计算机视觉期末考点

计算机视觉期末考点
计算机视觉期末考点

计算机视觉重点考点集锦

手工整理,如有错误,慎之!

第一章

1、计算机视觉:研究用计算机来模拟生物视觉功能的科学和技术.

2、视觉表示框架的三个阶段(也就是提取三阶段):1)第一阶段是将输入的原始图像进行处理,抽取基本特征形成基元图。2)第二阶段(中期阶段)是指在以观测者为中心的坐标系中,由输入图像和基元图恢复场景可见部分的深度、法线方向、轮廓等,形成二维半图。3)第三阶段(后期阶段)是在以物体为中心的坐标系中,由输入图像、基元图、二维半图来恢复、表示和识别三维物体。

第三章

1、二值图像的特点:a.假定二值图像大小为mxn,其中物体像素值为1,背景像素值0;b.二值图像处理的算法简单,易于理解和实现,计算速度快;c. 二值视觉所需的内存小,对计算设备要求低;d.二值视觉系统技术可用于灰度图像视觉系统

2、二值图像的获取:1)通过图像的阙值2)通过硬件实现3)通过软件实现

3、图像分割:把图像划分成区域,使每一个区域都对应一个候选的目标。

4、图像二值化:设一副灰度图像中物体的灰度分布在某一区间内,通过阙值运算后的图像为二值图像

5、投影分类及作用:1)水平/垂直投影;给定直线上的投影;对角线投影(仿射变换)2)投影能表现图像的某种信息。

6、4-连通成分序贯法(标记算法)步骤:

1)从左到右,从上到下扫描图像

2)①如果上面点和左面点有一个标记,复制这一标记②如果两点相同的标记,复制这一标记③如果两点有不同标记,则复制上点标记且将两个标记输入到等价表中作为等价标记④否则给这一像素点分配一个新的标记并将这个标记输入到等价表

3)如考虑更多的点,回到第二步

4)在等价表中的每一等价集中找到最低的标记

5)扫描图像,用等价表中的最低标记取代每一个标记

7、欧拉数:E=C—H,连通成分数(C)—空洞数(H)

8、扩展与收缩:1)要掌握用结构元进行扩展与收缩

2)先扩展后收缩:补上不希望存在的洞

3)先收缩后扩展:去除孤立的噪声点

4)定义:①扩展:如果背景和洞的像素点临点显1,则该点从0变为1

②收缩:如果物体像素点连点为0,则将该点从1变为0

9、开、关运算:1)开运算:先腐蚀后膨胀,去除比结构元小的区域的像素点 2)关运算:显膨胀后腐蚀,填充比结构元小的孔洞

第四章

1、常见的噪声:常见的噪声有椒盐(Salt & Pepper)噪声、脉冲噪声、高斯噪声等

2、常见的滤波器:均值滤波器,高斯平滑滤波器,非线性滤波器(包括中值滤波器,边缘保持滤波器)

3、高斯平滑滤波的5条性质:1)旋转对称性 2)高斯函数是单值函数 3)高斯函数的付立叶变换频谱是单瓣的 4)高斯滤波器宽度由参数σ表征 5)高斯函数的可分离性

4、级联高斯函数:会计算相同效果δ=√δ12+δ22

第五章

1、边缘:边缘是指图像局部强度变化最显著的部分.边缘主要存在于目标与目标、目标与背景、区域与区域之间

2、图像强度的不连续可分为:1) 阶跃不连续,即图像强度在不连续处的两边的像素灰度值有着显著的差异;2) 线条不连续,即图像强度突然从一个值变化到另一个值,保持一较小行程后又回到原来的值

3、术语定义:边缘点(Edge point) :在亮度显著变化的位置上的点.

边缘段(Edge segment) :对应于边缘点坐标及其方位.

边缘检测器(Edge detector) :从图像中抽取边缘集合的算法.

轮廓(Boundary) :边缘列表或一条表示边缘列表的拟合曲线.

边缘连接(Edge linking) :从无序边缘表形成有序边缘表的过程.

边缘跟踪(Edge tracking):一个用来确定轮廊的图像搜索过程.4、边缘检测算法基本步骤:1)滤波:边缘检测算法主要是基于图像强度的一阶和二阶导数,但导数的计算对噪声很敏感,因此必须使用滤波器来改善与噪声有关的边缘检测器的性能.需要指出,大多数滤波器在降低噪声的同时也导致了边缘强度的损失,因此,增强边缘和降低噪声之间需要折衷. 2)增强:增强边缘的基础是确定图像各点邻域强度的变化值.增强算法可以将邻域(或局部)强度值有显著变化的点突显出来.边缘增强一般是通过计算梯度幅值来完成的. 3)检测:在图像中有许多点的梯度幅值比较大,而这些点在特定的应用领域中并不都是边缘,所以应该用某种方法来确定哪些点是边缘点.最简单的边缘检测判据是梯度幅值阈值判据. 4)定位:如果某一应用场合要求确定边缘位置,则边缘的位置可在子像素分辨率上来估计,边缘的方位也可以被估计出来.

5、LOG算法的两种等价算法:1)求图像与高斯滤波器卷积,再求卷积的拉普拉斯变换.2)求高斯滤波器的拉普拉斯变换,再求与图像的卷积.

6、canny边缘检测算法步骤:1)用高斯滤波器平滑图像;2)用一阶偏导有限差分计算梯度幅值和方向;3)对梯度幅值应用非极大值抑制;4)用双阈值算法检测和连接边缘.

第六章

1、轮廓:把边缘连接起来就成为轮廓(contour).轮廓可以是断开的,也可以是封闭的.

2、轮廓的表示方法:轮廓可以用边缘有序表或曲线来表示。曲线通常称为轮廓的数学模型.曲线表示包括线段、二次曲线、三次样条曲线等.

3、内插和逼近曲线:已知一组称为控制点的坐标点,内插是指一条曲线拟合这

组控制点,使得曲线通过所有的控制点;逼近是指一条曲线拟合这组这组控制点,使得这条曲线非常接近这些控制点而无需一定通过这些点.

4、链码:链码是沿着轮廓记录边缘表的一种表示方法.链码规定了边缘表中每一个边缘点的轮廓方向,其中方向被量化为四个或八个方向中的一个.

5、链码、差分链码的表示:

曲线的链码是: 6022222021013444444454577012

其差分链码是: 220000627712100000017120111 (差分链码= 链码的后-前)

6、样条曲线的两种等效及其异同点:1)几何等效:指它们连接相同的点集,即它们在空间上对应着相同的形状;2)参数等效:两条曲线的方程一样.

