matrxi theory 矩阵论大作业 范数证明部分

matrxi theory 矩阵论大作业 范数证明部分
matrxi theory 矩阵论大作业 范数证明部分

几个范数不等式的证明

设X为一n维赋范空间,其范数定义为, 1≤p<∞,证明以下命题: 1. ||x||2≤||x||1≤; 2. ||x||p≤||x||1; 3. ||x||q≤||x||p≤,p|≤||x||2||y||2,令x=( |x1|, |x2|,..., |x n|),y=(1,1, (1) 可得(|x1|+|x2|+…+|x n|)≤(|x1|+| x2|+…+|x n|)1/2n1/2 ||x||1≤成立。 根据Jensen不等式,令α=2,β=1可以证明。 2. 令f(x)= p=1,f(x)=1,所以只考虑p>1的情况

从上图可以看出f(x)在x=0时为1,先上升,在x=1达到最大值2p-1,然后下降,但始终≥1。所以有,即,令x=b/a,有a p+b p≤(a+b)p,同理,使用归纳法可 证明:|x1|p+|x2|p+…+|x n|p≤(|x1|+|x2|+…+|x n|)p②(|x1|p+|x2|p+…+|x n|p)1/p≤|x1|+|x2|+…+|x n| 也即||x||p≤||x||1成立。 3. 先证||x||q≤||x||p (pp)可以证明。 据说可以根据赫尔德不等式证明,但实在想不到方法证。如果你能想到,不妨发封邮件给我:james05y@https://www.360docs.net/doc/bc10117425.html, 参考文献 1. 邢家省, 郭秀兰, 崔玉英. 几个幂次不等式的应用[J]. 河南科学, 2008, 26(11):1306-1309. 2. 柯西—施瓦茨不等式. https://www.360docs.net/doc/bc10117425.html,/view/979424.htm. 3. Jensen不等式. https://www.360docs.net/doc/bc10117425.html,/view/1427148.htm.

重庆大学有限元考试题目

一、简答题 1、弹性力学和材料力学在研究对象上的区别? 答:材料力学的研究对象是杆状构件,即长度远大于宽度和厚度的构件。弹性力学除了研究杆状构件外,还研究板、壳、块,甚至是三维物体等。因此,弹性力学的研究对象要广泛得多。 2、理想弹性体的五点假设? 答:连续性假定、完全弹性假定、均匀性假定、各向同性假定、小位移和小变形的假定。 3、什么叫轴对称问题,采用什么坐标系分析?为什么? 答:如果弹性体的几何形状、约束状态以及外载荷都对称于某一根轴,那么弹性体所有的位移、应变和应力也都对称于这根轴,这类问题称为轴对称问题。对于轴对称问题,采用圆柱坐标比采用直角坐标方便得多。当以弹性体的对称轴为Z 轴时,则所有的应力分量,应变分量和位移分量都只与坐标r、z有关,而与θ无关。 4、梁单元和杆单元的区别? 答:梁单元和杆单元在形状上没有多大区别,其截面可以是任何形状,有一方向的长度远远大于另外两个方向。主要区别是受力不同,梁单元主要承受弯矩,杆单元主要承受轴向力。杆单元通常用于网架、桁架的分析;而梁单元则基本上可以适用于各种情况。 5、薄板弯曲问题与平面应力问题的区别? 答:平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是平行于板面且沿厚度均布载荷,变形发生在板面内;后者受力特点是当承受垂直于板面的载荷时,板在弯曲应力和扭转应力作用下将变成曲面板。 6、有限单元法结构刚度矩阵的特点? 答:主对称元素总是正的;对称性;稀疏性;奇异性;非零元素呈带状分布。7、有限单元法的收敛性准则? 答:完备性要求,协调性要求。 完备性要求。如果出现在泛函中场函数的最高阶导数是m阶,则有限元解收敛的条件之一是单元内场函数的试探函数至少是m次完全多项式。或者说试探函数中必须包括本身和直至m阶导数为常数的项。单元的插值函数满足上述要求时,我们称单元是完备的。 协调性要求。如果出现在泛函中的最高阶导数是m阶,则试探函数在单元交界面上必须具有Cm-1连续性,即在相邻单元的交界面上应有函数直至m-1阶的连续导数。 当单元的插值函数满足上述要求时,我们称单元是协调的。 8、简述圣维南原理在工程实际中的应用? 答:在工程实际中物体所受的外载荷往往比较复杂,一般很难完全满足边界条件。当所关心的并不是载荷作用区域内的局部应力分布时,可以利用圣维南原理加以简化。圣维南原理在钢管混凝土拱桥分析中的应用,能够得到合理的结果,优化了结构性能。圣维南原理在材料力学中也有应用,在工程实际中经常要计算连接件,如铆钉,螺栓,键等,由于构件本身尺寸较小,变形比较复杂,采用计算其名义应力,然后根据直接的试验结果,确定其相应的许用应力,来进行强度计算。 二、论述题 1、任何一个有限元分析问题都是空间问题,什么情况下可以简化为平面问题?轴对称问题?空间梁问题?为什么 答:当物体具有特殊形状,受特殊的外力,特殊的位移约束时,空间问题就可以简化近似的典型问题进行求解,所得到的结果能满足工程上的精度要求,而分析计算工作量大大减少。平面问题分为平面应力问题和平面应变问题,当研究对象一个方向的尺寸远小于另两个方向,外力和约束仅平行于板面作用而沿Z向不变,且仅有的三个应力分量是x、y的函数时,这样的空间问题就可以转换成平面应力问题;当研究对象一个方向的尺寸远大于另外两个方向的尺寸且沿长度方向几何形状和尺寸不变,外力平行于横截面作用而沿长度z方向不变,任意一横截面均可视为对称面,这样的空间问题就可以转换成平面应变问题,如挡土墙、重力坝。如果弹性体的几何形状、约束状态以及外载荷都对称于某一根轴(过该轴的任意平面都是对称平面),那么弹性体的所有应力、应变和位移也就对称与这根轴,这样的问题就可以转换为轴对称问题。当构件的长度远大于其横截面尺寸,如传动轴、梁杆等,这样的问题就可以转换为空间梁问题。 2、阐述有限元的基本思想。试从有限元程序开发和采用成熟软件两方面进行有限元分析 答:有限元的基本思想是将结构离散化,用有限个容易分析的单元来表示复杂的对象,单元之间通过有限个结点相互连接,然后根据变形协调条件综合求解。由于单元的数目是有限的,接点的数目也是有限的,所以称为有限单元法。 有限元程序开发:力学模型的确定;结构的离散化;计算载荷的等效节点力;计算各单元的刚度矩阵;组集整体刚度矩阵;施加便捷约束条件;求解降阶的有限元基本方程;求解单元应力;计算结果的输出。 成熟软件①前处理器:定义单元类型;定义材料属性;建模;约束,载荷施加等②求解器。单元刚度矩阵生成;约束处理;线性方程组,单元位移及应力等求解③后处理器:结果查询与显示;验算等。 3、有了本门课程的有限元分析技术基础,如果以后涉足机械方面的有限元分析,你觉得应从哪些方面深化学习和开展工作,具体采用哪些方式? 答:一、学习数学基础知识 (1)矩阵论,由于涉及到多维广义坐标下的运算,有限元多以矩阵的形式表达,力求简化形式,突出重点。(2)泛函和变分。泛函是寻找场函数在积分域上的最优值问题,变分是泛函研究的重要手段。(3)数值方法,有限元本身就是数值方法,在实现有限元分析的过程中,要用到大量的数值方法和算法。(4)数学分析,其中的多元函数积分,向量函数的积分应用较多。 二、学习程序实现和使用 (1)程序实现,有限元最终是通过程序实现的,有限元的理论研究与编程密不可分,应学习C或C++等语言。(2)程序使用,熟练掌握大型有限元程序,如ANSYS、SAP等,使用程序使用有限元,要注意观察程序的计算结果,有意识的根据单元的特性分析结果特点。 三、要有一定的力学基础 熟练理论力学,材料力学、结构力学,特别是弹性力学,很多工程中的有限元问题未能很好的解答,并非由于软件的功能所致,而是我们的知识不够。

