IGBT和可控硅区别

IGBT和可控硅区别
IGBT和可控硅区别

IGBT与晶闸管

§1.整流元件(晶闸管)

简单地说:整流器是把单相或三相正弦交流电流通过整流元件变成平稳的可调的单方向的直流电流。其实现条件主要是依靠整流管,晶闸管等元件通过整流来实现.除此之外整流器件还有很多,如:可关断晶闸管GTO,逆导晶闸管,双向晶闸管,整流模块,功率模块IGBT,SIT,MOSFET等等,这里只探讨晶闸管.

晶闸管又名可控硅,通常人们都叫可控硅.是一种功率半导体器件,由于它效率高,控制特性好,寿命长,体积小等优点,自上个世纪六十长代以来,获得了迅猛发展,并已形成了一门独立的学科.“晶闸管交流技术”。晶闸管发展到今天,在工艺上已经非常成熟,品质更好,成品率大幅提高,并向高压大电流发展。目前国内晶闸管最大额定电流可达5000A,国外更大。我国的韶山电力机车上装载的都是我国自行研制的大功率晶闸管。

晶闸管的应用:

一、可控整流

如同二极管整流一样,可以把交流整流为直流,并且在交流电压不变的情况下,方便地控制直流输出电压的大小即可控整流,实现交流——可变直流

二、交流调压与调功

利用晶闸管的开关特性代替老式的接触调压器、感应调压器和饱和电抗器调压。为了消除晶闸管交流调压产生的高次谐波,出现了一种过零触发,实现负载交流功率的无级调节即晶闸管调功器。交流——可变交流。

三、逆变与变频

直流输电:将三相高压交流整流为高压直流,由高压直流远距离输送以减少损耗,增加电力网的稳定,然后由逆变器将直流高压逆变为50HZ三相交流。直流——交流

中频加热和交流电动机的变频调速、串激调速等变频,交流——频率可变交流

四、斩波调压(脉冲调压)

斩波调压是直流——可变直流之间的变换,用在城市电车、电气机车、电瓶搬运

车、铲车(叉车)、电气汽车等,高频电源用于电火花加工。

五、无触点功率静态开关(固态开关)

作为功率开关元件,代替接触器、继电器用于开关频率很高的场合

晶闸管导通条件:

晶闸管加上正向阳极电压后,门极加上适当正向门极电压,使晶闸管导通过程称为触发。晶闸管一旦触发导通后,门极就对它失去控制作用,通常在门极上只要加上一个正向脉冲电压即可,称为触发电压。门极在一定条件下可以触发晶闸管导通,但无法使其关断。要使导通的晶闸管恢复阻断,可降低阳极电压,或增大负载电阻,使流过晶闸管的阳极电流减小至维持电流(IH)(当门极断开时,晶闸管从较大的通态电流降至刚好能保持晶闸管导通所需的最小阳极电流叫维持电流),电流会突然降到零,之后再提高电压或减小负载电阻,电流不会再增大,说明晶闸管已恢复阻断。

根据晶闸管阳极伏安特性,可以总结出:

1.门极断开时,晶闸管的正向漏电流比一般硅二极管反向漏电流大,且随着管子正向阳极电压升高而增大。当阳极电压升到足够大时,会使晶闸管导通,称为正向转折或“硬开通”。多次硬开通会损坏管子。

2.晶闸管加上正向阳极电压后,还必须加上触发电压,并产生足够的触发电流,才能使晶闸管从阻断转为导通。触发电流不够时,管子不会导通,但此时正向漏电流随着增大而显著增大。晶闸管只能稳定工作在关断和导通两个状态,没有中间状态,具有双稳开关特性。是一种理想的无触点功率开关元件。

3.晶闸管一旦触发导通,门极完全失去控制作用。要关断晶闸管,必须使阳极电流<维持电流,对于电阻负载,只要使管子阳极电压降为零即可。为了保证晶闸管可靠迅速关断,通常在管子阳极电压互降为零后,加上一定时间的反向电压。

晶闸管主要特性参数

1.正反向重复峰值电压——额定电压(VDRM 、VRRM取其小者)

2.额定通态平均电流IT(AV)——额定电流(正弦半波平均值)

3.门极触发电流IGT,门极触发电压UGT,(受温度变化)

4.通态平均电压UT(AV)即管压降

5.维持电流IH与掣住电流IL

6.开通与关断时间

晶闸管合格证基本参数

IT(AV)= A(TC=℃)------通态平均电流

VTM= V -----------通态峰值电压

VDRM = V -------------断态正向重复峰值电压

IDRM= mA -------------断态重复峰值电流

VRRM= V -------------反向重复峰值电压

IRRM = mA ------------反向重复峰值电流

IGT = mA ------------门极触发电流

VGT= V ------------门极触发电压

执行标准:QB-02-09

1.晶闸管关断过电压(换流过电压、空穴积蓄效应过电压)及保护

晶闸管从导通到阻断,线路电感(主要是变压器漏感LB)释放能量产生过电压。由于晶闸管在导通期间,载流子充满元件内部,在关断过程中,管子在反向作用下,正向电流下降到零时,元件内部残存着载流子。这些载流子在反向电压作用下瞬时出现较大的反向电流,使残存的载流子迅速消失,这时反向电流减小即diG/dt极大,产生的感应电势很大,这个电势与电源串联,反向加在已恢复阻断的元件上,可导致晶闸管反向击穿。这就是关断过电压(换相过电压)。数值可达工作电压的5~6倍。保护措施:在晶闸管两端并接阻容吸收电路。

2.交流侧过电压及其保护

由于交流侧电路在接通或断开时出现暂态过程,会产生操作过电压。高压合闸的瞬间,由于初次级之间存在分布电容,初级高压经电容耦合到次级,出现瞬时过电压。措施:在三相变压器次级星形中点与地之间并联适当电容,就可以显著减小这种过电压。与整流器并联的其它负载切断时,因电源回路电感产生感应电势的过电压。变压器空载且电源电压过零时,初级拉闸,因变压器激磁电流的突变,在次级感生出很高的瞬时电压,这种电压尖峰值可达工作电压的6倍以上。交流电网遭雷击或电网侵入干扰过电压,即偶发性浪涌电压,都必须加阻容吸收路进行保护。