显然,参数等效性比几何等效性更稳定.两条曲线可以是几何上等效但可以具有不同的参数表示式,这是机器视觉中曲线拟合的一个重要概念.比如,机器视觉系统可以产生基于三次样条曲线的表示,其在几何上非常接近于物体轮廓的真实表示,但在参数意义上,表示可能完全不同.在物体识别应用方面和工业零件图像与其模型匹配应用中,通过比较三次样条曲线的参数形式实现匹配几乎是不可能的,在这种情况下,比较必须基于几何等效性

7、Hough 变换算法:1)适当地量化参数空间.2)假定参数空间的每一个单元都是一个累加器3)把累加器初始化为零4)对图像空间的每一点,在其所满足的参数方程对应 的累加器上加1;5)累加器阵列的最大值对应模型的参数.

第七章

1、纹理:按一定规则对元素或基元进行排列所形成的重复模式.

2、灰度级同现矩阵:灰度级同现矩阵P[i,j]是一个二维相关矩阵,规定一个位移矢d=(dx,dy),计算被d 分开且具有灰度级i 和j 的所有象素对的个数。 第八章

1、辐照度与辐射度:1)辐射度:单位面积辐射表面在单位时间内向某一方向辐射的能量;2)辐照度:单位时间到达单位面积表面的辐射能量光源只有辐

射,图像平面只有辐照,物体既有辐照,也有辐射. 2、双线反射分布函数:到达表面的辐照度与辐射度之比 第十章 1、线性颜色空间(RGB 模型的线性变换):RGB, CMY, XYZ, YIQ, YUV 2、非线性颜色空间(RGB 模型的非线性变换):L*a*b*, L*u*v*, HSV(HSI) 第十一章

1、深度图:每一个像素值表示场景中某一点与摄像机之间的距离所形成的图像叫做深度图

2、测距成像系统原理公式及推导:

假设坐标系原点与左透镜中心重合。F 是焦距,B 是基线距离。

3、基线过长所产生的问题:随着基线距离的增加,两个摄象机的共同的可视范围减小;场景点对应的视差值增大,则搜索对应点的范围增大,出现多义性的机会就增大;由于透视投影引起的变形导致两个摄象机获取的两幅图像不完全相同,这就给确定共轭对带来了困难.

第十二章

1、 识别系统的基本组成:模型库,特征检测器,假设生成和假设验证

2、 物体的检测和识别的策略:进行物体识别的第一步是物体特征检测,然后基于检测出来的图像特征,对图像中可能的物体建立假设公式,并使用物体模型来验证假设,并不是所有的物体识别方法都需要很强的假设公式和验证步骤,大部分识别策略已经演化,将假设和验证着两步一不同的比例组合起来 第十四章

1、摄象机和场景运动的四种模式:1)摄象机静止/物体静止:简单的静态场景分析.2)摄像机静止/场景运动:一类非常重要的动态场景分析,包括运动目标检测、目标运动特性估计等,主要用于预警、监视、目标跟踪等场合。3)摄象机运动/物体静止:重要的动态场景分析,包括基于运动的场景分析、理解,三维运动分析等,主要用于视觉导航、目标自动锁定与识别等.4)摄象机运动/物体运动:最一般的情况,也是最难的问题,目前对该问题研究的还很少.

——By :Lit&G

F x z x l '= F

x z B x r '=- r

l x x BF z '-'=

视觉测量系统技术及应用

视觉测量系统技术及应用 1 引言 基于计算机的视觉检测系统是指通过计算机视觉产品将被摄取目标转换成图像信号,传送给图像处理系统,图像处理系统再根据像素分布和亮度、颜色等信息,转变成数字化信号,计算机图像系统对这些信号进行复杂运算来抽取目标的特征,进而根据判别的结果来控制设备动作。它具有非接触、速度快等优点,是一种先进的检测手段,非常适合现代制造业。可用于视觉检测的试验原理很多,如纹理梯度法、莫尔条纹法、飞行时间法等,然而诸多测试原理中,尤其基于三角法的主动和被动视觉测量原理具有抗干扰能力强、效率高、精度合适等优点,非常适合在线非接触测量。本文主要从视觉测量系统在实际中应用出发,展示视觉检测技术在制造业中的广阔应用[1-4]。 2 视觉测量系统技术的应用 2.1 汽车车身视觉检测系统 在汽车制造过程中,车身上总有很多关键的三维尺寸进行测量,采用传统的三坐标测量机只能离线抽样检测,效率低,更不能满足现代汽车制造在线检测的需要,而视觉检测系统能很好的适应该需要,典型的汽车车身视觉检测系统如图1所示[5]。 图1 车身视觉检测系统 车身检测系统主要依靠的是数个视觉传感器,其中还包括传送机构、定位机构,计算机图像采集、网络控制部分。每个传感器对应一个被测区域,然后通过传输总线传至计算机,通过计算机对每个视觉传感器进行过程控制。 汽车车身检测系统的测量效率很高,精度式中,并且可以在完全自动情况下完成,这个包含几十个测点的系统都能再几分钟内测量完成,因此可以适应汽车制造的在线检测。而且传感器的布置可以根据不同车型来布置,增加了应用要求,

因此减少了车身视觉系统的维护费用。 2.2 拔丝模孔形视觉检测系统 使用计算机视觉检测技术开发出的拔丝模孔形检测系统由光学成像系统、工业用摄像机图像采集卡、计算机及监视器组成,可以解决生产实际中的模具孔形检测问题.工作原理如下:先采用注入硅胶方法获得反映待检拔丝模尺寸及形状的硅胶凸模,然后把硅胶凸模放在光学系统的载物台上.硅胶凸模经光学成像放大,成像于CCD像面上,然后用图像采集卡采集CCD图像信息,最后由计算机视觉检测软件完成对孔形尺寸的自动计算,此时图像采集时需要配置特殊的光照系统.系统实现了自动数据采集、处理,实现采样、进样、结果一条龙,形成检测的自动化. 2.3 无缝钢管直线度和截面在线视觉检测 无缝钢管是一类重要的工业产品,在反应无缝钢管质量中,钢管直线度及截面尺寸是主要的几何参数。现代工业已经可以实现无缝钢管的大批量大规模生产,并且并无成熟的直线度、截面尺寸高效率的检测系统,主要原因为:无缝钢管空间尺寸大,需要很大的测量空间,一般的检测手段很难实现如此大尺度的检测。然而视觉检测却非常适合无缝钢管及截面尺寸的测量,其测量原理图如图2所示。 多个传感器组成了视觉检测系统,传感器的结构光所投射的光平面与被测钢管相交,从而得到钢管的部分圆周,传感器测量圆周在传感器三维空间位置,每一个传感器实现一个截面圆周测测量,然后通过拟合得到截面的圆心和其空间位置,从而实现对无缝钢管截面和直径的测量。 图2 无缝钢管在线检测 2.4 视觉测量在逆向工程中的应用 逆向工程是针对现有的工件,利用3D数字化测量仪准确快速地测量出轮廓坐标值,并建构曲面,经过编辑、修改后,将图形存档形成一般的CAD/CAM系统,再由CAM所产生刀具的NC加工路径送至CNC加工机制所需模具,或者以快速成型将物品模型制作出来。视觉测量一般使用三种激光光源:点结构光、线结构光、面结构光,图3为使用线结构光测量物体表面轮廓的结构示意图[6]。

