互渗透较少,两相界面的黏结强度较低。而加入增容剂的共混物中,橡胶粒子分散趋于均匀且部分呈细条状,这不仅增大了分散相粒子与基体的接触面积,而且减少了粒子间间距,增强了粒子间应力场的叠加,说明增容剂Z的加入减少了界面张力,改善了POM与TPU之间的相容性。 2,TPU与POM共混物的力学性能分析 加入增容剂后合金的冲击强度提高了50%,这是由于增容剂Z促进了分散相TPU的分散,使POM与TPU很好地形成均匀的海-岛结构;能够在POM与TPU分子之间形成一种类似于互穿网络结构的物理或化学或者两者兼而有之的区域,从而大大的提高了冲击强度。但是,增容剂Z过多时,粒子分散程度不再有明显变化,与基体之间的连接已发展完善,而且本身强度低,韧性有所回落。 随TPU用量的增加,共混物的拉伸强度和弯曲模量逐渐降低。这是由于随着弹性体

相关文档
最新文档