钕铁硼有哪些用途

钕铁硼有哪些用途
钕铁硼有哪些用途

一、钕铁硼有哪些应用

钕铁硼永磁体是一种储能材料,可以在一定空间内产生恒定磁场。由于其极高的矫顽力和磁能积,特别是在20℃~150℃环境下

相对于其它永磁体的优异表现,使得钕铁硼永磁材料在多种领域特别是现代高科技领域获得了广泛应用。其应用从物理原理上我们可以分为以下几种:

1、电能--机械能转换,如:电动机,扬声器,VCM音圈电机等;

2、机械能--电能转换,如:发电机,受话器,测量仪表等;

3、机械能--机械能,如:磁分离,磁悬浮,磁传动,磁吊磁吸盘等;

4、利用磁场的物理效应,如:磁共振,磁化除蜡,磁化节油等.

二、钕铁硼由哪些材料组成

钕铁硼永磁体的主要原材料有稀土金属钕,金属元素铁和非金属元素硼(有时会添加铝,钴,镨,镝,铽,镓等),一般表达式为:

RE2TM14B(RE=Nd,Pr,Dy TM=Fe,Co)

钕铁硼三元系永磁材料是以Nd2Fe14B化合物作为基体的,其成分应与化合物Nd2Fe14B分子式相近。但完全按Nd2Fe14B成分配比时,磁体的磁性能很低,甚至无磁,只是实际的磁体当中钕和硼的含量比Nd2Fe14B化合物的钕和硼含量多时(即形成富钕相和富硼相)才能获得较好的永磁性能。

基体Nd2Fe14相

这个相是磁体的主相,它的体积百分数(在炼完钢锭后已基本固定)决定了磁体的剩磁(Br)。最大磁能积((BH)m),而成型时磁场取向就是

实现它的排列分布使这一分子结构的易磁化轴(C)都沿取向方向有序排列,从而实现更高的磁性能.

富B相

富B相在基体中以一定的化合物存在,它是一个非磁性相,对磁性能一般是有害的,但有富B相的存在反而使的钢锭容易破碎.

富Nd相

富Nd相的存在大部分以Nd-Fe化合物存在,它对在烧结过程中提高磁体的密度有十分重要的作用.由于它的性质非常活泼,所以很容易氧化形成氧化物相,对磁体的抗腐蚀性非常不利.但富Nd相相对多时,对钢锭的长晶有好处,可以减少α-Fe的析出。

大量的组织观察表明,烧结钕铁硼系的合金显微组织具有以下特征:

(1)基体相(主相)的晶粒呈多边形;

(2)富B相以孤立块状或颗粒状存在;

(3)富Nd相沿晶界或晶界交耦处分布;

(4)另外在基体中还有其他杂质,氧化物相和空洞等。

三,钕铁硼如何制造的

烧结钕铁硼永磁体是用粉末冶金工艺制造的。主要工序有:熔炼,制粉,成型取向,烧结,机械加工,表面处理等.其中氧含量的控制是衡量工艺水平高低的重要指标.

四,钕铁硼的磁性能可以持续多久

如果保存在适当的温度,湿度且无强外磁场,辐射和其它影响磁性

能因素的环境下,其磁性能几乎可以永远保持下去.

五,磁体性能会随着时间而降低吗?

假设环境适当,即使经过长时间的使用,磁体的磁性能损失也不会很大.所以在实际应用中,我们往往忽略时间因素对磁性能的影响. 六,主要有哪些因素会影响磁性能

①环境温度.由于烧结钕铁硼具有负的温度系数(αBr<-0.13%/℃,αHcj<-0.6%/℃),所以使用环境的瞬间最高温度和持续最高温度都会对磁体本身产生不同程度的退磁,包括可逆的和不可逆的,可恢复的和不可恢复的.

②环境湿度.钕铁硼本身是易腐蚀,氧化的,一般我们采取表面处理的方式来保护永磁体,但并不能从根本上解决环境湿度对磁体的影响.环境愈干燥,磁体的使用寿命就愈长久.

如何衡量磁性能的高低看,主要有三个参量:

剩磁Br(Residual Induction),单位Gauss,是衡量磁体对外所能提供磁场强弱的参量;

矫顽力Hc(Coercive Force),单位Oersteds,是衡量抗退磁能力的参量;

磁能积BHmax,单位Gauss-Oersteds,是表征所能存储能量多少的一个物理量.

七,什么是磁器件

由磁铁和一个或多个其它可以提高磁效能的导磁材料所装配起来的整件.

八,如何装配磁器件

用机械或粘胶的方式将磁铁和其它附件装配成所需要的磁体.磁器件的装配需要特殊的工装,材料,以及专业的人员.我公司具有装配磁器件的能力,可提供包括核磁共振磁体,制冷磁体等应用产品的装配服务,专业的工程师和全面的机加工能力是我们保证装配质量的基础. 九,烧结钕铁硼磁体可使用的最高温度是多少

磁铁最高使用温度取决于磁体本身的磁性能和工作点的选取.磁体所处工作点可用磁体的导磁系数来表示.对同一磁体而言,磁路的导磁系数愈高(即磁路愈闭合),磁铁的最高使用温度就愈高,磁铁的性能就愈稳定.所以磁铁的最高使用温度并不是一个确定的值,而是随着磁路的闭合程度而变化.烧结钕铁硼在给定工作点的前提下,比如:Pc=0.7,各牌号的最高使用温度如下:N牌号≤80℃, H牌号≤80℃, SH牌号≤80℃, UH牌号≤80℃, EH 牌号≤80℃.

如果实际工作温度接近于最高使用温度,而磁体出现了较大幅度的退磁,此时要么必须改进磁路,以提高磁路的磁导系数;要么必须选择更高牌号的性能档次,从而保证磁体的正常工作.

十,钕铁硼如何加工

钕铁硼必须在无磁状态下加工;由于磁体本身硬而脆的特点,必须采用专门的设备和工艺进行加工,如:磨削,切片,钻孔,线切割等;注意必须是专业人员进行操作.

十一,·磁铁的加工成本是多少

磁铁的加工成本主要受三个因素的影响:批量大小,规格形状,公

差尺寸.批量越小,加工成本越高;形状越复杂,加工成本越高;公差越严格,加工成本越高.

十二,·如何屏蔽或引导磁场

铁磁性材料可用来屏蔽磁场,一般我们用普通的铁板.但需要注意的是铁板的厚度,如果厚度达不到,铁板处于磁饱和状态,就只能屏蔽部分磁场,部分的磁力线依旧会发散出来.引导磁场形成磁路的关键在于选择高导磁率的材料以及合适的尺寸和形状,减少漏磁,即对磁路中的磁轭及极靴进行合理的配置.

十三,·可不可以直接用磁铁进行磁选

不可以!钕铁硼磁体易腐蚀,易碎裂,必须用隔磁材料保护磁体,将磁选介质同磁体隔离开进行.