基于计算机视觉步态识别系统的方法研究

第21卷第4期湖 北 工 业 大 学 学 报2006年08月 V ol.21N o.4 Journal of H ubei U niversity of T echnology Aug.2006 [收稿日期]2006-05-23[作者简介]程 琼(1959-),女,湖北武汉人,湖北工业大学副教授,研究方向:模式识别及计算机控制. [文章编号]1003-4684(2006)0820101203 基于计算机视觉步态识别系统的方法研究 程 琼,庄留杰 (湖北工业大学电气与电子工程学院,湖北武汉430068) [摘 要]对目前步态识别系统的研究方法进行了分析、归类与总结,并在原有的研究方法基础上提出了三维 系统建模与跟踪新方法.计算机视觉技术为步态识别系统提供了强有力的分析工具. [关键词]步态识别;计算机视觉;研究方法[中图分类号]TP391.41 [文献标识码]:A 步态识别作为一种新兴的生物特征识别技术, 当前已成为基于视觉的人体运动分析领域的研究热点.步态识别是一种潜在的行为特征,相关研究已证实它可以用于身份识别. 1 步态识别系统组成 步态识别是从相同行走行为中寻找和提取相应个体的可区分的变化来自动进行身份识别.基于视 觉的步态识别系统,如图1所示,监控摄像机用于捕捉监控领域中的行人,结合背景的自动建模和更新,步态检测用来检测行人.行人在二维或三维空间中被连续跟踪.从跟踪结果中,步态模式的一些个性化特征被相应地提取.结合在步态数据库中已经存储的步态模式,分类器最后给出识别结果 . 2 基于视觉的步态分析 步态作为生物特征的可用性在早期已得到证明,关健是如何利用计算机视觉方法来获取个体运动特征.人体建模的选择对于从图像中识别人的形状,正确分析人的运动是非常重要的.骨架图模型是 以直线近似在关节点处所连接的骨骼来表达人体;立体模型能更好地表达人体,它利用广义锥台、椭圆柱、球等三维模型来描述人体的结构细节[1]. 许多研究将人的运动定义为身体运动的不同姿势.有2种主要方法来建模人的运动:一种是基于模型的方法,即选择人体模型后,该模型的三维结构从图像序列中进行恢复;另一种方法重在确定运动场的特征,而不需结构的重构.运动行为的识别可以认为是时变数据的分类问题. 可以看出,人体建模、跟踪与运动识别技术等视觉方法已为步态分析提供了一种强有力的分析工具. 3 步态识别方法分类 当前的步态识别方法有:1)使用行人的时空模式得到步态特征;2)通过光流分布来提取特征;3)特征化实际运动的外观.而如何紧支有效地表达分割出来的或跟踪的行人是非常重要的,因为它将直接或被进一步分析,以获取用于识别的步态特征. 步态包括2类分量:结构化分量,它捕捉了一个人的身体形状;动态分量,它捕捉人体行走期间的运 动特征.根据分析,步态识别方法一是基于模型或结构的方法,它通常建模人体结构并且提取图像特征来影射它们为模型的结构化分量,或者衍生出人体部分的运动轨迹来识别个体;二是非结构或者基于运动的方法,它通常特征化人体的整个运动模式来获取运动特征,而不考虑潜在的结构[2].

计算机视觉系统及其应用

课程设计 课程名称工业自动化专题 题目名称_计算机视觉系统及其应用学生学院_____自动化________ 专业班级______ 学号 学生姓名____ 指导教师___________ 2013 年 6月 25日

机器视觉系统及其应用 摘要:主要介绍机器视觉系统的概要,简要分析机器视觉的特点、优越性和应用,具体介绍了机器视觉技术在印刷行业、农业、工业、医学中的实际应用,并且分别举例说明。机器视觉的诞生和应用在理论和实际中均具有重要意义。 关键词:机器视觉;标签检测;药物检测;水果品质检测;硬币检测。 1. 机器视觉系统 1.1 机器视觉系统简介 机器视觉系统是指利用机器替代人眼做出各种测量和判断。机器视觉是工程领域和科学领域中的一个非常重要的研究领域,它是一门涉及光学、机械、计算机、模式识别、图像处理、人工智能、信号处理以及光电一体化等多个领域的综合性学科。 机器视觉系统通过图像摄取装置将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号。机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成。 机器视觉系统的优点有:1.非接触测量,对于被检测对象不会产生任何损伤,而且提高了系统能够的可靠性;2.较宽的光谱响应范围,例如使用人眼看不见的红外测量,扩展人眼的视觉范围;3.长时间稳定工作,人类难以长时间对同一对象进行观察,而机器视觉系统则可以长时间地作测量、分析和识别任务。 现在,机器视觉系统在工业、农业、国防、交通、医疗、金融甚至体育、娱乐等等行业都获得了广泛的应用,可以说已经深入到我们的生活、生产和工作的方方面面。 1.2 基本原理 图 1 是机器视觉系统的基本结构,在一定的光照(包括可见光,红外线甚至超声波等各种成象手段)条件下,成象设备(摄象机,图像采集板等)把三维场景的图像采集到计算机内部,形成强度的二维阵列——原始图象;然后,运用图像处理技术对采集到的原始图像进行预处理以得到质量改善了的图像;其次,运用机器视觉技术从图像中提取感兴趣的特征分类整理;,构成对图像的进一步,运用模式识别技术对抽取到的特征进行描述;最后,运用人工智能得到更高层次的抽象描述。完成视觉系统的任务。 图1机器视觉的基本结构