3.直流侧过电压及保护

当负载断开时或快熔断时,储存在变压器中的磁场能量会产生过电压,显然在交流侧阻容吸收保护电路可以抑制这种过电压,但由于变压器过载时储存的能量比空载时要大,还不能完全消除。措施:能常采用压敏吸收进行保护。

4.过电流保护

一般加快速熔断器进行保护,实际上它不能保护可控硅,而是保护变压器线圈。

5.电压、电流上升率的限制

§4.均流与晶闸管选择

均流不好,很容易烧坏元件。为了解决均流问题,过去加均流电抗器,噪声很大,效果也不好,一只一只进行对比,拧螺丝松紧,很盲目,效果差,噪音大,耗能。我们采用的办法是:用计算机程序软件进行动态参数筛选匹配、编号,装配时按其号码顺序装配,很间单。每一只元件上都刻有字,以便下更换时参考。这样能使均流系数可达到0.85以上。为了减少并联,选用大元件。这样可以进一步提高均流度,并减小损耗,因为每一只元件都存在一个压降,这也是整流器的主要损耗。

第四章 场效应管习题答案

第四章 场效应管基本放大电路 4-1 选择填空 1.场效应晶体管是用_______控制漏极电流的。 a. 栅源电流 b. 栅源电压 c. 漏源电流 d. 漏源电压 2.结型场效应管发生预夹断后,管子________。 a. 关断 b. 进入恒流区 c. 进入饱和区 d. 可变电阻区 3.场效应管的低频跨导g m 是________。 a. 常数 b. 不是常数 c. 栅源电压有关 d. 栅源电压无关 4. 场效应管靠__________导电。 ) a. 一种载流子 b. 两种载流子 c. 电子 d. 空穴 5. 增强型PMOS 管的开启电压__________。 a. 大于零 b. 小于零 c. 等于零 d. 或大于零或小于零 6. 增强型NMOS 管的开启电压__________。 a. 大于零 b. 小于零 c. 等于零 d. 或大于零或小于零 7. 只有__________场效应管才能采取自偏压电路。 a. 增强型 b. 耗尽型 c. 结型 d. 增强型和耗尽型 8. 分压式电路中的栅极电阻R G 一般阻值很大,目的是__________。 a. 设置合适的静态工作点 b. 减小栅极电流 c. 提高电路的电压放大倍数 d. 提高电路的输入电阻 / 9. 源极跟随器(共漏极放大器)的输出电阻与___________有关。 a. 管子跨导g m b. 源极电阻R S c. 管子跨导g m 和源极电阻R S 10. 某场效应管的I DSS 为6mA ,而I DQ 自漏极流出,大小为8mA ,则该管是_______。 a. P 沟道结型管 b. N 沟道结型管 c. 增强型PMOS 管 d. 耗尽型PMOS 管 e. 增强型NMOS 管 f. 耗尽型NMOS 管 解答: ,c 4. a 7. b,c 8. d 、 4-2 已知题4-2图所示中各场效应管工作在恒流区,请将管子类型、电源V DD 的极性(+、-)、u GS 的极性(>0,≥0,<0,≤0,任意)分别填写在表格中。 D DD (a )题4-2图 D DD (b ) D DD (c )D DD (d ) D DD (e )D DD (f ) 解:

场效应管驱动电阻的经典计算方法

Q L Rg Cgs DR IVE VC C 12V

驱动电压: 驱动电流: 可以看到当Rg比较小时驱动电压上冲会比较高,震荡比较多,L越大越明显,此时会对MOSFET及其他器件性能产生影响。但是阻值过大时驱动波形上升比较慢,当MOSFET有较大电流通过时会有不利影响。 此外也要看到,当L比较小时, 此时驱动电流的峰值比较大,而一般 IC的驱动电流输出能力都是有一定 限制的,当实际驱动电流达到IC输 出的最大值时,此时IC输出相当于 一个恒流源,对Cgs线性充电,驱动 电压波形的上升率会变慢。电流曲线 就可能如左图所示(此时由于电流不 变,电感不起作用)。这样可能会对 IC的可靠性产生影响,电压波形上升 段可能会产生一个小的台阶或毛刺。

TR(nS) 19 49 230 20 45 229 Rg(ohm) 10 22 100 10 22 100 L(nH) 30 30 30 80 80 80 可以看到L 对上升时间的影响比较小,主要还是Rg 影响比较大。上升时间可以用2*Rg*Cgs 来近似估算,通常上升时间小于导通时间的二十分之一时,MOSFET 开关导通时的损耗不致于会太大造成发热问题,因此当MOSFET 的最小导通时间确定后Rg 最大值 也就确定了 Rg 140Ton_min Cgs ,一般Rg 在取值范围内越小越好,但是考虑EMI 的话可以 适当取大。 以上讨论的是MOSFET ON 状态时电阻的选择,在MOSFET OFF 状态时为了保证栅极电荷快速泻放,此时阻值要尽量小,这也是Rsink