十四,·磁铁的储存和运输有哪些注意事项

①要注意室内的湿度,必须维持在干燥的水平,温度不要超过室温;

②黑块或毛坯状态的产品存放时可适当涂油(一般的机油即可);

③电镀产品应真空密封或隔绝空气存放,以保证镀层的耐腐性能;

④充磁产品应当吸合在一起并装箱存放,以免吸起其它金属体;

⑤充磁产品存放应当远离磁盘,磁卡,磁带,计算机显示器,手表等对磁场敏感的物体.

磁铁充磁状态运输时应该屏蔽,特别是航空运输一定要彻底屏蔽. 十五,磁铁的操作有哪些注意事项

钕铁硼材质的特点是硬而脆,充磁后吸重是自身重量的600倍以

上,极易吸合磕碰.操作过程对于小规格应当注意避免磕碰致残,对于大规格更要注意的是人身的安全和防护.磁铁在装配紧固时,可用机械方式如螺栓,也可兼用胶粘等工艺.

十六,钕铁硼的性能价格比如何

钕铁硼磁体坏料的价格一般在100~300/kg元之间,成品的价格主要由五部分组成:材料成本,加工成本,表面处理成本,包装成本,劳力成本.

十七,钕铁硼和铁氧体的性能比较

从表面上看起来要比普通铁氧体高许多,但从单位体积的性能价格比角度衡量,钕铁硼有着显著的优势.跟普通的永磁铁氧体相比,钕铁硼的磁能积要高出近10倍,如要产生相同的磁场,则钕铁硼的体积就只有铁氧体的十分之一.

十八,钕铁硼磁体的表面磁场强度是多少

关于磁场强度的计算可以参见《技术交流》栏目中有关的经典公式,测试点距离磁体表面越远则场强越小.一般情况下估算时,这两个计算器是比较方便的.

十九,如何定购磁铁

为使我们能更有效地配合您的工作,我们需要您在下订单之前确认以下内容:

1、应用在何种状态?如电声,电机,磁选,核磁共振或者其它;

2、磁铁工作环境的估计温度,湿度,以及装配上的特殊要求;

3、如需毛坯或光柱,则加工成品的尺寸公差是多少,料头刀口是多

少;

4、要求磁铁的性能,规格,尺寸公差,表面处理等质量要求;

5、贵方验收标准或检测方式有哪些;

6、运输和包装的特殊要求;

7、批量大小.

钕铁硼应用范围

①电声领域:扬声器、受话器、传声器、报警器、舞台音响、汽车音响等。

②电子电器:永磁机构真空断路器、磁保持继电器、电度表、水表、计声器、干簧管、传感器等。

③电机领域:VCM、CDDVD-ROM、发电机、电动机、伺服电机、微形电机、马达、振动马达等。

④机械设备:磁分离、磁选机、磁吊、磁力机械等。

⑤医疗保健:核磁共振仪、医疗器械、磁疗保健品、磁化节油器等。

⑥其它行业:磁化防蜡器、管道除垢器、磁夹具、自动麻将机、磁性锁具、门窗磁、箱包磁、皮具磁、玩具磁、工具磁、工艺礼品包装等。

烧结钕铁硼永磁材料国家标准

烧结钕铁硼永磁材料国家标准 磁学名词 关于钕铁硼永磁体常用的衡量指标有以下四种: 剩磁(Br)单位为特斯拉(T)和高斯(Gs) 1T=10000Gs 将一个磁体在外磁场的作用下充磁到技术饱和后撤消外磁场,此时磁体表现的磁感应强度我们称之为剩磁。它表示磁体所能提供的最大的磁通值。从退磁曲线上可见,它对应于气隙为零时的情况,故在实际磁路中没有多少实际的用处。钕铁硼的剩磁一般是11500高斯以上。 磁感矫顽力(Hcb)单位是奥斯特(Oe)或安/米(A/m) 1A/m= 磁体在反向充磁时,使磁感应强度降为零所需反向磁场强度的值称之为磁感矫顽力(Hcb)。但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。钕铁硼的矫顽力一般是10000Oe以上。 内禀矫顽力(Hcj)单位为奥斯特(Oe)或安/米(A/m) 使磁体的磁化强度降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。在磁体使用中,磁体矫顽力越高,温度稳定性越好。 磁能积((BH)max ) 单位为兆高·奥(MGOe)或焦/米3(J/m3) 退磁曲线上任何一点的B和H的乘积既BH我们称为磁能积,而B×H的最大值称之为最大磁能积,为退磁曲线上的D点。磁能积是恒量磁体所储存能量大小的重要参数之一。在磁体使用时对应于一定能量的磁体,要求磁体的体积尽可能小。 ·各向同性磁体:任何方向磁性能都相同的磁体。 ·各向异性磁体:不同方向上磁性能会有不同;且存在一个方向,在该方向取向时所得磁性能最高的磁体。 烧结钕铁硼永磁体是各向异性磁体。 ·取向方向:各向异性的磁体能获得最佳磁性能的方向称为磁体的取向方向。也称作"取向轴","易磁化轴"。·磁滞回线:铁磁材料在经过充磁、退磁、反向充磁、再退磁周期性变化时,所获得的关于磁感应强度(横坐标)相对于磁场强度(纵坐标)变化的闭合曲线。 退磁曲线(即B-H曲线):磁滞回线中,位于第二象限中的部分我们称之为退磁曲线。也即我们所说的B-H的曲线。如图所示:·退磁曲线的膝点:磁体退磁曲线上发生突变、明显发生弯曲的点。室温时退磁曲线呈直线的磁体,在温度升高到一定程度时都会出现膝点。如果磁体的工作点在膝点以下,磁体在动态磁路中工作时会产生不可逆损失。 ·负载线:连接工作点和退磁曲线坐标原点的一条直线(见上图)。·磁化强度:指材料内部单位体积的磁矩矢量和,用M