基于计算机视觉技术的水果分级研究进展

基于计算机视觉技术的水果分级研究进展 曹乐平 (湖南生物机电职业技术学院,长沙 410127) 摘要:较为全面地介绍了国内外基于计算机视觉技术的水果外观品质的单指标分级、多指标综合分级和水果内部品质检测分级的研究现状与方法,指出了现有研究中研究对象较单一、图像采集不全面、图像处理算法不多、精度不高等存在的主要问题。同时,提出了未来水果分级的发展方向,认为水果内外品质融合的一体化分级技术是未来的发展趋势。 关键词:计算机应用;计算机视觉;综述;水果;内外品质;图像处理;分级 中图分类号:TP391.41 文献标识码:A 文章编号:1003─188X(2007)11─0010─06 0 引言 我国是世界水果生产大国,自1993年以来,水果总产量一直居世界第1位。据农业部预测统计,2006年我国水果产量及果园面积保持继续增长势头,果园面积突破10000khm2,水果总产量近17000万t[1],但我国水果在国际市场的竞争力很弱,出口水果数量占总产量的极少部分,2005年和2006年鲜冷冻水果出口维持在200万t左右,以香港市场为例,我国出口柑橘数量占香港市场的2/3,但是我国收汇只占1/3,单价仅为其他国家的1/4。提高我国水果在国际市场的竞争力,强化采后处理是关键。发达国家的经验告诉我们,水果产值的大部分是由采后处理和加工创造出来的[2]。在美国、欧洲以及澳大利亚等国家,除了在收获季节随摘随卖少量水果之外,绝大部分水果都必须经过采后处理程序,否则不能成为商品[3]。目前,我国水果采后处理能力不到水果总量的5%,采后烂果率高达25%以上。由此可见,水果采后处理对我国水果业乃至整个农业的重要性。 1 水果外部品质分级现状 水果智能分级技术涉及计算机、CCD技术、模式识别、数字图像处理、光学、数学、数学形态学、自动化、人工智能、视觉学、心理学、脑科学等众多学科[4]。全球从事计算机视觉产品生产的企业有上百家,产品有相机、电源、传感器、镜头、图像卡、图像处理器和软件包等。知名企业有:DALSA coreco,Siemens,SICK,National Instrument,Edmund Optics Inc,Hamamatsu Photonic Systems,Basler Vision Technologies和Cognex等[5]。生产智能水果分级设备也不少,Mitsubishi Corpor- ation生产水果成熟度分级机,美国俄勒冈州的Alle Electronics Corporation生产“Inspect- tronic”装置,美国Autoline Corporation生产Model 4至Model 8的系列分级设备。我国浙江、江苏和台湾也生产有分级设备。基于计算机视觉技术的水果外部品质分级是根据水果的大小、形状、颜色和表面缺陷等外部品质特征进行的,有单指标分级和多指标综合分级两大类。 1.1 基于计算机视觉技术的水果单指标分级 1.1.1 水果大小分级 水果大小是分级的主要依据之一,是水果等级不可缺少的重要指标。Dabenel A等(1988)[6]利用机器视觉技术进行苹果大小和碰伤分级的深入研究,但分级正确率仅为69%。国内开展水果智能分级的研究已近10年,由于很好地借鉴了国外在该领域的研究成果,发展速度较快。应义斌(2000)[7]去除果梗并完成了边缘提取与细化的水果图像,通过曲线积分并离散,求水果形心坐标,进而建立黄花梨实际最大横径与预测最大横径关系的线性回归方程,二者相关系数为0.96。冯斌等(2003)[8]通过水果图像的边缘像素求水果形心,取过形心的半径序列中最小值方向为水果轴向,将轴向宽度4等分,过3等分点求垂直于轴向的果径,最大值作为水果大小的特征值。试验结果表明,轴向检测正确率达94.4%,水果大小检测最大绝对测量误差为3mm。饶秀勤等(2003)[9]分析了水果实际尺寸与测量值之间的半径误差是由成像时光线无法从水果最 收稿日期:2007-03-05 基金项目:湖南省教育厅科学研究项目(06D059)。 作者简介:曹乐平(1964-),男,长沙人,副教授,(E-mail)clp 4218@https://www.360docs.net/doc/bc11941175.html,。 - 10 -

计算机视觉与图像理解

计算机视觉与图像理解 摘要 精确的特征跟踪是计算机视觉中的许多高层次的任务,如三维建模及运动分析奠定了基础。虽然有许多特征跟踪算法,他们大多对被跟踪的数据没有错误信息。但是,由于困难和空间局部性的问题,现有的方法会产生非常不正确的对应方式,造成剔除了基本的后处理步骤。我们提出了一个新的通用框架,使用Unscented转换,以增加任意变换特征跟踪算法,并使用高斯随机变量来表示位置的不确定性。我们运用和验证了金出武雄,卢卡斯- Tomasi 的跟踪功能框架,并将其命名为Unscented康莱特(UKLT)。UKLT能跟踪并拒绝不正确的应对措施。并证明对真假序列的方法真确性,并演示UKLT能做出正确不误的判断出物体的位置。 1.简介 在计算机视觉,对问题反映的准确性取决于于图像的准确测定。特征跟踪会随时间变化对变化的图像进行处理,并更新每个功能的变化作为图像的位置判断。重要的是所选择图像的功能,有足够的信息来跟踪,而且不遭受光圈问题的影响。[1] 在金出武雄,卢卡斯- Tomasi(康莱特)是最知名的跟踪和研究方法之一。它采用一对匹配准则刚性平移模型,它是相当于窗口强度的平方差之和最小化的基础。特征点的正确选择,可大大提高算法的性能。[3] Shi与Tomasi 将初始算法考虑仿射模型,并提出了技术监测的功能对质量进行跟踪。如果第一场比赛中的图像区域之间和当前帧残留超过阈值时,该功能将被拒绝。在随后的工作中,对模型进行了扩展且考虑了光照和反射的变化。 不幸的是,这些算法没有考虑在跟踪的不确定性,和估计的可靠性。如果我们能够考虑到这些问题,我们将能从混乱的数据中提取出更准确的数据。在没有不确定性特设技术条件下,有些研究员试图从中提取有用的数据但是结果都不能令人满意。但是理论上有声音的不确定性为特征跟踪,是可以应用于不同的功能类型的方法。 在一个闭塞,模糊,光照变化的环境中,即使是最复杂的特征跟踪算法一败涂地无法准确跟踪。这些问题导致错误的匹配,就是离群值。虽然有几种方法来减轻异常值的影响,但是其计算成本通常较高[7] [8]。[9]采用随机抽样一致性[10]的方法来消除图像序列异常值。Fusiello提出的康莱特,增加了一种自动拒绝规则功能,所谓的X84。虽然有许多离群排斥的方法,但没有一个单一的算法,尽管该算法在所有情况下都表现良好。 在本文中我们将研究范围扩大,运用高斯随机变量(GRVs)与Unscented变换(SUT 的),计算在一个非线性变换的分布传播,运用标准康莱特算法。采用随机变量来描述图像特征的位置和它们的不确定性既提高了精度又提高了鲁棒性的跟踪过程。虽然我们不知道什么是真正的分布,被测系统为我们提供了理论保证,前两个时刻的估计是正确的。另外,使用异常检测被测样品确定性使我们没有增加任何额外费用。 2.不确定度表示 我们现在引入一个新的通用框架,增强了任意特征跟踪算法,以代表和跟踪高斯随机变量(GRVs)功能的位置。然后,我们说明它可以被应用到最常用的方法,康莱特之一[1]。 GRVs是一种用于图像的特征定位概率分布函数描述的不错选择。他们有一个简单易懂的数学公式(平均向量和协方差矩阵)和紧凑的计算实施。他们也有一个确切的封闭使用的线性代数运算的代数线性变换的制定,并以此作为其参数表示的两个分布的第一时刻。Haralick [13]虽然提出了在计算机视觉中使用协方差传递,但他只考虑一阶线性化。 易用性外,还出现了一些有效的文献,它质疑从本地的图像灰度信息测量协方差是否可以代表的功能位置的不确定性[6]。