正确选取MOS管之四大法则

mos管是金属(metal)-氧化物(oxid)-半导体(semiconductor)场效应晶体管,或者称是金属-绝缘体(insulator)-半导体。MOS管的source 和drain是可以对调的,他们都是在P型backgate中形成的N型区。在多数情况下,这个两个区是一样的,即使两端对调也不会影响器件的性能。这样的器件被认为是对称的。 选择好MOS管器件的第一步是决定采用N沟道还是P沟道MOS管。在典型的功率应用中,当一个MOS管接地,而负载连接到干线电压上时,该MOS管就构成了低压侧开关。在低压侧开关中,应采用N沟道MOS管,这是出于对关闭或导通器件所需电压的考虑。当MOS管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道MOS管,这也是出于对电压驱动的考虑。 确定所需的额定电压,或者器件所能承受的最大电压。额定电压越大,器件的成本就越高。根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOS管不会失效。就选择MOS管而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS.知道MOS 管能承受的最大电压会随温度而变化这点十分重要。我们须在整个工作温度范围内测试电压的变化范围。额定电压必须有足够的余量覆盖这个变化范围,确保电路不会失效。需要考虑的其他安全因素包括由开关电子设备(如电机或变压器)诱发的电压瞬变。不同应用的额定电压也有所不同;通常,便携式设备为20V、FPGA电源为20~30V、85~220VAC应用为450~600V. 法则之二:确定MOS管的额定电流 该额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,确保所选的MOS管能承受这个额定电流,即使在系统产生尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。在连续导通模式下,MOS管处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。 选好额定电流后,还必须计算导通损耗。在实际情况下,MOS管并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。MOS 管在"导通"时就像一个可变电阻,由器件的RDS(ON)所确定,并随温度而显着变化。器件的功率耗损可由Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。对MOS管施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。注意RDS(ON)电阻会随着电流轻微上升。关于RDS(ON)电阻的各种电气参数变化可在制造商提供的技术资料表中查到。 法则之三:选择MOS管的下一步是系统的散热要求 须考虑两种不同的情况,即最坏情况和真实情况。建议采用针对最坏情况的计算结果,因为这个结果提供更大的安全余量,能确保系统不会失效。在MOS管的资料表上还有一些需要注意的测量数据;器件的结温等于最大环境温度加上热阻与功率耗散的乘积(结温=最大环境温度+[热阻×功率耗散])。根据这个式子可解出系统的最大功率耗散,即按定义相等于I2×RDS(ON)。我们已将要通过器件的最大电流,可以计算出不同温度下的RDS(ON)。另外,还要做好电路板及其MOS管的散热。

场效应管的选型及应用概览

场效应管的选型及应用概览 场效应管广泛使用在模拟电路与数字电路中,和我们的生活密不可分。场效应管的优势在于:首先驱动电路比较简单。场效应管需要的驱动电流比BJT则小得多,而且通常可以直接由CMOS或者集电极开路TTL驱动电路驱动;其次场效应管的开关速度比较迅速,能够以较高的速度工作,因为没有电荷存储效应;另外场效应管没有二次击穿失效机理,它在温度越高时往往耐力越强,而且发生热击穿的可能性越低,还可以在较宽的温度范围内提供较好的性能。场效应管已经得到了大量应用,在消费电子、工业产品、机电设备、智能手机以及其他便携式数码电子产品中随处可见。 近年来,随着汽车、通信、能源、消费、绿色工业等大量应用场效应管产品的行业在近几年来得到了快速的发展,功率场效应管更是备受关注。据预测,2010-2015年中国功率MOSFET市场的总体复合年度增长率将达到13.7%。虽然市场研究公司 iSuppli 表示由于宏观的投资和经济政策和日本地震带来的晶圆与原材料供应问题,今年的功率场效应管市场会放缓,但消费电子和数据处理的需求依然旺盛,因此长期来看,功率场效应管的增长还是会持续一段相当长的时间。 技术一直在进步,功率场效应管市场逐渐受到了新技术的挑战。例如,业内有不少公司已经开始研发GaN功率器件,并且断言硅功率场效应管的性能可提升的空间已经非常有限。不过,GaN 对功率场效应管市场的挑战还处于非常初期的阶段,场效应管在技术成熟度、供应量等方面仍然占据明显的优势,经过三十多年的发展,场效应管市场也不会轻易被新技术迅速替代。 五年甚至更长的时间内,场效应管仍会占据主导的位置。场效应管也仍将是众多刚入行的工程师都会接触到的器件,本期内容将会从基础开始,探讨场效应管的一些基础知识,包括选型、关键参数的介绍、系统和散热的考虑等为大家做一些介绍。 一.场效应管的基础选型 场效应管有两大类型:N沟道和P沟道。在功率系统中,场效应管可被看成电气开关。当在N沟道场效应管的栅极和源极间加上正电压时,其开关导通。导通时,电流可经开关从漏极流向源极。漏极和源极之间存在一个内阻,称为导通电阻RDS(ON)。必须清楚场效应管的栅极是个高阻抗端,因此,总是要在栅极加上一个电压。如果栅极为悬空,器件将不能按设计意图工作,并可能在不恰当的时刻导通或关闭,导致系统产生潜在的功率损耗。当源极和栅极间的电压为零时,开关关闭,而电流停止通过器件。虽然这时器件已经关闭,但仍然有微小电流存在,这称之为漏电流,即IDSS。 作为电气系统中的基本部件,工程师如何根据参数做出正确选择呢?本文将讨论如何通过四步来选择正确的场效应管。 1)沟道的选择。为设计选择正确器件的第一步是决定采用N沟道还是P沟道场效应管。在典型的功率应用中,当一个场效应管接地,而负载连接到干线电压上时,该场效应管就构成了低压侧开关。在低压侧开关中,应采用N沟道场效应管,这是出于对关闭或导通器件所需电压的考虑。当场效应管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道场效应管,这也是出于对电压驱动的考虑。

MOS管功耗计算

计算功率耗散 要确定一个MOSFET场效应管是否适于某一特定应用,需要对其功率耗散进行计算。耗散主要包括阻抗耗散和开关耗散: PDDEVICETOTAL=PDRESISTIVE+PDSWITCHING 由于MOSFET的功率耗散很大程度上取决于其导通电阻(RDS(ON)),计算RDS(ON)看似是一个很好的着手之处。但MOSFET的导通电阻取决于结温TJ。返过来,TJ 又取决于MOSFET中的功率放大器耗散和MOSFET的热阻(ΘJA)。这样,很难确定空间从何处着手。由于在功率耗散计算中的几个条件相互依赖,确定其数值时需要迭代过程(图1)。 这一过程从首先假设各MOSFET的结温开始,同样的过程对于每个MOSFET单独进行。MOSFET的功率耗散和允许的环境温度都要计算。