烧结钕铁硼磁体可使用的最高温度是多少

烧结钕铁硼磁体可使用的最高温度是多少? 磁铁最高使用温度取决于磁体本身的磁性能和工作点的选取。磁体所处工作点可用磁体的导磁系数来表示。对同一磁体而言,磁路的导磁系数愈高(即磁路愈闭合),磁铁的最高使用温度就愈高,磁铁的性能就愈稳定。所以磁铁的最高使用温度并不是一个确定的值,而是随着磁路的闭合程度而变化。烧结钕铁硼在给定工作点的前提下,各牌号的最高使用温度如下: 如果实际工作温度接近于最高使用温度,而磁体出现了较大幅度的退磁,此时要么必须改进磁路,以提高磁路的磁导系数;要么必须选择更高牌号的性能档次,从而保证磁体的正常工作。 一、钕铁硼磁铁有哪些应用? 钕铁硼永磁体以其优异的性能、丰富的原料、合理的价格正得以迅猛的发展和广泛的应用。其主要应用在微特电机、永磁仪表、电子工业、汽车工业、石油化工、核磁共振装置、传感器,音响器材、磁悬浮系统、磁性传动机构和磁疗设备等方面。 二、钕铁硼由那些材料组成? 钕铁硼永磁铁的主要原材料有稀土金属钕(Nd)32%、金属元素铁(Fe)64%和非金属元素硼(B)1%(少量添加镝(Dy)、铽(Tb)、钴(Co)、铌(Nb)、镓(Ga)、铝(Al)、铜(Cu)等元素)。钕铁硼三元系永磁材料是以Nd2Fe14B化合物作为基体的,其成分应与化合物Nd2Fe14B分子式相近。但完全按Nd2Fe14B成分配比时,磁体的磁性能很低,甚至无磁。只是实际的磁体当中钕和硼的含量比Nd2Fe14B化合物的钕和硼含量多时才能获得较好的永磁性能。 三、钕铁硼的磁性能可以持续多久? 钕铁硼磁铁拥有相当高的矫顽力,自然环境和一般磁场条件下不会出现退磁和磁性变化。假设环境适当,即使经过长时间的使用,磁体的磁性能损失也不会很大。所以在实际应用中,我们往往忽略时间因素对磁性能的影响。 四关于取向方向 取向方向:各向异性的磁体能获得最佳磁性能的方向称为磁体的取向方向。磁铁分为: 1、各向同性磁体:任何方向磁性能都相同的磁体 2、各向异性磁体:不同方向上磁性能会有不同;且存在一个方向即取向方向,在该方向取向时所得磁性能最高的磁体。烧结钕铁硼永磁体是各向异性磁体,因而在生产前需要确定取向方向(充磁方向)。 五影响钕铁硼磁铁磁力的因素? 环境温度,由于烧结钕铁硼对工作温度极为敏感,环境的瞬间最高温度和持续最高温度都可能会对磁体产生不同程度的退磁,包括可逆的和不可逆的、可恢复的和不可恢复的。 六钕铁硼磁铁的工作温度范围是怎样的? 钕铁硼磁铁的温度限制引发了一系列等级的磁铁的研发以适应不同的工作温度要求,请参考我们的性能目录比较各等级磁铁工作温度范围。在选择钕铁硼磁铁之前需要确认最大工作温度。

烧结钕铁硼磁体可使用的最高温度是多少

烧结钕铁硼磁体可使用的最高温度是多少?磁铁最高使用温度取决于磁体本身的磁性能和工作点的选取。磁体所处工作点可用磁体的导磁系数来表示。对同一磁体而言,磁路的导磁系数愈高(即磁路愈闭合),磁铁的最高使用温度就愈高,磁铁的性能就愈稳定。所以磁铁的最高使用温度并不是一个确定的值,而是随着磁路的闭合程度而变化。烧结钕铁硼在给定工作点的前提下,各牌号的最高使用温度如下: 牌号N 最高工作xx 80 度℃M 100H 120SH 150UH 180EH200如果实际工作温度接近于最高使用温度,而磁体出现了较大幅度的退磁,此时要么必须改进磁路,以提高磁路的磁导系数;要么必须选择更高牌号的性能档次,从而保证磁体的正常工作。 一、钕铁硼磁铁有哪些应用? 钕铁硼永磁体以其优异的性能、丰富的原料、合理的价格正得以迅猛的发展和广泛的应用。其主要应用在微特电机、永磁仪表、电子工业、汽车工业、石油化工、核磁共振装置、传感器,音响器材、磁悬浮系统、磁性传动机构和磁疗设备等方面。 二、钕铁硼由那些材料组成? 钕铁硼永磁铁的主要原材料有稀土金属钕(Nd)32%、金属元素铁(Fe)64%和非金属元素硼(B)1%(少量添加镝(Dy)、铽(Tb)、钴(Co)、铌(Nb)、镓(Ga)、铝(Al)、铜(Cu)等元素)。钕铁硼三元系永磁材料是以Nd2Fe14B化合物作为基体的,其成分

应与化合物Nd2Fe14B分子式相近。但完全按Nd2Fe14B成分配比时,磁体的磁性能很低,甚至无磁。只是实际的磁体当中钕和硼的含量比Nd2Fe14B化合物的钕和硼含量多时才能获得较好的永磁性能。 三、钕铁硼的磁性能可以持续多久? 钕铁硼磁铁拥有相当高的矫顽力,自然环境和一般磁场条件下不会出现退磁和磁性变化。假设环境适当,即使经过长时间的使用,磁体的磁性能损失也不会很大。所以在实际应用中,我们往往忽略时间因素对磁性能的影响。 四关于取向方向 取向方向: 各向异性的磁体能获得最佳磁性能的方向称为磁体的取向方向。磁铁分为: 1、"各向同性磁体: 任何方向磁性能都相同的磁体 2、各向异性磁体: 不同方向上磁性能会有不同;且存在一个方向即取向方向,在该方向取向时所得磁性能最高的磁体。烧结钕铁硼永磁体是各向异性磁体,因而在生产前需要确定取向方向(充磁方向)。 五影响钕铁硼磁铁磁力的因素? 环境温度,由于烧结钕铁硼对工作温度极为敏感,环境的瞬间最高温度和持续最高温度都可能会对磁体产生不同程度的退磁,包括可逆的和不可逆的、可恢复的和不可恢复的。 六钕铁硼磁铁的工作温度范围是怎样的? 钕铁硼磁铁的温度限制引发了一系列等级的磁铁的研发以适应不同的工作温度要求,请参考我们的性能目录比较各等级磁铁工作温度范围。在选择钕铁硼磁铁之前需要确认最大工作温度。

钕铁硼性能表

企业标准 本标准等效于: GB/T 2828 逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB/T 3217 永磁(硬磁)材料磁性试验方法 GB/T 9637 磁学基本术语和定义 GB/T 13560 烧结钕铁硼磁体 XB/T 903 烧结钕铁硼磁体表面镀覆层 烧结钕铁硼磁体 2009-2-10 发布2009-3-1实施

目次 No table of contents entries found. 前言 本标准起草单位: 本标准主要起草人:

烧结钕铁硼磁体 1.范围 本标准规定了烧结钕铁硼磁体的分类、技术要求、试验方法、检验规则、标志、包装、运输、贮存。 本标准适用于粉末冶金工艺生产的烧结钕铁硼磁体。 2.规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 2828 逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB/T 3217 永磁(硬磁)材料磁性试验方法 GB/T 9637 磁学基本术语和定义 GB/T 13560 烧结钕铁硼磁体 XB/T 903 烧结钕铁硼磁体表面镀覆层 3.术语与定义 本标准采用下列定义: 主要磁性能:包括永磁材料的剩磁(Br)、磁极化强度矫顽力(内禀矫顽力)(HcJ)、磁感应强度矫顽力(矫顽力)(HcB)、最大磁能积((BH)max) 辅助磁性能:包括永磁材料的相对回复磁导率(μrec)、剩磁温度系数(α(Br)),磁极化强度矫顽力温度系数(β(HcJ))。 4.材料分类与牌号 材料分类:烧结钕铁硼磁体按磁极化强度矫顽力大小分为低矫顽力N、中等矫顽力M、高矫顽力H、特高矫顽力SH、超高矫顽力UH、极高矫顽力EH、甚高矫顽力TH七大类产品。 牌号:每类产品按最大磁能积大小划分为若干个牌号(详见附录)。 5.技术要求 材料的主要磁性能符合附录的规定,材料的辅助磁性能仅供用户设计使用参考,具体如下:辅助磁性能的典型值 1)剩磁温度系数:α(Br)≤% /℃,测量温度范围在20--140℃。 2)矫顽力温度系数:β(Hcj)≤% /℃,测量温度范围在20--140℃。 3)回复磁导率:μrec= 居里温度: Tc≥585K 密度:。 4)牌号附带“-S”,表示低失重产品(在PCT: 120℃±3℃、100%RH、条件下,500小时失重小于 cm2;HAST:130℃±3℃、95%RH、条件下,500小时失重小于2mg/cm2;);所有牌号附带“-S”,产品磁性能标准仍按相关牌号的性能参数。 材料的主要机械物理性能的典型值,供设计和选材时参考。

烧结钕铁硼的生产工艺流程要点

烧结钕铁硼的生产工艺流程 发布日期:2012-03-30 浏览次数:167 核心提示:本文对稀土永磁材料的发展过程、性能要求、主要类型等方面做了介绍,着重介绍了烧结钕铁硼磁体的生产工艺流程,最后对目前烧结钕铁硼在生产、科研、生活等各领域中的应用进行了总结,并对其发展方向进行了思考,指出应深入研究烧结钕铁硼磁体生产工艺,提高我国钕铁硼磁体的产品质量,才能增加企业自身的竞争力。 1.1稀土永磁材料概述 从广义上讲,所有能被磁场磁化、在实际应用中主要利用材料所具有的磁特性的一类材料成为磁性材料。它包括硬磁材料、软磁材料、半硬磁材料、磁致伸缩材料、磁光材料、磁泡材料和磁制冷材料等,其中用量最大的是硬磁材料和软磁材料。硬磁材料和软磁材料的主要区别是硬磁材料的各向异性场高、矫顽力高、磁滞回线面积大、技术磁化到饱和需要的磁场大。由于软磁材料的矫顽力低,技术磁化到饱和并去掉外磁场后,它很容易退磁,而硬磁材料由于矫顽力较高,经技术磁化到饱和并去掉磁场后,它仍然长期保持很强的磁性,因此硬磁材料又称为永磁材料或恒磁材料。古代,人们利用矿石中的天然磁铁矿打磨成所需要的形状,用来指南或吸引铁质器件,指南针是中国古代四大发明之一,对人类文明和社会进步做出过重要贡献。近代,磁性材料的研究和应用始于工业革命之后,并在短时间内得到迅速发展.现今,对磁性材料的研究和应用无论在广度或者深度上都是以前无可比拟的,各类高性能磁性材料,尤其是稀土永磁材料的开发和应用对现代工业和高新技术产业的发展起着巨大的推动作用。 1.2永磁材料性能要求 永磁材料的主要性能是由以下几个参数决定的 1.2.1最大磁能积:最大磁能积是退磁曲线上磁感应强度和磁场强度乘积的最大值。这个值越大,说明单位体积内存储的磁能越大,材料的性能越好。 1.2.2饱和磁化强度:是永磁材料极为重要的参数。永磁材料的饱和磁化强度越高,它标志着材料的最大磁能积和剩磁可能达到的上限值越高。

(企业的实用标准)钕铁硼性能表

.. .. 企业标准 本标准等效于: GB/T 2828 逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB/T 3217 永磁(硬磁)材料磁性试验方法 GB/T 9637 磁学基本术语和定义 GB/T 13560 烧结钕铁硼磁体 XB/T 903 烧结钕铁硼磁体表面镀覆层 烧结钕铁硼磁体 2009-2-10 发布2009-3-1实施

目次 前言 (Ⅱ) 1 围 (1) 2 规性引用文件 (1) 3 定义和术语 (1) 4材料分类与牌号 (1) 5技术要求 (1) 6 试验方法 (1) 7 检验规则 (2) 8.标志、包装、运输 (2)

前言 本标准起草单位: 本标准主要起草人:

烧结钕铁硼磁体 1.围 本标准规定了烧结钕铁硼磁体的分类、技术要求、试验方法、检验规则、标志、包装、运输、贮存。 本标准适用于粉末冶金工艺生产的烧结钕铁硼磁体。 2.规性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 2828 逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB/T 3217 永磁(硬磁)材料磁性试验方法 GB/T 9637 磁学基本术语和定义 GB/T 13560 烧结钕铁硼磁体 XB/T 903 烧结钕铁硼磁体表面镀覆层 3.术语与定义 本标准采用下列定义: 3.1 主要磁性能:包括永磁材料的剩磁(Br)、磁极化强度矫顽力(禀矫顽力)(HcJ)、磁感应强 度矫顽力(矫顽力)(HcB)、最大磁能积((BH)max) 3.2 辅助磁性能:包括永磁材料的相对回复磁导率(μrec)、剩磁温度系数(α(Br)),磁极化强 度矫顽力温度系数(β(HcJ))。 4.材料分类与牌号 4.1 材料分类:烧结钕铁硼磁体按磁极化强度矫顽力大小分为低矫顽力N、中等矫顽力M、高矫顽力 H、特高矫顽力SH、超高矫顽力UH、极高矫顽力EH、甚高矫顽力TH七大类产品。 4.2 牌号:每类产品按最大磁能积大小划分为若干个牌号(详见附录)。 5.技术要求 5.1 材料的主要磁性能符合附录的规定,材料的辅助磁性能仅供用户设计使用参考,具体如下: 辅助磁性能的典型值 1)剩磁温度系数:α(Br)≤-0.12% /℃,测量温度围在20--140℃。 2)矫顽力温度系数:β(Hcj)≤-0.60% /℃,测量温度围在20--140℃。 3)回复磁导率:μrec=1.02--1.10 居里温度: Tc≥585K 密度:7.30--7.65g/cm3。 4)牌号附带“-S”,表示低失重产品(在PCT: 120℃±3℃、100%RH、0.2MPa条件下,500小时失重小于1.5mg/ cm2;HAST:130℃±3℃、95%RH、0.27MPa条件下,500小时失重小于2mg/cm2;);所有牌号附带“-S”,产品磁性能标准仍按相关牌号的性能参数。

钕铁硼性能表

Q/DDX 安徽大地熊新材料股份有限公司企业标准 Q/DDX001-2009 代替Q/AHXF001-2005 烧结钕铁硼磁体 2009-2-10 发布2009-3-1实施安徽大地熊新材料股份有限公司发布