重庆大学矩阵论大作业-参考模板

矩阵分析在-------机械振动中的应用 摘要:随着科学技术的迅速发展,古典的线性代数知识已不能满足现代科技的需要,矩阵的理论和方法业已成为现代科技领域必不可少的工具。诸如数值分析、优化理论、微分方程、概率统计、控制论、力学、电子学、网络等学科领域都与矩阵理论有着密切的联系,甚至在经济管理、金融、保险、社会科学等领域,矩阵理论和方法也有着十分重要的应用。本文采用了矩阵论中所学的矩阵相似变换、矩阵正交化及特征方程等相关知识,对多自由度系统的自振动的运动微分方程进行了研究分析,引入正则坐标并采用坐标变化法求得了振动系统的自由响应。 关键词:多自由度系统,正则坐标,自由响应 一、引言 20世纪60年代,随着计算机技术的进步,航空航天技术和综合自动化的发展需要,对于复杂的机械结构特性分析也越来越重要。而对于像航天器等复杂的机械结构需要用更多的自由度来描述,多自由度系统的振动方程式二阶常微分方程组。建立系统方程是振动分析的前提,但随着自由度的增多,所建立的系统运动微分方程也越来越复杂,对于离散系统运用牛顿第二定律的方式来对方程进行求解也越来越困难,为此发展了柔度系数法和刚度系数法,而拉尔朗日方程是建立系统控制方程的最通用方法,他使用功、能和广义力等物理量,得到了完全刻画系统的最少方程。本文只考虑阻尼矩阵能够被无阻尼振形矩阵对角化的情形,分析其基本理论方程,并用实例进行论证求解。 二、多自由度系统的自由振动理论 本文主要对多自由度系统的自由振动进行求解,在介绍多自由度系统的振动之前,先介绍单自由度无阻尼的自由振动以便了解机械振动理论的基本原理。 1.单自由度无阻尼系统的自由振动