当允许的周围温度达到或略高于电源封装内和其供电的电路所期望的最高温度时结束。使计算的环境温度尽可能高看似很诱人,但这通常不是一个好主意。这样做将需要更昂贵的MOSFET、在MOSFET下面更多地使用铜片,或者通过更大或更快的风扇使空气流动。所有这些都没有任何保证。 在某种意义上,这一方案蒙受了一些“回退”。毕竟,环境温度决定MOSFET的结温,而不是其他途径。但从假设结温开始所需要的计算,比从假设环境温度开始更易于实现。 对于开关MOSFET和同步整流器两者,都是选择作为此迭代过程开始点的最大允许裸片结温(TJ(HOT))。大多数MOSFET数据参数页只给出25°C的最大 RDS(ON),,但近来有一些也提供了125°C的最大值。MOSFETRDS(ON)随着温度而提高,通常温度系数在0.35%/°C至0.5%/°C的范围内(图2)。如果对此有所怀疑,可以采用更悲观的温度系数和MOSFET在25°C规格参数(或125°C的规格参数,如果有提供的话)计算所选择的TJ(HOT)处的最大RDS(ON): RDS(ON)HOT=RDS(ON)SPEC×[1+0.005×(TJ(HOT)?TSPEC)] 其中,RDS(ON)SPEC为用于计算的MOSFET导通电阻,而TSPEC为得到RDS(ON)SPEC 的温度。如下描述,用计算得到的RDS(ON)HOT确定MOSFET和同步整流器的功率耗散。讨论计算各MOSFET在假定裸片温度的功率耗散的段落之后,是对完成此迭代过程所需其他步骤的描述。

mos管选型指导

MOS管选型指导 正确选择MOS管是很重要的一个环节,MOS管选择不好有可能影响到整个电路的效率和成本,了解不同的MOS管部件的细微差别及不同开关电路中的应力能够帮助工程师避免诸多问题,下面我们来学习下MOS管的正确的选择方法。 第一步:选用N沟道还是P沟道 为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOS管。在典型的功率应用中,当一个MOS管接地,而负载连接到干线电压上时,该MOS管就构成了低压侧开关。在低压侧开关中,应采用N沟道MOS管,这是出于对关闭或导通器件所需电压的考虑。当MOS管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P 沟道MOS管,这也是出于对电压驱动的考虑。 要选择适合应用的器件,必须确定驱动器件所需的电压,以及在设计中最简易执行的方法。下一步是确定所需的额定电压,或者器件所能承受的最大电压。额定电压越大,器件的成本就越高。根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOS管不会失效。就选择MOS管而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS。知道MOS管能承受的最大电压会随温度而变化这点十分重要。设计人员必须在整个工作温度范围内测试电压的变化范围。额定电压必须有足够的余量覆盖这个变化范围,确保电路不会失效。设计工程师需要考虑的其他安全因素包括由开关电子设备(如

电机或变压器)诱发的电压瞬变。不同应用的额定电压也有所不同;通常,便携式设备为20V、FPGA电源为20~30V、85~220VAC应用为450~600V。 第二步:确定额定电流 第二步是选择MOS管的额定电流。视电路结构而定,该额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,设计人员必须确保所选的MOS管能承受这个额定电流,即使在系统产生尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。在连续导通模式下,MOS管处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。 选好额定电流后,还必须计算导通损耗。在实际情况下,MOS管并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。MOS管在“导通”时就像一个可变电阻,由器件的RDS(ON)所确定,并随温度而显著变化。器件的功率耗损可由Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。对MOS管施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。对系统设计人员来说,这就是取决于系统电压而需要折中权衡的地方。对便携式设计来说,采用较低的电压比较容易(较为普遍),而对于工业设计,可采用较高的电压。注意RDS(ON)电阻会随着电流轻微上升。关于RDS(ON)电阻的各种电气参数变化可在制造商提供的技术资料表中查到。 技术对器件的特性有着重大影响,因为有些技术在提高最大VDS时往往会使RDS(ON)增大。对于这样的技术,如果打算降低VDS和RDS(ON),那么就得增加晶片尺寸,从而增加与之配套的封装尺寸及相关的开发成本。业界现有好几种试图控制晶片尺寸增加的技术,其中最主要的是沟道和电荷平衡技术。 在沟道技术中,晶片中嵌入了一个深沟,通常是为低电压预留的,用于降低导通电阻RDS(ON)。为了减少最大VDS对RDS(ON)的影响,开发过程中采用了外延生长柱/蚀刻柱工艺。例如,飞兆半导体开发了称为SupeRFET的技术,针对RDS(ON)的降低而增加了额外的制造步骤。这种对RDS(ON)的关注十分重要,因为当标准MOSFET的击穿电压升高时,RDS(ON)会随之呈指数级增加,并且导致晶片尺寸增大。SuperFET工艺将RDS(ON)与晶片尺寸间的指数关系变成了线性关系。这样,SuperFET器件便可在小晶片尺寸,甚至在击穿电压达到600V的情况下,实现理想的低RDS(ON)。结果是晶片尺寸可减小达35%。而对于最终用户来说,这意味着封装尺寸的大幅减小。 第三步:确定热要求 选择MOS管的下一步是计算系统的散热要求。设计人员必须考虑两种不同的情况,即最坏情况和真实情况。建议采用针对最坏情况的计算结果,因为这个结果提供更大的安全余量,能确保系统不会失效。在MOS管的资料表上还有一些需要注意的测量数据;比如封装器件的半导体结与环境之间的热阻,以及最大的结温。

七步掌握MOS管选型技巧

七步掌握MOS管选型技巧 MOS管是电子制造的基本元件,但面对不同封装、不同特性、不同品牌的MOS管时,该如何抉择?有没有省心、省力的遴选方法?下面我们就来看一下老司机是如何做的。 选择到一款正确的MOS管,可以很好地控制生产制造成本,最为重要的是,为产品匹配了一款最恰当的元器件,这在产品未来的使用过程中,将会充分发挥其“螺丝钉”的作用,确保设备得到最高效、最稳定、最持久的应用效果。 那么面对市面上琳琅满目的MOS管,该如何选择呢?下面,我们就分7个步骤来阐述MOS管的选型要求。 首先是确定N、P沟道的选择 MOS管有两种结构形式,即N沟道型和P沟道型,结构不一样,使用的电压极性也会不一样,因此,在确定选择哪种产品前,首先需要确定采用N沟道还是P沟道MOS管。 MOS管的两种结构:N沟道型和P沟道型 在典型的功率应用中,当一个MOS管接地,而负载连接到干线电压上时,该MOS管就构成了低压侧开关。在低压侧开关中,应采用N沟道MOS管,这是出于对关闭或导通器件所需电压的考虑。 当MOS管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P 沟道MOS管,这也是出于对电压驱动的考虑。 要选择适合应用的器件,必须确定驱动器件所需的电压,以及在设计中最简易执行的方法。