计算机视觉各种方法

第33卷第1期自动化学报Vol.33,No.1 2007年1月ACTA AUTOMATICA SINICA January,2007 车辆辅助驾驶系统中基于计算机视觉的 行人检测研究综述 贾慧星1章毓晋1 摘要基于计算机视觉的行人检测由于其在车辆辅助驾驶系统中的重要应用价值成为当前计算机视觉和智能车辆领域最为活跃的研究课题之一.其核心是利用安装在运动车辆上的摄像机检测行人,从而估计出潜在的危险以便采取策略保护行人.本文在对这一问题存在的困难进行分析的基础上,对相关文献进行综述.基于视觉的行人检测系统一般包括两个模块:感兴趣区分割和目标识别,本文介绍了这两个模块所采用的一些典型方法,分析了每种方法的原理和优缺点.最后对性能评估和未来的研究方向等一系列关键问题给予了介绍. 关键词行人检测,车辆辅助驾驶系统,感兴趣区分割,目标识别 中图分类号TP391.41 A Survey of Computer Vision Based Pedestrian Detection for Driver Assistance Systems JIA Hui-Xing ZHANG Yu-Jin Abstract Computer vision based pedestrian detection has become one of the hottest topics in the domain of computer vision and intelligent vehicle because of its potential applications in driver assistance systems.It aims at detecting pedestrians appearing ahead of the vehicle using a vehicle-mounted camera,so as to assess the danger and take actions to protect pedestrians in case of danger.In this paper,we give detailed analysis of the di?culties lying in the problem and review most of the literature.A typical pedestrian detection system includes two modules:regions of interest(ROIs) segmentation and object recognition.This paper introduces the principle of typical methods of the two modules and analyzes their respective pros and cons.Finally,we give detailed analysis of performance evaluation and propose some research directions. Key words Pedestrian detection,driver assistance system,ROIs segmentation,object recognition 1引言 车辆辅助驾驶系统中基于计算机视觉的行人检测是指利用安装在运动车辆上的摄像机获取车辆前面的视频信息,然后从视频序列中检测出行人的位置.由于它在行人安全方面的巨大应用前景,成为智能车辆、计算机视觉和模式识别领域的前沿研究课题.欧盟从2000年到2005年连续资助了PROTECTOR[1]和SAVE-U[2]项目,开发了两个以计算机视觉为核心的行人检测系统;意大利Parma[3]大学开发的ARGO智能车也包括一个行人检测模块;以色列的MobilEye[4]公司开发了芯 收稿日期2006-3-14收修改稿日期2006-6-17 Received March14,2006;in revised form June17,2006 国家自然科学基金(60573148),教育部高等学校博士学科点专项科研基金(20060003102)资助 Supported by National Natural Science Foundation of P.R.China(60573148),Specialized Research Fund for the Doc-toral Program of Higher Education(20060003102) 1.清华大学电子工程系北京100084 1.Department of Electronic Engineering,Tsinghua University, Beijing100084 DOI:10.1360/aas-007-0084片级的行人检测系统;日本本田汽车公司[5]开发了基于红外摄像机的行人检测系统;国外的大学如CMU[6]、MIT[7,8]和国内的西安交通大学[9]、清华大学[10]也在该领域做了许多研究工作. 车辆辅助驾驶系统中基于计算机视觉的行人检测属于计算机视觉中人体运动分析的研究范畴,其主要任务是在运动摄像机下快速准确地检测行人.本文主要针对这一特定领域对相关的文献进行综述,重点分析常用方法的原理和优缺点,以期对相关的科技人员起到指导作用.对监控系统和体育运动分析领域中人体检测感兴趣的读者可以参考综述文献[11~14]. 行人检测除了具有一般人体检测具有的服饰变化、姿态变化等难点外,由于其特定的应用领域还具有以下难点:摄像机是运动的,这样广泛应用于智能监控领域中检测动态目标的方法便不能直接使用;行人检测面临的是一个开放的环境,要考虑不同的路况、天气和光线变化,对算法的鲁棒性提出了很高的要求;实时性是系统必须满足的要求,这 c 2007by Acta Automatica Sinica.All rights reserved.