矩阵范数详解

向量和矩阵的范数的若干难点导引 矩阵范数的定义 引入矩阵范数的原因与向量范数的理由是相似的,在许多场合需要“测量”矩阵的“大小”,比如矩阵序列的收敛,解线性方程组时的误差分析等,具体的情况在这里不再复述。 最容易想到的矩阵范数,是把矩阵m n A C ?∈可以视为一个mn 维的向量(采用所谓“拉 直”的变换),所以,直观上可用mn C 上的向量范数来作为m n A C ?∈的矩阵范数。比如 在1l -范数意义下,111 ||||||m n ij i j A a === ∑∑()12 tr()H A A =; (1.1) 在2l -范数意义下,1 2 211||||||m n F ij i j A a ==?? = ??? ∑∑, (1.2) 注意这里为了避免与以后的记号混淆,下标用“F ”,这样一个矩阵范数,称为Frobenius 范数,或F-范数。可以验证它们都满足向量范数的3个条件。 那么是否矩阵范数就这样解决了?因为数学上的任一定义都要与其对象的运算联系起来,矩阵之间有乘法运算,它在定义范数时应予以体现,也即估计AB 的“大小”相对于A B 与的“大小”关系。 定义1 设m n A C ?∈,对每一个A ,如果对应着一个实函数()N A ,记为||||A ,它满足以下条件: (1)非负性:||||0A ≥; (1a )正定性:||||0m n A O A ?=?= (2)齐次性:||||||||||,A A C ααα=∈; (3)三角不等式:||A ||||||||||||,m n A B A B B C ?+≤+?∈ 则称()||||N A A =为A 的广义矩阵范数。进一步,若对,,m n n l m l C C C ???上的同类广义矩阵范数||||?,有 (4)(矩阵相乘的)相容性:||A ||||||||||||AB A B ≤, n l B C ?∈, 则称()||||N A A =为A 的矩阵范数。 我们现在来验证前面(1.1)和(1.2)定义的矩阵范数是否合法?我们这里只考虑(1.2), 把较容易的(1.1)的验证留给同学们, 三角不等式的验证。按列分块,记1212(,,,),(,,,)n n A a a a B b b b == 。 2 22112||)(,),(),(||||||F n n F b a b a b a B A +++=+ 2222222211||||||||||||n n b a b a b a ++++++= ()()22 121222||||||||||||||||n n a b a b ≤++++ ()()()2222122121222122||||||||2||||||||||||||||||||||||n n n n a a a b a b b b =++++++++ 对上式中第2个括号内的诸项,应用Cauchy 不等式,则有 222||||||||2||||||||||||F F F F F A B A A B B +≤++2(||||||||)F F A B =+ (1.3) 于是,两边开方,即得三角不等式。 再验证矩阵乘法相容性。 2 2 2111 111||||||||m l n m l n F ik kj ik ki i j k i j k AB a b a b ======?? =≤ ??? ∑∑∑∑∑∑

矩阵论研究报告

矩阵论在方程解耦及最小二乘法中的应用摘要:模态(也称为固有振动模态,或主模态)是多自由度线性系统的一种固有属性,可由系统的特征值(也称为固有值)与系统的特征矢量(也称为固有矢量,或者主振型)二者共同来表示的;它们分别从时空两个方面来刻画系统的振动特性。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型,其可以使得耦合方程组解耦。作用于一个n维自由度系统,可以转换到模态坐标下来解耦,确定在模态坐标下响应,然后通过线性变换得到物理坐标下的响应。惯常使用中,将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数[1]。 在科学实验和工程计算中,我们希望从给定的数据出发,构造一个近似函数,使数据点均在离曲线的上方或下方不远处,所求的曲线称为拟合曲线,它既能反映数据的总体分布,又不至于出现局部较大的波动,更能反映被逼近函数的特性,使求得的逼近函数与已知函数从总体上来说其偏差按某种方法度量达到最小,这就是最小二乘法。最小二乘法(又称最小平方法)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配,使这些求得的数据与实际数据之间误差的平方和为最小[2],则需要范数的知识。 关键字:模态,方程解耦,最小二乘 一、引言 数学中解耦是指使含有多个变量的数学方程变成能够用单个变量表示的方程组,即变量不再同时共同直接影响一个方程的结果,从而简化分析计算。通过适当的控制量的选取,坐标变换等手段将一个多变量系统化为多个独立的单变量系统的数学模型,即解除各个变量之间的耦合。 对离散型函数(即数表形式的函数)考虑数据较多的情况.若将每个点都当作插值节点,则插值函数是一个次数很高的多项式,比较复杂,而且由于龙格振荡现象,这个高次的插值多项式可能并不接近原函数。最小二乘法在实际工程数据处理中应用广泛,在工程问题中,使用最小二乘法根据两个变量的几组实验数据可 1

矩阵论课外报告---最小二乘法

一、 报告摘要 在已知曲线大致模型的情况下,运用曲线拟合最小二乘法,使得观测数据与曲线模型数据之间的误差平方和最小。进而求得曲线的模型参数,并由所求的曲线模型进行分析预测。 二、 题目内容 一颗导弹从敌国发射,通过雷达我们观测到了它的飞行轨迹,具体有如下数据: 我国军情处分析得出该导弹沿抛物线轨道飞行。 问题:预测该导弹在什么水平距离着地。 三、 基本术语 1. 内积 设V 是实数域R 上的线性空间,如果V 中任意两个向量,αβ都按某一个确定的法则对应于惟一确定的实数,记作(,)αβ,并且(,)αβ满足 i. 对任意的,V αβ∈,有(,)(,)αββα= ii. 对任意的,,V αβγ∈,有(,)(,)(,)a αβγγβγ+=+ iii. 对任意的,,k R V αβ=∈有(,)(,)k k αβαβ= iv. 对任意的V α∈,有(,)0αα≥。当且仅当0α=时,(,)0αα= 则称(,)αβ为向量,αβ的内积。如无特殊说明的,我们认为对任意向量