第二步是确定电压 额定电压越大,器件的成本就越高。从成本角度考虑,还需要确定所需的额定电压,即器件所能承受的最大电压。根据实践经验,额定电压应当大于干线电压或总线电压,一般会留出1.2~1.5倍的电压余量,这样才能提供足够的保护,使MOS管不会失效。 就选择MOS管而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS。由于MOS管所能承受的最大电压会随温度变化而变化,设计人员必须在整个工作温度范围内测试电压的变化范围。额定电压必须有足够的余量覆盖这个变化范围,确保电路不会失效。 此外,设计工程师还需要考虑其他安全因素:如由开关电子设备(常见有电机或变压器)诱发的电压瞬变。另外,不同应用的额定电压也有所不同;通常便携式设备选用20V的MOS 管,FPGA电源为20~30V的MOS管,85~220VAC应用时MOS管VDS为450~600V。 第三步为确定电流 确定完电压后,接下来要确定的就是MOS管的电流。需根据电路结构来决定,MOS管的额定电流应是负载在所有情况下都能够承受的最大电流;与电压的情况相似,MOS管的额定电流必须能满足系统产生尖峰电流时的需求。 电流的确定需从两个方面着手:连续模式和脉冲尖峰。在连续导通模式下,MOS管处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。 选好额定电流后,还必须计算导通损耗。在实际情况下,MOS管并不是理想的器件,因为在导电过程中会有电能损耗,也就是导通损耗。MOS管在“导通”时就像一个可变电阻,由器件的导通电阻RDS(ON)所确定,并随温度而显著变化。 器件的功率损耗PTRON=Iload2×RDS(ON)计算(Iload:最大直流输出电流),由于导通电阻会随温度变化,因此功率耗损也会随之按比例变化。对MOS管施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。 对系统设计人员来说,这就需要折中权衡。 对便携式设计来说,采用较低的电压即可(较为普遍);而对于工业设计来说,可采用较高的电压。需要注意的是,RDS(ON)电阻会随着电流轻微上升。 技术对器件的特性有着重大影响,因为有些技术在提高最大VDS(漏源额定电压)时往往会使RDS(ON)增大。对于这样的技术,如果打算降低VDS和RDS(ON),那么就得增加晶片

场效应管知识题目解析

第四章场效应管基本放大电路 4-1 选择填空 1.场效应晶体管是用_______控制漏极电流的。 a. 栅源电流 b. 栅源电压 c. 漏源电流 d. 漏源电压 2.结型场效应管发生预夹断后,管子________。 a. 关断 b. 进入恒流区 c. 进入饱和区 d. 可变电阻区3.场效应管的低频跨导g m是________。 a. 常数 b. 不是常数 c. 栅源电压有关 d. 栅源电压无关 4. 场效应管靠__________导电。 a. 一种载流子 b. 两种载流子 c. 电子 d. 空穴 5. 增强型PMOS管的开启电压__________。 a. 大于零 b. 小于零 c. 等于零 d. 或大于零或小于零 6. 增强型NMOS管的开启电压__________。 a. 大于零 b. 小于零 c. 等于零 d. 或大于零或小于零 7. 只有__________场效应管才能采取自偏压电路。 a. 增强型 b. 耗尽型 c. 结型 d. 增强型和耗尽型 8. 分压式电路中的栅极电阻R G一般阻值很大,目的是__________。 a. 设置合适的静态工作点 b. 减小栅极电流 c. 提高电路的电压放大倍数 d. 提高电路的输入电阻 9. 源极跟随器(共漏极放大器)的输出电阻与___________有关。 a. 管子跨导g m b. 源极电阻R S c. 管子跨导g m和源极电阻R S 10. 某场效应管的I DSS为6mA,而I DQ自漏极流出,大小为8mA,则该管是_______。 a. P沟道结型管 b. N沟道结型管 c. 增强型PMOS管 d. 耗尽型PMOS管 e. 增强型NMOS管 f. 耗尽型NMOS管 解答: 1.b 2.b 3.b,c 4. a 5.b 6.a 7. b,c 8. d 9.c 10.d 4-2 已知题4-2图所示中各场效应管工作在恒流区,请将管子类型、电源V DD的极性(+、-)、u GS的极性(>0,≥0,<0,≤0,任意)分别填写在表格中。

场效应管的主要参数和特点

§3.2场效应管的主要参数和特点 一:场效应管的主要参数 (1)直流参数 饱和漏极电流I DSS它可定义为:当栅、源极之间的电压等于零,而漏、源极之间的电压大于夹断电压时,对应的漏极电流。 夹断电压U P它可定义为:当U DS一定时,使I D减小到一个微小的电流时所需的U GS 开启电压U T 它可定义为:当U DS一定时,使I D到达某一个数值时所需的U GS (2)交流参数 低频跨导g m它是描述栅、源电压对漏极电流的控制作用。 极间电容场效应管三个电极之间的电容,它的值越小表示管子的性能越好。 (3)极限参数 漏、源击穿电压当漏极电流急剧上升时,产生雪崩击穿时的U DS。 栅极击穿电压结型场效应管正常工作时,栅、源极之间的PN结处于反向偏置状态,若电流过高,则产生击穿现象。 二:场效应管的特点 场效应管具有放大作用,可以组成放大电路,它与双极性三极管相比具有以下

特点: (1)场效应管是电压控制器件,它通过U GS来控制I D; (2)场效应管的输入端电流极小,因此它的输入电阻很高; (3)它是利用多数载流子导电,因此它的温度稳定性较好; (4)它组成的放大电路的电压放大系数要小于三极管组成放大电路的电压放大系数; (5)场效应管的抗辐射能力强。 §3.3 总结 这一节我们对前面所述的内容进行总结一下,以突出重点为目的。 下面我们通过表格把各种场效应管的符号和特性曲线表示出来:

我们这一节要掌握的问题是: (1)场效应管与三极管相比所具有的特点; (2)根据输出特性或转移特性能判断出是什麽类型的管子(这一点是我们学习 的重点) (3)结型和绝缘栅型场效应管的工作特点和原理(只要求我们了解)。

第四章--场效应管习题答案..