计算机视觉期末考点

计算机视觉重点考点集锦 手工整理,如有错误,慎之! 第一章 1、计算机视觉:研究用计算机来模拟生物视觉功能的科学和技术. 2、视觉表示框架的三个阶段(也就是提取三阶段):1)第一阶段是将输入的原始图像进行处理,抽取基本特征形成基元图。2)第二阶段(中期阶段)是指在以观测者为中心的坐标系中,由输入图像和基元图恢复场景可见部分的深度、法线方向、轮廓等,形成二维半图。3)第三阶段(后期阶段)是在以物体为中心的坐标系中,由输入图像、基元图、二维半图来恢复、表示和识别三维物体。 第三章 1、二值图像的特点:a.假定二值图像大小为mxn,其中物体像素值为1,背景像素值0;b.二值图像处理的算法简单,易于理解和实现,计算速度快;c. 二值视觉所需的内存小,对计算设备要求低;d.二值视觉系统技术可用于灰度图像视觉系统 2、二值图像的获取:1)通过图像的阙值2)通过硬件实现3)通过软件实现 3、图像分割:把图像划分成区域,使每一个区域都对应一个候选的目标。 4、图像二值化:设一副灰度图像中物体的灰度分布在某一区间内,通过阙值运算后的图像为二值图像 5、投影分类及作用:1)水平/垂直投影;给定直线上的投影;对角线投影(仿射变换)2)投影能表现图像的某种信息。 6、4-连通成分序贯法(标记算法)步骤: 1)从左到右,从上到下扫描图像 2)①如果上面点和左面点有一个标记,复制这一标记②如果两点相同的标记,复制这一标记③如果两点有不同标记,则复制上点标记且将两个标记输入到等价表中作为等价标记④否则给这一像素点分配一个新的标记并将这个标记输入到等价表 3)如考虑更多的点,回到第二步 4)在等价表中的每一等价集中找到最低的标记 5)扫描图像,用等价表中的最低标记取代每一个标记 7、欧拉数:E=C—H,连通成分数(C)—空洞数(H) 8、扩展与收缩:1)要掌握用结构元进行扩展与收缩 2)先扩展后收缩:补上不希望存在的洞 3)先收缩后扩展:去除孤立的噪声点 4)定义:①扩展:如果背景和洞的像素点临点显1,则该点从0变为1 ②收缩:如果物体像素点连点为0,则将该点从1变为0 9、开、关运算:1)开运算:先腐蚀后膨胀,去除比结构元小的区域的像素点 2)关运算:显膨胀后腐蚀,填充比结构元小的孔洞 第四章

计算机视觉技术在零件尺寸测量中的应用_王晓翠

计算机视觉技术在零件尺寸测量中的应用 王晓翠1,王艳秋1,麻恒阔2 (1.北京航空精密机械研究所,北京100076; 2.A BB电气传动系统有限公司,北京100015) 摘要:介绍了一种应用计算机视觉技术检测机械零件参数的测量方法。以面阵CCD为图像传感器,通过图像采集卡将机械零件的二维图像输入到计算机中。在对原始输入图像进行直方图校正和边缘保持滤波处理后,对得到的较为平滑的零件图像进行边缘检测。利用图像边缘灰度突变的特性,提出了一种结合梯度算子的快速边缘检测方法。并据此计算出零件的各参数值。此种测量方法非常适合于微小、易形变等接触测量难以准确测量的机械零件的参数检测,具有广阔的应用前景。 关键词:直方图校正;边缘保持滤波;边缘检测 中图分类号:T P391.41文献标志码:A Application of Measurement of Mechanical Accessory Size based on C omputer Vision Technology WA N G Xiaocui1,W AN G Y anqiu1,M A H eng kuo2 (1.Beijing Pr ecision Eng ineering Institut e fo r A ircraft Industr y,Beijing100076,China; 2.ABB Beijing Dr ive Systems Co.,L td,Beijing100015,China) Abstract:T he accessor y parameter measurement met ho d w as presented based on co mputer v ision technolog y.By taking CCD as imag e senso r,the accesso ry image is put into the co mputer via imag e co llection card.T he edge detectio n of smoot her accessor y imag e attained after histo gr am adjusting the or ig inal imag e and holding edg e filter.Co nsider ing the sudden chang e of the gr ay scale o f the image edge,a rapid edge-detectio n technique is pr esented which uses gr adient operato r,and then wo rked o ut t he accesso ry parameters.T his metho d is pr opitio us to measure mechanical accesso ry accur ately,such as m-i nuteness,mo re defo rmable that unfit for tangency measur ement,and has a w ide applicatio n fo reg round. Key words:Histo gr am adjusting,Edge keeping filter,Edg e detectio n 基于图像处理的计算机视觉技术是把被测零件的图像当作检测和传递信息的手段,从中提取有用的信号来获得待测的参数。该测量方法具有非接触、高速度、动态范围大、信息量丰富等优点,非常适合传统方法难以测量的场合,如易变形零件尺寸、微小尺寸及零件孔心距等的测量。本文介绍了一种以CCD作为图像传感器的图像测量系统,并可实现对微小零件的几何量(如薄板零件的小孔和孔心距等)进行自动测量。 1计算机视觉检测系统的构成 计算机视觉检测系统是集光学、光电子学、精密机械及计算机技术为一体的综合系统。该测量系统基本上由平行光照明系统、CCD图像采集系统以及相应的图像处理软件组成。为了达到良好的照明效果,并适当提高被测图像的对比度,从而提高图像处理中边缘提取的精度,采用光照均匀的柯拉照明方式,并对被测物进行平行光背光照射。由于被测对象多为板型零件,因而可以较好地利用光照条件提取被测物的有效轮廓,有利于图像测量算法精度的提高。结构框图如图1所示。其工作过程为:将被测零件置于尽可能均匀照明的可控背景前,CCD和图像卡将被测零件图像采集到计算机里,计算机按一定的算法计算出被测物体的几何参数,最后计算机对这些数据进行各种处理,并将结果按一定要求 予以显示和存储。 图1图像测量系统结构框图 2图像预处理 由于光的散射、空间电磁干扰、电路杂波等原因,得到的图像中通常含有如椒盐、脉冲和高斯等噪声。噪声会影响图像质量,造成零件边缘模糊,降低系统测量精度,因此,必须对原始图像进行灰度校正、噪声过滤等预处理。对图像测量系统来说,所用的图像预处理方法可不考虑图像降质,只将图像中感兴趣的部分有选择地突出,衰减不需要的特征。考虑到待测物体参数大多由其外形轮廓决定,本文首先对原始图像进行直方图均衡化处理,然后采用边缘保持滤波算法对图像进行降噪。 2.1直方图修正 原始图像的灰度值分布是不均匀的,其灰度值