1212(,,,),(,,,)n n a a a b b b αβ== ,其内积(,)αβ为 1122(,)n n a b a b a b αβ=+++ 2. 范数 如果V 是数域K 上的线性空间,且对于V 的任以向量χ,对应于一个实数函数χ,它满足如下三个条件。 i. 非负性 当0χ≠时0χ>;当0χ=时,0χ=; ii. 齐次性 ,a a V χχχ=∈; iii. 三角不等式 ,,V χζχζχζ+≤+∈; 则称χ为V 上χ的范数。 可以证明对于向量12(,,,)n χξξξ= 的长度 χ= 是一种范数,我们称为2-范数,记为2χ。 3. 线性方程组 设有n 个未知数m 个方程的线性方程组 11112211 21122222 1122n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=?? ????+++=? 可以写成以向量x 为未知元的向量方程 Ax b = 则A 为该方程的系数矩阵,(,)B A b =为增广矩阵。该线性方程有解的条件如下 i. 当A 的秩()R A 和B 的秩()R B 满足()()R A R B <时,该方程无解 ii. 当()()R A R B n ==时,该方程有唯一解。

矩阵范数规范标准详解

《周国标师生交流讲席010》 向量和矩阵的范数的若干难点导引(二) 一. 矩阵范数的定义 引入矩阵范数的原因与向量范数的理由是相似的,在许多场合需要“测量”矩阵的“大小”,比如矩阵序列的收敛,解线性方程组时的误差分析等,具体的情况在这里不再复述。 最容易想到的矩阵范数,是把矩阵m n A C ?∈可以视为一个mn 维的向量(采用所谓“拉 直”的变换),所以,直观上可用mn C 上的向量范数来作为m n A C ?∈的矩阵范数。比如 在1l -范数意义下,111 ||||||m n ij i j A a === ∑∑( ) 12 tr()H A A =; (1.1) 在2l -范数意义下,1 2 211||||||m n F ij i j A a ==??= ??? ∑∑, (1.2) 注意这里为了避免与以后的记号混淆,下标用“F ”,这样一个矩阵范数,称为Frobenius 范数,或F-范数。可以验证它们都满足向量范数的3个条件。 那么是否矩阵范数就这样解决了?因为数学上的任一定义都要与其对象的运算联系起来,矩阵之间有乘法运算,它在定义范数时应予以体现,也即估计AB 的“大小”相对于A B 与的“大小”关系。 定义1 设m n A C ?∈,对每一个A ,如果对应着一个实函数()N A ,记为||||A ,它满足以下条件: (1)非负性:||||0A ≥; (1a )正定性:||||0m n A O A ?=?= (2)齐次性:||||||||||,A A C ααα=∈; (3)三角不等式:||A ||||||||||||,m n A B A B B C ?+≤+?∈ 则称()||||N A A =为A 的广义矩阵范数。进一步,若对,,m n n l m l C C C ???上的同类广义矩阵 范数||||?,有 (4)(矩阵相乘的)相容性:||A ||||||||||||AB A B ≤, n l B C ?∈, 则称()||||N A A =为A 的矩阵范数。 我们现在来验证前面(1.1)和(1.2)定义的矩阵范数是否合法?我们这里只考虑(1.2),把较容易的(1.1)的验证留给同学们, 三角不等式的验证。按列分块,记1212(,,,),(,,,)n n A a a a B b b b ==L L 。 2 22112||)(,),(),(||||||F n n F b a b a b a B A +++=+Λ 2 222222211||||||||||||n n b a b a b a ++++++=Λ ()()22 121222||||||||||||||||n n a b a b ≤++++L ()()()22 22122121222122||||||||2||||||||||||||||||||||||n n n n a a a b a b b b =++++++++L L L 对上式中第2个括号内的诸项,应用Cauchy 不等式,则有 222||||||||2||||||||||||F F F F F A B A A B B +≤++2(||||||||)F F A B =+ (1.3) 于是,两边开方,即得三角不等式。 再验证矩阵乘法相容性。

矩阵理论研究生课程大作业

研究生“矩阵论”课程课外作业 姓名:学号: 学院:专业: 类别:组数: 成绩:

人口迁移问题和航班问题 (重庆大学 机械工程学院,机械传动国家重点实验室) 摘要:随着人类文明的进程,一些关于数学类的问题越来越贴近我们的生活,越发觉得数学与我们息息相关。本文将利用矩阵理论的知识对人口迁移问题和航班问题进行分析。 人口迁移问题 假设有两个地区——如南方和北方,之间发生人口迁移。每一年北方50%的人口迁移到南方,同时有25%的南方人口迁移到北方,直观上可由下图表示: 问题:如果这个移民过程持续下去,北方的人会不会全部都到南方?如果会请说明理由;如果不会,那么北方的最终人口分布会怎样? 解 设n 年后北方和南方的人口分别为n x 和n y , 我们假设最初北方有0x 人,南方有0y 人。则我们可得,1=n 时,一年后北方和南方的人口为 ???+=+=0 010 0175.05.025.05.0y x y y x x (1-1) 将上述方程组(1-1)写成矩阵的形式 ??? ? ??=???? ??0011y x A y x 其中 ?? ? ???=75.05.025.05.0A 2=n 时,两年后北方和南方的人口为 ???? ??=???? ??=???? ??0021122y x A y x A y x 依次类推下去,n 年后北方和南方的人口为 ??? ? ??=???? ??00y x A y x n n n (1-2) N S 0.5 0.25 0.5 0.75

现在只需求出n A 就可得出若干年后北方和南方的人口数。 下面将使用待定系数法[1]求n A )1)(25.0(25 .025.125 .05.0)75.0)(5.0(75 .05.025 .05 .02--=+-=?---=----= -λλλλλλλλλA E 所以 1,25.021==λλ 矩阵A 的最小多项式为 )1)(25.0()(--=λλλm 设A a E a A n 10+= 由此可得方程组 ???=+=+125.025.01010a a a a n 解方程组得 ???????-=+-=75.025.0175.025.025.010n n a a 所以 ?? ????+?--?+=-++-=+=++11 1025.05.025.05.05.025.025.025.05.025.075.0175 .025.0175.025.025.0n n n n n n n A E A a E a A 所以由式(1-2),我们得到n 年后北方和南方的人口 北方:01 075.025.025.075.025.05.025.0y x x n n n +-+?+= 南方:01 075 .025.05.075.025.05.05.0y x y n n n +++?-= 当∞→n 时,得 )(3 1 )75.025.025.075.025.05.025.0(lim lim 0001 0y x y x x n n n n n +=-+?+=+∞→∞→

矩阵范数详解.docx

《周国标师生交流讲席010》 向量和矩阵的范数的若干难点导引(二) 一.矩阵范数的定义 引入矩阵范数的原因与向量范数的理由是相似的,在许多场合需要“测量”矩阵的“大小”,比如矩阵序列的收敛,解线性方程组时的误差分析等,具体的情况在这里不再复述。 最容易想到的矩阵范数,是把矩阵A C m n可以视为一个mn维的向量(采用所谓“拉 直”的变换),所以,直观上可用C mn上的向量范数来作为A C m n的矩阵范数。比如 m n 1 在∣1 -范数意义下,IIAl1 ;二Ia ijI= tr(A H A) 2; (1.1 ) 1 Zl mn A2 在I2-范数意义下,∣∣A∣∣F=∑∑同|2,(1.2) Iy j A J 注意这里为了避免与以后的记号混淆,下标用“F”,这样一个矩阵范数,称为Frobenius 范数,或F-范数。可以验证它们都满足向量范数的3个条件。 那么是否矩阵范数就这样解决了?因为数学上的任一定义都要与其对象的运算联系起来,矩阵之间有乘法运算,它在定义范数时应予以体现,也即估计AB的“大小”相对于A与B 的“大小”关系。 定义1设A C mn,对每一个A ,如果对应着一个实函数N(A),记为IlAll ,它满足以下条件: (1)非负性:|| A||_0 ; (1 a)正定性:A=O mn= IIAII= 0 (2)齐次性:||〉A||=| |||A||, ? C ; (3)三角不等式:||A||A B||—||A|| ||B||, -B C m n 则称N(A)=|| A||为A的广义矩阵范数。进一步,若对C m n,C n 1C m l上的同类广义矩阵 范数|| || ,有 (4)(矩阵相乘的)相容性:|| A || AB ||_|| A|||| B ||, B C n I , 则称N(A) =||A||为A的矩阵范数。 我们现在来验证前面(1.1 )和(1.2 )定义的矩阵范数是否合法?我们这里只考虑(1.2 ),把较容易的(1.1 )的验证留给同学们, 三角不等式的验证。按列分块,记A=√a1,a2,…,a n), B=√b1,b2,…,b n)。 ||A BII F=Ig bj,? b2), ,(a. b n)||F *1 UII2 IIa2 b2||2 Ha n g ||2 (IIa1II2 +IIdIb ) +…+(IIa n Ib +||b n ||2) 2 2 兰 二険||2 IIa n II;2 || q II2II d ||2 …IIa n II2II b n ||2 IIdII2IIb n II2 对上式中第2个括号内的诸项,应用CaUChy不等式,则有 IIA + BIIF≤IIAII F +2||A||F||B||F +IIBII2=(IIAI F +IIBII F)2(1.3 )于是,两边开方,即得三角不等式。 再验证矩阵乘法相容性。