Q/AHDDX001-2009 目次 前言 (Ⅱ) 1 范围 (1) 2 规范性引用文件 (1) 3 定义和术语 (1) 4材料分类与牌号 (1) 5技术要求 (1) 6 试验方法 (1) 7 检验规则 (2) 8.标志、包装、运输 (2) 前言 本标准起草单位:安徽大地熊新材料股份有限公司 本标准主要起草人:陈新、周志国、吴真元

Q/AHDDX001-2009 烧结钕铁硼磁体 1.范围 本标准规定了烧结钕铁硼磁体的分类、技术要求、试验方法、检验规则、标志、包装、运输、贮存。 本标准适用于粉末冶金工艺生产的烧结钕铁硼磁体。 2.规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 2828 逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB/T 3217 永磁(硬磁)材料磁性试验方法 GB/T 9637 磁学基本术语和定义 GB/T 13560 烧结钕铁硼磁体 XB/T 903 烧结钕铁硼磁体表面镀覆层 3.术语与定义 本标准采用下列定义: 3.1 主要磁性能:包括永磁材料的剩磁(Br)、磁极化强度矫顽力(内禀矫顽力)(HcJ)、磁感应 强度矫顽力(矫顽力)(HcB)、最大磁能积((BH)max) 3.2 辅助磁性能:包括永磁材料的相对回复磁导率(μrec)、剩磁温度系数(α(Br)),磁极化强 度矫顽力温度系数(β(HcJ))。 4.材料分类与牌号 4.1 材料分类:烧结钕铁硼磁体按磁极化强度矫顽力大小分为低矫顽力N、中等矫顽力M、高矫顽 力H、特高矫顽力SH、超高矫顽力UH、极高矫顽力EH、甚高矫顽力TH七大类产品。 4.2 牌号:每类产品按最大磁能积大小划分为若干个牌号(详见附录)。 5.技术要求 5.1 材料的主要磁性能符合附录的规定,材料的辅助磁性能仅供用户设计使用参考,具体如下: 辅助磁性能的典型值 1)剩磁温度系数:α(Br)≤-0.12% /℃,测量温度范围在20--140℃。 2)矫顽力温度系数:β(Hcj)≤-0.60% /℃,测量温度范围在20--140℃。 3)回复磁导率:μrec=1.02--1.10 居里温度: Tc≥585K 密度:7.30--7.65g/cm3。 4)牌号附带“-S”,表示低失重产品(在PCT: 120℃±3℃、100%RH、0.2MPa条件下,500小时失重小于1.5mg/ cm2;HAST:130℃±3℃、95%RH、0.27MPa条件下,500小时失重小于2mg/cm2;);所有牌号附带“-S”,产品磁性能标准仍按相关牌号的性能参数。 5.2 1

烧结钕铁硼的生产工艺流程

烧结钕铁硼的生产工艺流程 1.1永磁材料性能要求永磁材料的主要性能是由以下几个参数决定的 1.1.1最大磁能积:最大磁能积是退磁曲线上磁感应强度和磁场强度乘积 的最大值。这个值越大,说明单位体积内存储的磁能越大,材料的性能越好。 1.1.2饱和磁化强度:是永磁材料极为重要的参数。永磁材料的饱和磁化 强度越高,它标志着材料的最大磁能积和剩磁可能达到的上限值越高。 1.1.3矫顽力:铁磁体磁化到饱和后,使它的磁化强度或磁感应强度降低 到零所需要的反向外磁场称为矫顽力。它表征材料抵抗退磁作用的本领。 1.1.4剩磁:铁磁体磁化到饱和并去掉外磁场后,在磁化方向保留的剩余 磁化强度或剩余磁感应强度称为剩磁。 1.1.5居里温度:铁磁体由铁磁性和亚铁磁性转变为顺磁性的临界温度称 为居里温度或居里点。居里温度高标志着永磁材料的使用温度也高。 1.2稀土永磁材料的主要类型 至今,稀土永磁材料已有两大类、三代产品。 第一大类是稀土-钴合金系(即RE-Co永磁),它又包括两代产品。1996 年K.Strant发现SmCo5型合金具有极高的磁各向异常数,产生了第一代稀土永磁体1:5型SmCo合金。从此开始了稀土永磁材料的研究开发,并于1970年投 入生产;第二代稀土永磁材料是2:17型的SmCo合金大约是1978年投入生产。它们均是以金属钴为基体的永磁材料合金。 第二大类是钕铁硼合金(即Nd-Fe-B系永磁)。1983年日本和美国同时发 现了钕铁硼合金,称为第三代永磁材料,当Nd原子和Fe原子分别被不同的RE 原子和其他金属原子取代可发展成多种成分不同、性能不同的Nd-Fe-B系永磁 材料。其制备方法主要有烧结法、还原扩散法、熔体快淬法、粘结法、铸造法等,其中烧结法和粘结法在生产中应用最广泛。下表列出了不同稀土永磁材料 的磁性能。