计算机视觉简介

人们常说:眼睛是心灵的窗户,通过眼睛人们可以轻易地交流情感,眼睛也是与外界交流的窗口,这些都是通过“看”来完成的。 人们可以很容易“看到”一幅画,但这一“简单”过程并不如此简单,大致上它可以分为以下几个阶段:首先是通过眼睛将图成像在视网膜上;其次大脑对图像进行理解;最后根据处理的结果做出反应。用比较专业一点的语言来描述,该过程包括了识别、描述与理解三个层次;这其中还隐含了边缘检测(各物体的轮廓等)、图像的分割(各物体区域的划分)等阶段。以上实际上概述了视觉系统的三个层次,即低层阶段:基于图像特征提取及分割阶段;中层阶段:基于物体的几何模型与图像特性表达阶段;高层阶段:基于景物知识的描述、识别与理解阶段,这是根据先验知识介入的程度划分的,且实现起来也越来越困难。 毫无疑问,如何人工实现这一过程是极具挑战性和应用前景的一项工作,计算机视觉也因此而应运而生。计算机视觉是研究用计算机和成像设备来模拟人和生物视觉系统功能的技术学科,其目标是从图像或图像序列中获取对外部世界的认知和理解,即利用二维图像恢复三维环境中物体的几何信息,比如形状、位置、姿态、运动等,并能描述、识别与理解。 计算机视觉的基础是各种成像设备,例如CCD(Charge Coupled Device )摄像机(数码相机属于此类型)、红外摄像机、医学上常用的核磁共振成像、X射线成像等,这些设备不仅可以成像,还可以获取比人眼更丰富的图像,人们可以形象地把摄像机看成计算机视觉的视网膜部分。可以说从人类拍摄出第一幅图像开始,就为计算机视觉的诞生奠定了基础。 而计算机视觉的核心是数字电子计算机,其发展可谓突飞猛进,在计算和存储能力上,人脑已经无法与之相比,人们的目标就是利用计算机非凡的计算处理能力来代替人脑实现对图像的理解,而计算机日新月异的发展也使得这一愿望越来越成为可能。 用于指导“计算机”这个大脑运作的核心是计算机视觉的理论方法,计算机视觉使用的理论方法主要基于几何、概率和运动学计算与三维重构的视觉计算理论,它的基础包括射影几何学、刚体运动力学、概率论与随机过程、图像处理、人工智能等理论。在20世纪70年代,视觉研究大多采用模式识别的方法;80年代,开始采用空间几何的方法以及物理知识进行视觉研究;90年代以后,随着智能机器人视觉研究的发展,引入了许多新的理论与技术如主动视觉理论、不变量理论、融合技术等,并应用于许多计算机视觉系统中。 研究计算机视觉,不得不提的是英国已故科学家戴维·马尔(David Marr),他在计算机视觉发展史上可谓写下了浓重的一笔。在20世纪70年代末,他提出了第一个

基于计算机视觉的测距算法研究

电子科技大学 2012级本科毕业设计(论文)开题报告表

只有这样计算机才能运行。为使更多的人能使用复杂的计算机,必须改变过去的那种让人来适应计算机,来死记硬背计算机的使用规则的情况。而是反过来让计算机来适应人的习惯和要求,以人所习惯的方式与人进行信息交换,也就是让计算机具有视觉、听觉和说话等能力。这时计算机必须具有逻辑推理和决策的能力。具有上述能力的计算机就是智能计算机。 智能计算机不但使计算机更便于为人们所使用,同时如果用这样的计算机来控制各种自动化装置特别是智能机器人,就可以使这些自动化系统和智能机器人具有适应环境,和自主作出决策的能力。这就可以在各种场合取代人的繁重工作,或代替人到各种危险和恶劣环境中完成任务。 3、课题研究内容 将计算机视觉和图像处理技术应用到车辆驾驶辅助系统当中可以有效地为车辆行驶提供安全保障。而在计算机视觉中,利用视觉信息感知环境,由单幅二维投影图像确定目标与装载摄像机物体之间距离信息的研究,是目前智能交通系统(ITS)和智能车辆系统(IVS)的关键技术之一。本文主要研究针对ITS和IVS的单目视觉测距方法。基于单目视觉的测量技术是从计算机视觉领域中发展起来的新型非接触测量技术,它是一种结合图像处理技术,把图像当作检测和传递信息的手段或载体而加以利用的测量方法。本文利用投影几何原理和图像处理方法研究了单目测距算法,重点研究了摄像机标定技术、图像预处理方法、障碍物体检测及计算障碍物体距离的算法。本文首先采用了一种在照、摄像机内外部参数未知的条件下,利用图像平面中的平行线,以及它们形成的消隐点具有几何约束关系来实现摄像机标定的新方法。该方法与以前方法相比,计算复杂性不高,但相对而言,准确性和鲁棒性较高,且无须在使用前标定相机,更符合实际需要(因现今的照、摄像机都是变焦距的),从而具有广泛的推广价值。其次,对多种图像预处理方法进行了分析、比较和选择,采用的方法兼顾了图像处理效果和实时性要求。最后,在分析道路特征的基础上建立了道路几何模型,并利用改进的Hough变换提取出道路边缘曲线模型。并在现有单一道路模型测距算法的基础上做了改进,提出了混合几何模型的单目测距算法。模拟试验结果表明该算法对视觉测距领域的研究有一定的借鉴意义。 4、关键问题及研究目标 本次研究目标主要是通过对已有基于计算机视觉的测距算法的实现和评估。关键问题在于如何用OpenCV实现这些算法并对其进行合适的评估。 5、研究特点 基于计算机视觉的距离测量主要是单目测距和多目测距,它们都有各自的优点,也

计算机视觉设计师简历

计算机视觉设计师简历 以下是关于计算机视觉设计师简历,希望内容对您有帮助,感谢您得阅读。 工作年限:一年--两年 户口所在地:贵阳市 qq号码: 求职意向岗位:平面设计师、企划部工作及陈列师 求职意向:平面设计师、企划部工作及陈列师 从事此行业两年多,专业技能熟练。教育经历 工作经历: 20xx年6月至20xx年12月纺织服装服饰 20xx年11月至20xx年2月纺织服装服饰 20xx年4月至20xx年9月重庆渝高广告有限公司 培训经历 专业技能:两年设计工作经验,具有深厚的美术基础,较强的设计功底,具有整体性运作企业品牌视觉传达的能力和经验,在设计上有独特的见解和主张,创意出色,善于接受新事物,思维活跃,有创新精神;敏锐的流行时尚感知,与色彩应用。具有良好的沟通协调能力、高度的责任感和团队精神。 自我评价 ·

本人性格开朗,待人热情、真诚、善于与人沟通;工作认真负责,积极主动,能吃苦耐劳,承受压力,勇于创新;有很强的组织协调能力和团队协作精神,具有较强的适应能力;纪律性强,工作积极,意志坚强。 计算机视觉设计师简历二基本信息 姓名:*** 性别: 民族:汉籍贯: 出生年月:**年**月**日 联系方式 电话号码: 电子邮箱:xxx 有**以上工作经验 最近工作 [1年6个月] 公司:XX互联网有限公司 行业:互联网/电子商务 职位:视觉设计师 最高学历 学历:大专 专业:艺术设计 学校:广东白云学院 求职意向 ·