范数概念

一、范数的定义 若X是数域K上的线性空间,泛函║·║: X->R 满足: 1. 正定性:║x║≥0,且║x║=0 <=> x=0; 2. 正齐次性:║cx║=│c│║x║; 3. 次可加性(三角不等式):║x+y║≤║x║+║y║ 。 那么║·║称为X上的一个范数。 (注意到║x+y║≤║x║+║y║中如令y=-x,再利用║-x║=║x║可以得到 ║x║≥0,即║x║≥0在定义中不是必要的。) 如果线性空间上定义了范数,则称之为赋范线性空间。 注记:范数与内积,度量,拓扑是相互联系的。 1. 利用范数可以诱导出度量:d(x,y)=║x-y║,进而诱导出拓扑,因此赋范线性空间是度量空间。 但是反过来度量不一定可以由范数来诱导。 2. 如果赋范线性空间作为(由其范数自然诱导度量d(x,y)=║x-y║的)度量空间是完备的,即任何柯西(Cauchy)序列在其中都收敛,则称这个赋范线性空间为巴拿赫(Banach)空间。 3. 利用内积<·,·>可以诱导出范数:║x║=^{1/2}。 反过来,范数不一定可以由内积来诱导。当范数满足平行四边形公式 ║x+y║^2+║x-y║^2=2(║x║^2+║y║^2)时,这个范数一定可以由内积来诱导。 完备的内积空间称为希尔伯特(Hilbert)空间。 4. 如果去掉范数定义中的正定性,那么得到的泛函称为半范数(seminorm或者叫准范数),相应的线性空间称为赋准范线性空间。完备的赋准范线性空间称为Fréchet 空间。 对于X上的两种范数║x║α,║x║β,若存在正常数C满足 ║x║β≤C║x║α 那么称║x║β弱于║x║α。如果║x║β弱于║x║α且║x║α弱于║x║β,那么称这两种范数等价。 可以证明,有限维空间上的范数都等价,无限维空间上至少有阿列夫(实数集的基数)种不等价的范数。 二、算子范数 如果X和Y是巴拿赫空间,T是X->Y的线性算子,那么可以按下述方式定义║T║:║T║ = sup{║Tx║:║x║<=1} 根据定义容易证明║Tx║ <= ║T║║x║。 对于多个空间之间的复合算子,也有║XY║ <= ║X║║Y║。 如果一个线性算子T的范数满足║T║ < +∞,那么称T是有界线性算子,否则称T 是无界线性算子。 比如,在常用的范数下,积分算子是有界的,微分算子是无界的。 容易证明,有限维空间的所有线性算子都有界。 三、有限维空间的范数 基本性质 有限维空间上的范数具有良好的性质,主要体现在以下几个定理: 性质1:对于有限维赋范线性空间的任何一组基,范数是元素(在这组基下)的坐标

重庆大学学术型硕士研究生培养方案-重庆大学航空航天学院

重庆大学学术型硕士研究生培养方案 力学(专业代码:080100) 一、培养目标 本学科专业培养能够从事力学方面的教学、科研或相关工程设计工作的高层次人才。学位获得者应具备坚实的力学和数学基础理论和较宽广的专业知识;较为熟练地掌握一门外国语;了解本学科理论研究和工程应用的前沿动态;具有一定的理论分析、试验研究及数值分析能力,能结合与本学科相关的实际问题从事科学研究或工程技术工作,并取得较系统的研究成果。 二、学科、专业及研究方向简介 重庆大学工程力学专业创建于1978年。1981年获得固体力学硕士学位授权点,是全校最早的硕士授权点之一;1986年获得固体力学博士学位授权点,是原重庆大学八个最早获得博士学位授权点的学科之一;2003年获得力学博士学位授权一级学科;2007年力学一级学科被确立为重庆市重点学科。 重庆大学力学博士学位授权一级学科包括固体力学、工程力学、流体力学和一般力学与基础力学四个二级学科博士学位授权点;固体力学、工程力学、流体力学和一般力学与基础力学四个硕士学位授权点。本学科拥有先进的MTS材料实验机和并行计算机系统等一批重要设备,为力学理论、试验和数值研究提供必要的条件。近年来,本学科承担了数十项国家和省部级项目以及大量重点横向合作项目,获得了丰富的科研成果。 1. 本学科主要研究领域: (1)多场耦合理论与智能材料及结构力学 (2)生物材料力学与高性能复合材料制备 (3)材料与结构的强度与破坏

(4)超常环境下材料及其微结构特性的理论与测试 (5)纳米材料特性及其微结构机理、多尺度及跨尺度分析 (6)结构动态特性及失效 (7)结构运动与变形耦合动力学及控制 (8)微重力下晶体生长过程的流体动力学、热张力流和浮力流理论、方法及其应用 (9)输配电装备及系统安全的关键力学问题 (10)多孔介质力学及其应用 (11)生物力学 (12)振动测试理论与技术 (13)智能与虚拟仪器的研制与开发 (14)可压缩流体动力学 (15)超音速流和冲击波 (16)线性波和非线性波 2. 主要研究方向: (1)材料的强度理论与破坏机理 (2)智能材料及结构力学 (3)材料特性的多尺度及跨尺度分析 (4)结构分析与优化 (5)结构振动及控制 (6)复合材料力学 (7)非线性动力学 (8)力学测试技术及仪器 (9)计算流体力学 (10)气体动力学 (11)线性波与非线性波 (12)浅水动力学 (13)多相流体力学 (14)环境流体力学