烧结钕铁硼性能表

钕铁硼产品性能表Properties of sintered NdFeB Magnets 剩磁 Remanence Br 矫顽力 Coercive force HCB 内禀矫顽力 Intrinsic coercive force Hcj 最大磁能面积 Maximum energy product (BH)max 工作温度Working temperature( ℃) kGs mT kOe kA/m MGOe kJ/m 标称值 最小值 标称值 最小值标称值 最小值 标称值最小值标称值最小值 标称值 最小值 Nom. Min. Nom. Min. Nom. Min. Nom. Min. kOe kA/m Nom. Min. Nom. Min. ℃ 3 N35 12.1 11.7 1210 1170 11.5 10.8 915 868 ≥12 ≥955 35 33 279 263 ≤80 4 N38 12. 5 12.1 1250 1210 11.5 11.3 915 899 ≥12 ≥955 38 3 6 303 28 7 ≤80 5 N40 12.8 12.5 1280 1250 11.0 11. 6 876 923 ≥12 ≥955 40 38 318 303 ≤80 6 N42 13.2 12.8 1320 1280 11.0 11.6 876 923 ≥12 ≥955 43 41 342 326 ≤80 7 N45 13.8 13.2 1380 1320 11.0 11.0 876 876 ≥12 ≥955 45 43 358 342 ≤80 8 N48 14.2 13.8 1420 1380 11.0 10.5 876 835 ≥11 ≥955 48 45 374 358 ≤80 9 N50 14.3 13.9 1430 1390 11.0 10.5 876 836 ≥11 ≥955 51 47 390 358 ≤80 12 N35M 12.1 11.7 1.21 1.17 11.5 10.8 915 860 ≥14 ≥1114 35 33 279 263 ≤100 13 N38M 12.6 12.2 1.26 1.22 11.5 10.8 915 860 ≥14 ≥1114 38 36 303 287 ≤100 14 N40M 12.9 12.6 1.29 1.26 11.5 10.8 915 860 ≥14 ≥1114 40 38 318 303 ≤100 15 N42M 13.2 12.9 1.32 1.29 11.5 10.8 915 860 ≥14 ≥1114 42 40 342 326 ≤100 16 N45M 13.7 13.2 1.37 1.32 11.5 10.8 915 860 ≥14 ≥1114 45 42 358 342 ≤100 17 N48M 14.3 13.7 1.43 1.37 11.5 10.8 915 860 ≥14 ≥1114 49 45 390 358 ≤100 21 N35H 12.1 11.7 1.21 1.17 11.5 10.8 915 860 ≥17 ≥1353 35 33 279 263 ≤120 22 N38H 12.6 12.2 1.26 1.22 12.0 11.5 955 915 ≥17 ≥1353 38 36 303 287 ≤120 23 N40H 12.9 12.6 1.29 1.26 12.0 11.5 955 915 ≥17 ≥1353 40 38 318 303 ≤120 24 N42H 13.2 12.9 1.32 1.29 12.0 11.5 955 915 ≥17 ≥1353 42 40 342 326 ≤120 25 N44H 13.6 13.2 1.36 1.32 12.0 11.5 955 915 ≥17 ≥1353 44 42 358 342 ≤120 26 N27SH 10.6 10.2 1.06 1.02 10.0 9.3 796 740 ≥20 ≥1595 27 25 315 199 ≤150 27 N30SH 11.2 10.8 1.12 1.08 10.5 9.8 836 780 ≥20 ≥1595 30 28 239 223 ≤150 28 N33SH 11.7 11.4 1.17 1.14 11.0 10.3 876 820 ≥20 ≥1595 33 31 263 247 ≤150 29 N35SH 12.1 11.7 1.21 1.17 11.5 10.8 915 860 ≥20 ≥1595 35 33 279 263 ≤150 30 N38SH 12.6 12.2 1.29 1.22 12.0 11.7 955 930 ≥20 ≥1595 38 36 302 286 ≤150 31 N40SH 12.9 12.6 1.29 1.26 12.0 11.7 1011 955 ≥20 ≥1595 40 38 318 303 ≤150 32 N42SH 13.2 12.9 1.32 1.29 12.0 11.7 1011 955 ≥20 ≥1595 42 40 342 326 ≤150 36 N33UH 11.7 11.4 1.17 1.14 11.0 10.4 876 844 ≥25 ≥1990 33 30 263 247 ≤180 37 N35UH 12.1 11.7 1.21 1.17 11.5 10.8 915 860 ≥25 ≥1990 35 33 279 263 ≤180 38 N38UH 12.6 12.2 1.26 1.22 12.0 11.7 955 930 ≥25 ≥1990 38 33 302 280 ≤180 39 N30EH 11.2 10.8 1.12 1.08 10.6 10.1 844 804 ≥30 ≥2229 30 28 239 223 ≤200 40 N33EH 11.7 11.4 1.17 1.14 11.0 10.4 876 844 ≥30 ≥2229 33 30 263 247 ≤200 41 N35EH 12.1 11.7 1.21 1.17 11.5 10.8 915 860 ≥30 ≥2229 35 33 279 263 ≤200 Universal(Ningbo)Magnetech Co.,Ltd Email: unimagsale@https://www.360docs.net/doc/bc1474498.html, Tel:0086 574 81639852 Fax:008657487888234

烧结钕铁硼的生产工艺流程要点

烧结钕铁硼的生产工艺流程要点

烧结钕铁硼的生产工艺流程 发布日期:2012-03-30 浏览次数:167 核心提示:本文对稀土永磁材料的发展过程、性能要求、主要类型等方面做了介绍,着重介绍了烧结钕铁硼磁体的生产工艺流程,最后对目前烧结钕铁硼在生产、科研、生活等各领域中的应用进行了总结,并对其发展方向进行了思考,指出应深入研究烧结钕铁硼磁体生产工艺,提高我国钕铁硼磁体的产品质量,才能增加企业自身的竞争力。 1.1稀土永磁材料概述 从广义上讲,所有能被磁场磁化、在实际应用中主要利用材料所具有的磁特性的一类 材料成为磁性材料。它包括硬磁材料、软磁材料、半硬磁材料、磁致伸缩材料、磁光材料、磁泡材料和磁制冷材料等,其中用量最大的是硬磁材料和软磁材料。硬磁材料和软磁材料的主要区别是硬磁材料的各向异性场高、矫顽力高、磁滞回线面积大、技术磁化到饱和需要的磁场大。由于软磁材料的矫顽力低,技术磁化到饱和并去掉外磁场后,它很容易退磁,而硬磁材料由于矫顽力较

高,经技术磁化到饱和并去掉磁场后,它仍然长期保持很强的磁性,因此硬磁材料又称为永磁材料或恒磁材料。古代,人们利用矿石中的天然磁铁矿打磨成所需要的形状,用来指南或吸引铁质器件,指南针是中国古代四大发明之一,对人类文明和社会进步做出过重要贡献。近代,磁性材料的研究和应用始于工业革命之后,并在短时间内得到迅速发展.现今,对磁性材料的研究和应用无论在广度或者深度上都是以前无可比拟的,各类高性能磁性材料,尤其是稀土永磁材料的开发和应用对现代工业和高新技术产业的发展起着巨大的推动作用。 1.2永磁材料性能要求 永磁材料的主要性能是由以下几个参数决定的1.2.1最大磁能积:最大磁能积是退磁曲线上磁感应强度和磁场强度乘积的最大值。这个值越大,说明单位体积内存储的磁能越大,材料的性能越好。 1.2.2饱和磁化强度:是永磁材料极为重要的参数。永磁材料的饱和磁化强度越高,它标志着材料的最大磁能积和剩磁可能达到的上限值越高。