到岗时间:一周之内 工作性质:全职 希望行业:计算机硬件 目标地点:北京 期望月薪:面议/月 目标职能:美工组主管 工作经验 20**/9—至今:XX互联网有限公司 [ 1年6个月] 所属行业:互联网/电子商务 视觉设计部视觉设计师 1、星座频道页面风格设定以及内页制作; 2、健康频道页面制作。注重细节和风格的统一性; 3、商城专题页面视觉设计; 4、和不同行业的商家沟通设计。 20**/8—20**/8: XX新能源有限公司[ 1年] 所属行业:新能源 国际市场部艺术设计 1、负责公司日常宣传、策划设计制作; 2、产品海报设计; 3、广告平面设计、制作及其它图文处理; 4、企业宣传资料的设计、制作与创新; ·

计算机视觉

计算机视觉 计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,用电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。这里所指的信息指Shannon定义的,可以用来帮助做一个“决定”的信息。因为感知可以看作是从感官信号中提取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。 目录 1定义 2解析 3原理 4相关 5现状 6用途 7异同 8问题

9系统 10要件 11会议 12期刊 1定义 计算机视觉是使用计算机及相关设备对生物视觉的一种模拟。它的主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样。 计算机视觉是一门关于如何运用照相机和计算机来获取我们所需的,被拍摄对象的数据与信息的学问。形象地说,就是给计算机安装上眼睛(照相机)和大脑(算法),让计算机能够感知环境。我们中国人的成语"眼见为实"和西方人常说的"One picture is worth ten thousand words"表达了视觉对人类的重要性。不难想象,具有视觉的机器的应用前景能有多么地宽广。 计算机视觉既是工程领域,也是科学领域中的一个富有挑战性重要研究领域。计算机视觉是一门综合性的学科,它已经吸引了来自各个学科的研究者参加到对它

的研究之中。其中包括计算机科学和工程、信号处理、物理学、应用数学和统计学,神经生理学和认知科学等。 2解析 视觉是各个应用领域,如制造业、检验、文档分析、医疗诊断,和军事等领域中各种智能/自主系统中不可分割的一部分。由于它的重要性,一些先进国家,例如美国把对计算机视觉的 计算机视觉与其他领域的关系 研究列为对经济和科学有广泛影响的科学和工程中的重大基本问题,即所谓的重大挑战(grand challenge)。计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。作为一门学科,计算机视觉开始于60年代初,但在计算机视觉的基本研究中的许多重要进展是在80年代取得的。计算机视觉与人类视觉密切相关,对人类视觉有一个正确的认识将对计算机视觉的研究非常有益。为此我们将先介绍人类视觉。 3原理 计算机视觉就是用各种成象系统代替视觉器官作为输入敏感手段,由计算机来代替大脑完成处理和解释。计算机视觉的最终研究目标就是使计算机能象人那样通过视觉观察和理解世界,具有自主适应环境的能力。要经过长期的努力才能达到的目标。因此,在实现最终目标以前,人们努力的中期目标是建立一种视觉系统,这个系统能依据视觉敏感和反馈的某种程度的智能完成一定的任务。例如,计算机视觉的一个重要应用领域就是自主车辆的视觉导航,还没有条件实现象人那样能识别和理解任何环境,完成自主导航的系统。因此,人们努力的研究目标是实现在高速公路上具有道路跟踪能力,可避免与前方车辆碰撞的视觉辅助驾驶系统。这里要指出的一点是在计算机视觉系统中计算机起代替人脑的作用,但并不意味

计算机视觉期末复习

一、 1.什么是计算机视觉?理解计算机视觉问题的产生原理。 研究用计算机来模拟生物视觉功能的技术学科。具体来说,就是让计算机具有对周围世界的空间物体进行传感、抽象、分析判断、决策的能力,从而达到识别、理解的目的。 2.直方图的均衡化 处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。 是将原图像通过某种变换,得到一幅灰度直方图更为均匀分布的新图像的方法。设图像均衡化处理后,图像的直方图是平直的,即各灰度级具有相同的出现频数,那么由于灰度级具有均匀的概率分布,图像看起来就更清晰了。 二、 1.常见的几何变换:平移T x 为点(x ,y )在x 方向要平移的量。 旋转 变尺度:x 轴变大a 倍,y 轴变大b 倍。 2.卷积掩膜技术:(,)(,)(,)(,)m n f i j h i m j n g m n =--∑∑ 对应相乘再相加 掩膜的有效应用——去噪问题 3. 均值滤波器(低通):抑制噪声 主要用于抑制噪声,对每一个目标像素值用其局部邻域内所有像素值的加权均值置换。con 命令 高斯滤波器:一个朴素的道理,距离目标像素越近的点,往往相关性越大,越远则越不相干。所以,高斯 滤波器根据高斯函数选择邻域内各像素的权值 medfilt1 。 区别方法是:高通滤波器模板的和为0,低通滤波器模板的和为1 常用的非线性滤波器:中值滤波;双边滤波;非局部滤波 4.边缘检测算子:通过一组定义好的函数,定位图像中局部变换剧烈的部分(寻找图像边缘)。主要方法有:Robert 交叉梯度,Sobel 梯度,拉普拉斯算子,高提升滤波,高斯-拉普拉斯变换(都是高通滤波器) Canny 边缘检测 算法步骤:1. 用高斯滤波器平滑图像. 2. 用一阶偏导有限差分计算梯度幅值和方向. 3. 对梯度幅值进行非极大值抑制 . 4. 用双阈值算法检测和连接边缘. 5.分割(大题 伪码?) (1)经典方法是基于灰度阈值的分割方法 *介绍单值阈值,它把一幅灰度图像转换成二值图像 *求T 的常用的方法是求解灰度直方图中的双峰或者多峰,并以两峰之间的谷底作为阈值。 *全局阈值是指整幅图像使用同一个阈值做分割处理,并产生一个二值图,区分出前景对象和背景。适用于背景和前景对比度大的图像 算法实现:-- 选取一个合适的阈值T ,逐行扫描图像 – 凡灰度级大于T 的,颜色置为255;凡灰度级小于T 的,颜色置为0 (2)自适应阈值:解决单值阈值无法工作的一个方法是将图像分割为子图像,并分别进行阈值化处理 6.Hough 变换:可用于将边缘像素连接起来得到边界曲线,主要优点在于受噪声和曲线间断的影响较小(鲁棒性好) ???≤>=T y x f T y x f y x g ),( 0),( 1),(如果如果1100cos sin 0[1][1]sin cos 0001x y x y θθθθ-?? ? = ? ???110000[1][1]0000a x y x y b ab ?? ?= ? ???(,)1[,][,]k l N h i j f k l M ∈=∑????? ??=1010001]1[]1[0011y x T T y x y x

相关文档
最新文档