几个范数不等式的证明

百度文库 - 让每个人平等地提升自我 2 设X 为一n 维赋范空间,其范数定义为||x||p =(∑|x i |p n i=1)1p , 1≤p<∞,证明以下命题: 1. ||x||2≤||x||1≤√|x ||2; 2. ||x||p ≤||x||1; 3. ||x||q ≤||x||p ≤n 1p?1q ??||x ||q ,p|≤||x||2||y||2,令x=( |x 1|, |x 2|,..., |x n |),y=(1,1, (1) 可得(|x 1|+|x 2|+…+|x n |)≤(|x 1|+| x 2|+…+|x n |)1/2n 1/2 ||x||1≤√n||x ||2成立。 根据Jensen 不等式( ∑|x i |αn )1α?≥(∑|x i |βn )1β?(α>β),令α=2,β=1可以证明。 2. 令f(x)=(1+x)p 1+x p ,p ≥1 p=1,f(x)=1,所以只考虑p>1的情况 f ′( x )=p(1+x)p?1(1?x p?1)(1+x p )2→{>0,0≤x <1=0,x =1<0,x <1} 从上图可以看出f(x)在x=0时为1,先上升,在x=1达到最大值2p-1,然后下降,但始终≥1。 所以有(1+x)p 1+x ≥1,即1+x p ≤(1+x)p ,令x=b/a ,有a p +b p ≤(a+b)p ,同理,使用归纳法可

矩阵与范数—扫盲

矩阵论主要研究的是线性空间以及在线性空间中的一些操作,主要是线性变换。当然书中主要是针对有限维的情况来讨论的,这样的话就可以用向量和矩阵来表示线性空间和线性变换,同其他的数学形式一样,矩阵是一种表达形式(notation),而这一方面可以简洁地表达出我们平时遇到的如线性方程和协方差关系的协方差矩阵等,另一方面又给进一步的研究或者问题的简化提供了一个平台。如特征值分析、稳定性分析就对应着诸如统计分布和系统稳定性等实际问题。而一系列的分解则可以方便方程的数值计算。作为矩阵论的学习,我们需要了解具体的一些计算究竟是怎么算的,但更关键的是要知道各个概念和方法的实际意义,各个概念之间的关系。 首先介绍的是线性空间,对于线性空间中的任意一个向量的表示有基(相当于度量单位)和坐标(相当于具体的尺度),基既然作为度量标准了,当然要求对每一个向量都适用,同时这个标准本身也应该尽可能的简洁,那么就得到了基定义的两点约束:1、基的组成向量线性无关;2、线性空间中的任一个向量都可以由基的线性表示。 基作为一种“计量标准”,当然可能会存在多种形式,只要满足上面的两点条件,因而就有必要解决不同的度量标准之间的转换关系,从而得到过渡矩阵的概念,同时可以使用这种转换关系(过渡矩阵)去完成度量量(坐标)之间的转换。 在完成了线性空间这一对象的认识和表达之后,下面需要研究对象和对象之间的关系。这里主要是线性变换,线性变换针对于实际对象主要完成类似于旋转和尺度变换方面的操作,而这种操作也牵涉到表达的问题。为了保持与空间的一致性,我们也同样是在特定的基下来表示,从而线性变换就具体化为一个变换矩阵,并且,在不同的基下对应的变换矩阵当然也不相同,这里的不同的变换矩阵的关系就是相似的概念。 到此,我们完成了空间中向量的表示和线性变换的矩阵表达。这里涉及了基、坐标、过渡矩阵、变换矩阵、相似矩阵这几个重要的概念。上面算是内涵上的认识,下面我们需要知道线性空间里究竟有些什么东西,它是如何组成的,各个组

各类范数定义

范数的定义 设X是数域K上线性空间,称║˙║为X上的范数(norm),若它满足: 1. 正定性:║x║≥0,且║x║=0 <=> x=0; 2. 齐次性:║cx║=│c│║x║; 3. 次可加性(三角不等式):║x+y║≤║x║+║y║ 。 注意到║x+y║≤║x║+║y║中如令y=-x,再利用║-x║=║x║可以得到║x║≥0,即║x║≥0在定义中不是必要的。 如果线性空间上定义了范数,则称之为赋范线性空间。 注记:范数与内积,度量,拓扑是相互联系的。 1. 利用范数可以诱导出度量:d(x,y)=║x-y║,进而诱导出拓扑,因此赋范线性空间是度量空间。 但是反过来度量不一定可以由范数来诱导。 2. 如果赋范线性空间作为(由其范数自然诱导度量d(x,y)=║x-y║的)度量空间是完备的,即任何柯西(Cauchy)序列在其中都收敛,则称这个赋范线性空间为巴拿赫(Banach)空间。 3. 利用内积<˙,˙>可以诱导出范数:║x║=^{1/2}。 反过来,范数不一定可以由内积来诱导。当范数满足平行四边形公式║x+y║^2+║x-y║^2= 2(║x║^2+║y║^2)时,这个范数一定可以由内积来诱导。 完备的内积空间成为希尔伯特(Hilbert)空间。 4. 如果去掉范数定义中的正定性,那么得到的泛函称为半范数(seminorm或者叫准范数),相应的完备空间称为Fréchet空间。 对于X上的两种范数║x║α,║x║β,若存在正常数C满足 ║x║β≤C║x║α 那么称║x║β弱于║x║α。如果║x║β弱于║x║α且║x║α弱于║x║β,那么称这两种范数等价。 可以证明,有限维空间上的范数都等价,无限维空间上至少有阿列夫1(实数集的基数)种不等价的范数。 算子范数 如果X和Y是巴拿赫空间,T是X->Y的线性算子,那么可以按下述方式定义║T║: ║T║ = sup{║Tx║:║x║<=1} 根据定义容易证明║Tx║ <= ║T║║x║。 对于多个空间之间的复合算子,也有║XY║ <= ║X║║Y║。 如果一个线性算子T的范数满足║T║ < +∞,那么称T是有界线性算子,否则称T是无界线性算子。 比如,在常用的范数下,积分算子是有界的,微分算子是无界的。 容易证明,有限维空间的所有线性算子都有界。