烧结钕铁硼的制作过程中必须注意的四个方面

烧结钕铁硼永磁材料是用粉末冶金方法制造的,其工艺流程如下:原材料处理→配料→熔炼→制粉→磁场取向与压型→烧结致密→回火时效→机加工与表面处理→检测。从工艺流程可以看出其整个的工艺过程是一个系统工程,特别是高性能的钕铁硼永磁材料,其生产过程的每一个工艺环节都对产品的性能具有“决定权”与“否定权”。为了生产出高性能的钕铁硼永磁材料,企业的组织与管理者应重视生产过程的每一个环节,引导员工注重过程中的每一个细节,这就是要求员工做好最为基础的“防氧化、防杂质、防受潮、防混淆”的这四个方面来工作。为生产出高品质要求的钕铁硼永磁材料打下扎实的基础。 1、防杂质 烧结钕铁硼永磁材料,它是通过稀土、铁、硼等多种原材料最佳比例的有机结合,从而形成Nd2Fe14B 主相及其它基本相,经过熔炼、制粉、成型、烧结一系列工艺,最终获得一定磁性能、密度及规格的磁体。只有合格的磁体才能确保后加工切片、电镀后产品的内外在质量。 从性能上看,我们要杜绝有害元素的进入,以防影响磁体基本组成;为此,我们要防止杂质元素的夹入,以免导致产品烧结时熔点及收缩不同,磁体起泡、缩孔,或在电镀酸洗后产生斑点、剥落等,影响产品质量。因此,杂质是我们烧结钕铁硼的大敌。市场竞争很大程度上体现在产品质量上的竞争,我们要在市场竞争如此激烈的情况下站稳脚,必须严把产品质量关。 在原材料处理过程中,原材料必须处理干净,配料前清理干净覆盖在钕、铁等原材料表面的氧化物,做到有氧化物不用,只有清除后方可使用。配料前把所用空桶、罐等倒干净。 在熔炼过程中,务必注意坩埚、浇口杯的使用情况。使用时若发现有刚玉、耐火泥脱落现象,务必经过处理后方可使用,必要时则及时更换。打扫真空卫生时,要及时把熔炼模盖好,以防灰尘进入粘住模壁,影响锭子表面质量。锭子出炉后不准乱放,应放在挑杂质用的不锈钢盆内,仔细检验后放入干净的空桶内,做好标识,及时盖上盖子,以防灰尘等杂质进入。严禁锭子在尘土飞扬的空间暴露,必须采取妥善措施。 在制粉的粗破、中碎时应经常敲开断口观察,如有杂质及时处理并反馈前道工序。使用各种加工设备前均必须清理干净,尤其是对长时间不用的设备在使用前必须先用氮气清理设备内腔,以防原剩余粉料氧化产生的杂质混入。合金锭及各使用设备的进、出料口应及时盖上。严禁车间灰尘飞扬,如有必须采取妥善的防尘措施。在细粉搅拌工序中,注意不锈钢瓶的清洁,预防桶内有遗粉、杂质,造成最后的产品有杂质或氧化斑点。 在成型过程中,注意每次必须将称粉箱内的遗留粉料清理干净,以防这些氧化了的遗粉混入,造成产品杂质或氧化斑点。 粗看杂质都是非常细小的东西,但一旦混入产品内部,却作了害群之马,影响了产品质量,给公司造成很大的损失。因此,我们千万别小看杂质,因小失大,造成的后果非常严重,我们必须对“防杂质”引起高度重视。 2、防受潮 钕铁硼稀土永磁材料配方中含有较大比例的稀土元素。稀土元素的特性就是化学性质很活泼,容易与空气中的氧气发生反应,生成稀土氧化物,产品的磁性能就会大大下降。当受潮的原材料或设备、使用的工装夹具等含有较高的水分时,在加工的高温过程中,水分子易分解成氧与氢元素而与钕等稀土元素发生化学反应。因此,在我们钕铁硼材料的生产过程中,如何做好“防受潮”工作,是一个关键的质量保证环节。

钕铁硼标准

钕铁硼标准 本标准是以GB/T 1.3 一1997《标准化工作导则第l 单元:标准的起草与表述规则第 3 部分:产品标准编写规定》为原则,对GB/T 13560 一1992《烧结钕铁硼永磁材料》的修订。 在修订本标准时,依据国内生产厂家的产品情况及用户对产品的要求,参考了IEC 404-8-1(1986)及其补充2(1992)《磁性材料第8部分:特殊材料规范第一节硬磁材料标 准规范》和国内外有关企业标准。对原标准的技术内容进行了必要的补充和修改。本标准参考 了IEC 标准的永磁材料分类,钕铁硼合金的小类分类代号为R7。 本标准与GB/T 13560 一1992 的主要技术差异如下: 1.在“引用标准”项中增加了标准GB/T 8170-1987《数值修约规则》、GB/T 9637-1988 《磁学基本术语和定义》和GB/T 17803一1999《稀土产品牌号表示方法》。 2.对原标准中“术语、符号、单位”修改为“术语与定义”。由于引用GB/T 9637—1988 《磁学基本术语和定义》,取消了原来的磁学术语定义。采用了IEC 404-8-l(1986)对永磁材料 的磁性能划分为主要磁性能和辅助磁性能的方法,并对这两个术语分别进行了定义。 3.修改并增加了材料的牌号。 4.对附录A 的机械物理性能范围值修订为典型值。 5.新增加了附录C“钕铁硼永磁材料的主要成分、制造工艺及应用”内容。 本标准自实施之日起代替GB/T 13560一1992。 本标准的附录A、附录B、附录C 均为提示的附录。 本标准由国家发展计划委员会稀土办公室提出。 本标准由全国稀土标准化技术委员会归口。 本标准由包头稀土研究院负责起草。 本标准主要起草人:刘国征、马婕、王标、李泽军。 1 范围 本标准规定了烧结钕铁硼永磁材料的主要磁性能、试验方法、检验规则和标志、包装、运 输、贮存。本标准同时给出了主要机械性能和辅助磁性能等其他物理性能的典型值。 本标准适用于粉末冶金工艺生产的烧结钕铁硼永磁材料。 2 引用标准

烧结钕铁硼的生产工艺流程详解

烧结钕铁硼的生产工艺流程 核心提示:本文对稀土永磁材料的发展过程、性能要求、主要类型等方面做了介绍,着重介绍了烧结钕铁硼磁体的生产工艺流程,最后对目前烧结钕铁硼在生产、科研、生活等各领域中的应用进行了总结,并对其发展方向进行了思考,指出应深入研究烧结钕铁硼磁体生产工艺,提高我国钕铁硼磁体的产品质量,才能增加企业自身的竞争力。 1.1稀土永磁材料概述 从广义上讲,所有能被磁场磁化、在实际应用中主要利用材料所具有的磁特性的一类材料成为磁性材料。它包括硬磁材料、软磁材料、半硬磁材料、磁致伸缩材料、磁光材料、磁泡材料和磁制冷材料等,其中用量最大的是硬磁材料和软磁材料。硬磁材料和软磁材料的主要区别是硬磁材料的各向异性场高、矫顽力高、磁滞回线面积大、技术磁化到饱和需要的磁场大。由于软磁材料的矫顽力低,技术磁化到饱和并去掉外磁场后,它很容易退磁,而硬磁材料由于矫顽力较高,经技术磁化到饱和并去掉磁场后,它仍然长期保持很强的磁性,因此硬磁材料又称为永磁材料或恒磁材料。古代,人们利用矿石中的天然磁铁矿打磨成所需要的形状,用来指南或吸引铁质器件,指南针是中国古代四大发明之一,对人类文明和社会进步做出过重要贡献。近代,磁性材料的研究和应用始于工业革命之后,并在短时间内得到迅速发展.现今,对磁性材料的研究和应用无论在广度或者深度上都是以前无可比拟的,各类高性能磁性材料,尤其是稀土永磁材料的开发和应用对现代工业和高新技术产业的发展起着巨大的推动作用。 1.2永磁材料性能要求 永磁材料的主要性能是由以下几个参数决定的 1.2.1最大磁能积:最大磁能积是退磁曲线上磁感应强度和磁场强度乘积的最大值。这个值越大,说明单位体积内存储的磁能越大,材料的性能越好。 1.2.2饱和磁化强度:是永磁材料极为重要的参数。永磁材料的饱和磁化强度越高,它标志着材料的最大磁能积和剩磁可能达到的上限值越高。 1.2.3矫顽力:铁磁体磁化到饱和后,使它的磁化强度或磁感应强度降低到零所需要的反向外磁场称为矫顽力。它表征材料抵抗退磁作用的本领。 1.2.4剩磁:铁磁体磁化到饱和并去掉外磁场后,在磁化方向保留的剩余磁化强度或剩余磁感应强度称为剩磁。 1.2.5居里温度:强铁磁体由铁磁性和亚铁磁性转变为顺磁性的临界温度称为居里温度或居里点。居里温度高标志着永磁材料的使用温度也高。 1.3稀土永磁材料的主要类型 至今,稀土永磁材料已有两大类、三代产品 第一大类是稀土-钴合金系(即RE-Co永磁),它又包括两代产品。1996年K.Strant发现SmCo5型合金具有极高的磁各向异常数,产生了第一代稀土永磁体1:5型SmCo合金。从此开始了稀土永磁材料的研究开发,并于1970年投入生产;第二代稀土永磁材料是2:17型的SmCo合金大约是1978年投入生产。它们均是以金属钴为基体的永磁材料合金。