第四章 场效应管基本放大电路 4-1选择填空 1 ?场效应晶体管是用 _________ 控制漏极电流的。 a.栅源电流 b.栅源电压 c.漏源电流 2 ?结型场效应管发生预夹断后,管子 _ a.关断 b.进入恒流区 3 .场效应管的低频跨导 g m 是 _________ a.常数 b.不是常数 场效应管靠 ___________导电。 a. 一种载流子 b.两种载流子 增强型PMOS 管的开启电压 _________ a.大于零 增强型NMOS a.大于零 只有 a.增强型 o c.进入饱和区 c.栅源电压有关 4. 5. 6. 7. 8. 9. c.电子 d.漏源电压 d.可变电阻区 d.栅源电压无关 d.空穴 o 二于零 b.小于零 管的开启电压 。 b.小于零 c.等于零 —场效应管才能采取自偏压电路。 b.耗尽型 c.结型 R G 一般阻值很大,目的 是 d. d. 或大于零或小于零 或大于零或小于零 d.增强型和耗尽型 分压式电路中的栅极电阻 a.设置合适的静态工作点 c.提高电路的电压放大倍数 源极跟随器(共漏极放大器)的输出电阻与 a.管子跨导g m b.源极电阻R S b.减小栅极电流 d.提高电路的输入电阻 有关。 c.管子跨导g m 和源极电阻R S 10.某场效应管的I DSS 为6mA , a. P 沟道结型管 c.增强型PMOS 管 e.增强型NMOS 管 而|DQ 自漏极流出,大小为 8mA ,则该管是 b. N 沟道结型管 耗尽型PMOS 管 耗尽型NMOS 管 d. f. 解答: 1.b 2.b 3.b,c 4. a 5.b 6.a 7. b,c 8. d 9.c 10.d 请将管子类型、 w 0,任意)分别填写在表格中。 4-2已知题4-2图所示中各场效应管工作在恒流区, U GS 的极性(>0 , > 0 , <0, V DD i V DD 电源V DD 的极性(+、-)、 R D R D VT VT (a) (b ) V DD R D (c) 题4-2图 R D (d) (e ) ■ V DD G /. S | (f) R D VT 图号 项目 (a ) (b) (c) (d) (e) (f) 沟道类型 N P N N P P 增强型或 耗 尽型 结型 结型 增强型 耗尽型 增强型 耗尽型 解:

场效应管的原理和基础知识

基本概念 场效应管是一种受电场控制地半导体器件(普通三极管地工作是受电流控制地器件).场效应管应具有高输入阻抗,较好地热稳定性、抗辐射性和较低地噪声.对夹断电压适中地场效应管,可以找到一个几乎不受温度影响地零温度系数工作点,利用这一特性,可使电路地温度稳定性达到最佳状态.电子电路中常用场效应管作放大电路地缓冲级、模拟开关和恒流源电路. 场效应管按结构可分为结型场效应管(缩写为)和绝缘栅场效应管(缩写为),从导电方式看,场效应管分为型沟道型与型沟道型.绝缘栅型场效应管有增强型和耗尽型两种,而只有耗尽型. 一、基本结构 场效应管是利用改变电场来控制半导体材料地导电特性,不是像三极管那样用电流控制结地电流.因此,场效应管可以工作在极高地频率和较大地功率.此外,场效应管地制作工艺简单,是集成电路地基本单元. 场效应管有结型和绝缘栅型两种主要类型.每种类型地场效应管都有栅极、源极和漏极三个工作电极,同时,每种类型地场效应管都有沟道和沟道两种导电结构. 绝缘栅型场效应管又叫做管.根据在外加电压时是否存在导电沟道,绝缘栅场效应管又可分为上增强型和耗尽型.增强型管在外加电压时不存在导电沟道,而耗尽型地氧化绝缘层中加入了大量地正离子,即使在时也存在导电沟道. 沟道绝缘栅型 为栅极为源极为漏极衬底 结型场效应管地结构与绝缘栅场效应管地结构基本相同,主要地区别在于栅极与通道半导体之间没有绝缘.

沟道和沟道结型 从场效应管地基本结构可以看出,无论是绝缘栅型还是结型,场效应管都是两个背靠背地结.电流通路不是由结形成地,而是依靠漏极和源极之间半导体地导电状态来决定地. 二、电路符号 基本参数 场效应管地主要技术参数,可分为直流参数和交流参数两大类. 一、夹断电压和开启电压 一般是对结型管而言,当栅源之间地反向电压增加到一定数以后,不管漏源电压大小都不存在漏电流.这个使开始为零地电压叫作管子地夹断电压一般是对管而言,表示开始出现时地栅源电压值.对沟道增强型、沟道耗尽型为正值,对沟道耗尽型、沟道增强型为负值. 二、饱和漏电流 当而足够大时,漏电流地饱和值,就是管子地饱和漏电流,常用符号表示. 三、栅极电流 当栅极加上一定地反向电压时,会有极小地栅极电流,用符号表示.对结型场效应管在之间;对于而言一般小于安.正是由于栅极电流极小,所以场效应管具有极高地阻抗. 四、通导电阻