重庆大学全日制专业学位研究生培养方案2016版

重庆大学全日制专业学位研究生培养方案 土木工程学院建筑与土木工程领域(085213) 一、专业(领域)简介 建筑与土木工程领域(土木工程学科)是研究建造各类工程设施所进行的勘测、设计、施工、管理、监测、维护等的工程领域,其涉及的领域方向有结构工程,岩土工程,桥梁与隧道工程,防灾减灾工程及防护工程,土木工程建造等。本领域覆盖的技术主要有设计技术、施工技术、维护与加固技术、管理技术、实验技术、计算机分析与仿真技术等。 建筑与土木工程领域(土木工程学科)覆盖建筑业、交通运输业、水利、环境和公共设施管理业、采矿业以及电、燃气和水的生产和供应业等与国家的经济社会发展有着密切联系的行业。 二、培养目标 1.人才培养目标及定位: 培养掌握土木工程专业领域坚实的基础理论和系统深入的专业知识,具有较强的解决工程实际问题的能力,并具有创新能力的应用型、复合型高层次工程技术和工程管理人才。 2.知识要求: 基本知识包括基础知识和专业知识,涵盖本领域任职资格涉及的主要知识点。 (1)基础知识

掌握扎实的基础知识,包括按特定领域方向可选的矩阵论、概率论、数值分析、应用统计、随机过程、应用泛函分析、优化理论与方法等应用数学知识及相关物理、化学知识;外语、信息检索等工具性知识;自然辩证法、工程伦理、经济、管理以及法律法规等人文社科知识。 (2)专业知识 掌握本领域某一方向较为系统的专业基础知识及较为全面的专业技术知识,主要包括:弹塑性力学及有限元的理论与应用、结构动力学及其工程应用、土力学及其工程应用、现代土木工程材料、混凝土结构理论与应用、钢结构理论与应用、岩土工程理论与应用、地下结构理论与应用、桥梁结构理论与应用、现代施工技术、现代土木工程项目管理、结构防灾减灾技术、结构全寿命维护技术等。 随着领域外延的进一步扩大,不同学科与不同领域间的交叉进一步加深,本领域工程硕士专业学位获得者还可以根据自身的特点和需求,掌握相关专业的基础理论和专业知识。 3.能力要求: 建筑与土木工程领域(土木工程学科)的研究生教育应具备以下四个方面的能力: (1)获取知识能力 能够通过检索、阅读等一切可能的途径快速获取能够符合专业需求及关联问题信息的能力,并具备自主学习和终身学习的能力。 (2)应用知识能力

矩阵论的实际应用(朱月)

“矩阵论”课程研究报告科目:矩阵理论及其应用教师:舒永录 姓名:朱月学号:20140702057t 专业:机械工程类别:学术 上课时间:2014 年9月至2014年12 月 考生成绩: 阅卷评语: 阅卷教师(签名)

相关变量的独立变换 摘要:用矩阵的理论及方法来处理实际生活中或现代工程中的各种问题已 越来越普遍。在工程中引进矩阵理论不仅是理论的表达极为简洁,而且对理论的实质刻画也更为深刻,这一点是毋庸置疑的。本文将矩阵论的知识用于解决实用机械可靠性设计问题。 正文 一、问题描述 在建立机械系统可靠性模型时,一般总假设个元素间关于强度相互独立。但是实际中,各元素间关于应力和强度又往往是相关的,并且这种相关性有时会对系统的可靠度产生显著影响。对于一些随机变量之间不是完全相关,但也不是完全独立的情况,就要进行相关变量的独立变换。 二、方法简述 设系统的基本变量为),,(21n x x x X ,??,各变量之间相关,则随机变量x 的 n 维正态概率密度函数为[1] )1()()(21exp ||2()(1 2 12 ? ??--???-=---X X T X X n X C X C X f μμπ) 式中 ?? ? ???????????=2321232212131212 ),cov(),cov(),cov(),cov(),cov(),cov(),cov(),cov(),cov(21n X n n n n X n X X x x x x x x x x x x x x x x x x x x C σσσ 称为随机变量X 的协方差矩阵。矩阵中的任意元素),cov(j i x x 是变量i x 与变 量j x 的协方差,|C X |是协方差矩阵的行列式,1 -X C 是协方差矩阵的逆矩阵,X ,X μ及 )X X μ-(是n 维列向量 ?? ? ?? ?????--=-????? ?????=?? ??? ?????=n n X n X n x x X x x μμμμμμ 1111, , X

相关文档
最新文档