正确选择MOS管的步骤

MOS管正确选择的步骤 正确选择MOS管是很重要的一个环节,MOS管选择不好有可能影响到整个电路的效率和成本,了解不同的MOS管部件的细微差别及不同开关电路中的应力能够帮助工程师避免诸多问题,下面我们来学习下MOS管的正确的选择方法。 第一步:选用N沟道还是P沟道 为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOS管。在典型的功率应用中,当一个MOS管接地,而负载连接到干线电压上时,该MOS管就构成了低压侧开关。在低压侧开关中,应采用N沟道MOS管,这是出于对关闭或导通器件所需电压的考虑。当MOS管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P 沟道MOS管,这也是出于对电压驱动的考虑。 要选择适合应用的器件,必须确定驱动器件所需的电压,以及在设计中最简易执行的方法。下一步是确定所需的额定电压,或者器件所能承受的最大电压。额定电压越大,器件的成本就越高。根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOS管不会失效。就选择MOS管而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS。知道MOS管能承受的最大电压会随温度而变化这点十分重要。设计人员必须在整个工作温度范围内测试电压的变化范围。额定电压必须有足够的余量覆盖这个变化范围,确保电路不会失效。设计工程师需要考虑的其他安全因素包括由开关电子设备(如电机或变压器)诱发的电压瞬变。不同应用的额定电压也有所不同;通常,便携式设备为20V、FPGA电源为20~30V、85~220VAC应用为450~600V。 第二步:确定额定电流 第二步是选择MOS管的额定电流。视电路结构而定,该额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,设计人员必须确保所选的MOS管能承受这个额定电流,即使在系统产生尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。在连续导通模式下,MOS管处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。 选好额定电流后,还必须计算导通损耗。在实际情况下,MOS管并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。MOS管在“导通”时就像一个可变电阻,由器件的RDS(ON)所确定,并随温度而显著变化。器件的功率耗损可由Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。对MOS管施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。对系统设计人员来说,这就是取决于系统电压而需要折中权衡的地方。对便携式设计来说,采用较低的电压比较容易(较为普遍),而对于工业设计,可采用较高的电压。注意RDS(ON)电阻会随着电流轻微上升。关于RDS(ON)电阻的各种电气参数变化可在制造商提供的技术资料表中查到。

.场效应管放大器思考题和习题

1. 场效应管又称为单极性管,因为_______;半导体三极管又称为双极性管,因为 _______。 2. 半导体三极管通过基极电流控制输出电流,所以属于_______控制器件,其输入 电阻_______;场效应管通过控制栅极电压,控制输出电流,所以属于_______控制器件,其输入电阻_______。 3. 简述N 沟道结型场效应管的工作原理。 4. 简述绝缘栅N 沟道增强型场效应管的工作原理。 5. 绝缘栅N 沟道增强型与耗尽型场效应管有何不同? 6. 场效应管的转移特性曲线如图4-22所示,试标出管子的类型(N 沟道还是 P 沟道,增强型还是耗尽型,结型还是绝缘栅型) 7. 已知N 沟道结型场效应管的DDS I =2mA ,P U =-4V ,画出它的特性转移曲线。 8. 已知某MOS 场效应管的输出特性曲线如图4-23所示,分别画出DS u =9V 、6V 、3V 时的特性转移曲线。 9. 场效应管放大电路及管子转移特性如图4-24所示。 (1) 用图解法计算静态工作点参数DQ I 、GSQ U 、DSQ U 。 (2) 若静态工作点处跨导m g =2/mA V ,计算u A 、i r 、0r 。 10. 源极跟随器电路如图4-25所示,设场效应管参数P U =-2V ,DDS I =1mA 。 (1) 用解析法确定静态工作点DQ I 、GSQ U 、DSQ U 及工作点跨导。 (2) 计算u A 、i r 、0r 。 11. 由场效应管及三极管组成二级放大电路如图4-26所示,场效应管参数为 DDS I =2mA ,m g =1/mA V ;三极管参数为1bb r =86Ω,β=80。 (1) 估算电路的静态工作点 (2) 计算该二极放大电路的电压放大倍数u A 及输入电阻i r 和输出电阻0r 。

场效应管习题答案.docx

第四章场效应管基本放大电路 ? 4-1选择填空 1.场效应晶体管是用_______控制漏极电流的。 a.栅源电流 b.栅源电压 c.漏源电流 d.漏源电压 2.结型场效应管发生预夹断后,管子________。 a.关断 b.进入恒流区 c.进入饱和区 d.可变电阻区 3.场效应管的低频跨导 g m是 ________。 a.常数 b.不是常数 c.栅源电压有关 d.栅源电压无关 4.场效应管靠 __________ 导电。 a.一种载流子 b.两种载流子 c.电子 d.空穴 5.增强型 PMOS管的开启电压 __________。 a.大于零 b.小于零 c.等于零 d.或大于零或小于零 6.增强型 NMOS管的开启电压 __________。 a.大于零 b.小于零 c.等于零 d.或大于零或小于零 7.只有 __________场效应管才能采取自偏压电路。 a.增强型 b.耗尽型 c.结型 d.增强型和耗尽型 8.分压式电路中的栅极电阻 R G一般阻值很大,目的是 __________ 。 a.设置合适的静态工作点 b.减小栅极电流 c.提高电路的电压放大倍数 d.提高电路的输入电阻 9.源极跟随器(共漏极放大器)的输出电阻与___________有关。 a.管子跨导g m b.源极电阻R S c.管子跨导g m和源极电阻R S 10.某场效应管的I DSS为 6mA,而 I DQ自漏极流出,大小为8mA,则该管是 _______。 a. P 沟道结型管 b. N沟道结型管 c.增强型PMOS管 d.耗尽型PMOS管 e.增强型NMOS管 f.耗尽型NMOS管 解答: ,c 4. a7. b,c 8. d 4-2已知题4-2 图所示中各场效应管工作在恒流区,请将管子类型、电源V DD的极性(+、-)、u GS的极性(>0,≥0,<0,≤0,任意)分别填写在表格中。 解: 图号 (a)(b)(c)(d)(e)(f) 项目 沟道类型N P N N P P 增强型或 结型结型增强型耗尽型增强型耗尽型耗尽型 电源 V D极 +-++--性 U GS极性≤0≥ 0>0任意<0任意 4-3 试分析如题4-3 图所示各电路能否正常放大,并说明理由。 解: (a)不能。

MOS管正确选择的步骤

MOS管正确选择的步骤 浏览:898 | 更新:2013-10-31 15:08 正确选择MOS管是很重要的一个环节,MOS管选择不好有可能影响到整个电路的效率和成本,了解不同的MOS管部件的细微差别及不同开关电路中的应力能够帮助工程师避免诸多问题,下面我们来学习下MOS管的正确的选择方法。 第一步:选用N沟道还是P沟道 为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOS管。在典型的功率应用中,当一个MOS管接地,而负载连接到干线电压上时,该MOS管就构成了低压侧开关。在低压侧开关中,应采用N沟道MOS管,这是出于对关闭或导通器件所需电压的考虑。当MOS管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道MOS 管,这也是出于对电压驱动的考虑。 要选择适合应用的器件,必须确定驱动器件所需的电压,以及在设计中最简易执行的方法。下一步是确定所需的额定电压,或者器件所能承受的最大电压。额定电压越大,器件的成本就越高。根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOS管不会失效。就选择MOS管而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS.知道MOS管能承受的最大电压会随温度而变化这点十分重要。设计人员必须在整个工作温度范围内测试电压的变化范围。额定电压必须有足够的余量覆盖这个变化范围,确保电路不会失效。设计工程师需要考虑的其他安全因素包括由开关电子设备(如电机或变压器)诱发的电压瞬变。不同应用的额定电压也有所不同;通常,便携式设备为20V、FPGA电源为20~30V、85~220VAC应用为450~600V. 第二步:确定额定电流 第二步是选择MOS管的额定电流。视电路结构而定,该额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,设计人员必须确保所选的MOS管能承受这个额定电流,即使在系统产生尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。在连续导通模式下,MOS管处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。 选好额定电流后,还必须计算导通损耗。在实际情况下,MOS管并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。MOS管在"导通"时就像一个可变电阻,由器件的RDS(ON)所确定,并随温度而显著变化。器件的功率耗损可由Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。对MOS管施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。对系统设计人员来说,这就是取决于系统电压而需要折中权衡的地方。对便携式设计来说,采用较低的电压比较容易(较为普遍),而对于工业设计,可采用较高的电压。注意RDS(ON)电阻会随着电流轻微上升。关于RDS(ON)电阻的各种电气参数变化可在制造商提供的技术资料表中查到。 技术对器件的特性有着重大影响,因为有些技术在提高最大VDS时往往会使RDS(ON)增大。对于这样的技术,如果打算降低VDS和RDS(ON),那么就得增加晶片尺寸,从而增加与之配套的封装尺寸及相关的开发成本。业界现有好几种试图控制晶片尺寸增加的技术,其中最主要的是沟道和电荷平衡技术。 在沟道技术中,晶片中嵌入了一个深沟,通常是为低电压预留的,用于降低导通电阻

mos管选型

MOS管选型 随着制造技术的发展和进步,系统设计人员必须跟上技术的发展步伐,才能为其设计挑选最合适的电子器件。MOSFET是电气系统中的基本部件,工程师需要深入了解它的关键特性及指标才能做出正确选择。本文将讨论如何根据RDS(ON)、热性能、雪崩击穿电压及开关性能指标来选择正确的MOSFET。 1 MOSFET的选择 o 1.1 第一步:选用N沟道还是P沟道 o 1.2 第二步:确定额定电流 o 1.3 第三步:确定热要求 o 1.4 第四步:决定开关性能 o 1.5 结论 MOSFET的选择 MOSFET有两大类型:N沟道和P沟道。在功率系统中,MOSFET可被看成电气开关。当在N沟道MOSFET的栅极和源极间加上正电压时,其开关导通。导通时,电流可经开关从漏极流向源极。漏极和源极之间存在一个内阻,称为导通电阻RDS(ON)。必须清楚MOSFET 的栅极是个高阻抗端,因此,总是要在栅极加上一个电压。如果栅极为悬空,器件将不能按设计意图工作,并可能在不恰当的时刻导通或关闭,导致系统产生潜在的功率损耗。当源极和栅极间的电压为零时,开关关闭,而电流停止通过器件。虽然这时器件已经关闭,但仍然有微小电流存在,这称之为漏电流,即IDSS。 第一步:选用N沟道还是P沟道 为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOSFET。在典型的功率应用中,当一个MOSFET接地,而负载连接到干线电压上时,该MOSFET就构成了低压侧开关。在低压侧开关中,应采用N沟道MOSFET,这是出于对关闭或导通器件所需电压的考虑。当MOSFET连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道MOSFET,这也是出于对电压驱动的考虑。要选择适合应用的器件,必须确定驱动器件所需的电压,以及在设计中最简易执行的方法。 下一步是确定所需的额定电压,或者器件所能承受的最大电压。额定电压越大,器件的成本就越高。根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOSFET不会失效。就选择MOSFET而言,必须确定漏极至源极间可能承受的最大

常用MOS管选型参考

常用MOS管选型参考 常用MOS管选型参考(转贴) IRFU020 50V 15A 42W NmOS场效应IRFPG42 1000V 4A 150W NmOS场效应IRFPF40 900V 4.7A 150W NmOS场效应IRFP9240 200V 12A 150W PmOS场效应IRFP9140 100V 19A 150W PmOS场效应IRFP460 500V 20A 250W NmOS场效应IRFP450 500V 14A 180W NmOS场效应IRFP440 500V 8A 150W NmOS场效应IRFP353 350V 14A 180W NmOS场效应IRFP350 400V 16A 180W NmOS场效应IRFP340 400V 10A 150W NmOS场效应IRFP250 200V 33A 180W NmOS场效应IRFP240 200V 19A 150W NmOS场效应IRFP150 100V 40A 180W NmOS场效应IRFP140 100V 30A 150W NmOS场效应IRFP054 60V 65A 180W NmOS场效应IRFI744 400V 4A 32W NmOS场效应IRFI730 400V 4A 32W NmOS场效应IRFD9120 100V 1A 1W NmOS场效应IRFD123 80V 1.1A 1W NmOS场效应IRFD120 100V 1.3A 1W NmOS场效应IRFD113 60V 0.8A 1W NmOS场效应IRFBE30 800V 2.8A 75W NmOS场效应IRFBC40 600V 6.2A 125W NmOS场效应IRFBC30 600V 3.6A 74W NmOS场效应IRFBC20 600V 2.5A 50W NmOS场效应IRFS9630 200V 6.5A 75W PmOS场效应IRF9630 200V 6.5A 75W PmOS场效应IRF9610 200V 1A 20W PmOS场效应IRF9541 60V 19A 125W PmOS场效应IRF9531 60V 12A 75W PmOS场效应IRF9530 100V 12A 75W PmOS场效应IRF840 500V 8A 125W NmOS场效应IRF830 500V 4.5A 75W NmOS场效应IRF740 400V 10A 125W NmOS场效应IRF730 400V 5.5A 75W NmOS场效应IRF720 400V 3.3A 50W NmOS场效应

相关文档
最新文档