(企业的实用标准)钕铁硼性能表

实用标准文案 企业标准 本标准等效于: GB/T 2828 逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB/T 3217 永磁(硬磁)材料磁性试验方法 GB/T 9637 磁学基本术语和定义 GB/T 13560 烧结钕铁硼磁体 XB/T 903 烧结钕铁硼磁体表面镀覆层 烧结钕铁硼磁体 2009-2-10 发布2009-3-1实施

目次 前言 (Ⅱ) 1 范围 (1) 2 规范性引用文件 (1) 3 定义和术语 (1) 4材料分类与牌号 (1) 5技术要求 (1) 6 试验方法 (1) 7 检验规则 (2) 8.标志、包装、运输 (2)

前言 本标准起草单位: 本标准主要起草人:

烧结钕铁硼磁体 1.范围 本标准规定了烧结钕铁硼磁体的分类、技术要求、试验方法、检验规则、标志、包装、运输、贮存。 本标准适用于粉末冶金工艺生产的烧结钕铁硼磁体。 2.规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 2828 逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB/T 3217 永磁(硬磁)材料磁性试验方法 GB/T 9637 磁学基本术语和定义 GB/T 13560 烧结钕铁硼磁体 XB/T 903 烧结钕铁硼磁体表面镀覆层 3.术语与定义 本标准采用下列定义: 3.1 主要磁性能:包括永磁材料的剩磁(Br)、磁极化强度矫顽力(内禀矫顽力)(HcJ)、磁感应 强度矫顽力(矫顽力)(HcB)、最大磁能积((BH)max) 3.2 辅助磁性能:包括永磁材料的相对回复磁导率(μrec)、剩磁温度系数(α(Br)),磁极化强 度矫顽力温度系数(β(HcJ))。 4.材料分类与牌号 4.1 材料分类:烧结钕铁硼磁体按磁极化强度矫顽力大小分为低矫顽力N、中等矫顽力M、高矫顽 力H、特高矫顽力SH、超高矫顽力UH、极高矫顽力EH、甚高矫顽力TH七大类产品。 4.2 牌号:每类产品按最大磁能积大小划分为若干个牌号(详见附录)。 5.技术要求 5.1 材料的主要磁性能符合附录的规定,材料的辅助磁性能仅供用户设计使用参考,具体如下: 辅助磁性能的典型值 1)剩磁温度系数:α(Br)≤-0.12% /℃,测量温度范围在20--140℃。 2)矫顽力温度系数:β(Hcj)≤-0.60% /℃,测量温度范围在20--140℃。 3)回复磁导率:μrec=1.02--1.10 居里温度: Tc≥585K 密度:7.30--7.65g/cm3。 4)牌号附带“-S”,表示低失重产品(在PCT: 120℃±3℃、100%RH、0.2MPa条件下,500小时失重小于1.5mg/ cm2;HAST:130℃±3℃、95%RH、0.27MPa条件下,500小时失重小于2mg/cm2;);所有牌号附带“-S”,产品磁性能标准仍按相关牌号的性能参数。 5.2

高性能烧结钕铁硼磁体在风力发电机中的应用

高性能烧结钕铁硼磁体在风力发电机中的应用 摘要:永磁风力发电机采用高磁性能烧结钕铁硼永磁,足够高的矫顽力可以避免磁体高温失磁。磁体的寿命取决于基体材质和表面防腐蚀处理。钕铁硼磁钢的防腐蚀应该从制造开始。 关键词:永磁风力发电机高性能烧结钕铁硼磁体可靠性 一、前言 直驱式永磁风力发电机采取风机叶轮直接驱动发电机旋转,取消了传统的交流励磁双馈式异步风力发电机所需的增速齿轮箱,避免了运行中齿轮箱的故障和维护。同时,永磁风力发电机采取永磁励磁,无励磁绕组,转子上也没有集电环和电刷;因而,结构简单、运行可靠。从1993年德国埃纳康公司(Enercon GmbH)研制出第一台大型直驱式永磁风力发电机,到2008年新疆金风科技股份有限公司生产出数百台1.5兆瓦直驱式永磁风力发电机,永磁风力发电机的发展方兴未艾。中国的永磁风力发电机的整体水平已走在世界前列。 风力发电机的工作环境非常恶劣,它必须能经受高温、严寒、风沙、潮湿乃至盐雾的考验。风力发电机的设计寿命一般是二十年。目前无论是小型风力发电机还是兆瓦级的永磁风力发电机均选用烧结钕铁硼永磁。因此,对钕铁硼永磁磁性参数的选择,以及对磁体耐蚀性的要求显得十分重要。 二、用于永磁风力发电机的烧结钕铁硼的典型磁性能 钕铁硼永磁被称为第三代稀土永磁,是迄今磁性能最高的永磁材料。烧结钕铁硼合金的主相是金属间化合物Nd2Fe14B,它的饱和磁极化强度(Js)为1.6T[1]。由于烧结钕铁硼永磁合金是由主相Nd2Fe14B和晶界相构成的,同时Nd2Fe14B晶粒取向度受工艺条件的限制,目前磁体的剩磁最高能达到1.5T。德国真空熔炼公司(Vacuumschmelze GmbH)生产出最大磁能积(BH)max达到57MGOe的钕铁硼磁体。国内的钕铁硼厂家可以生产N50牌号的磁体,最高磁能积达到53MGOe。提高合金主相比例、提高晶粒的取向度和磁体的密度,可以提高磁体的最大磁能积;但是不会超过单晶Nd2Fe14B最大磁能积的理论值64MGOe[1]。钕铁硼常温下的退磁曲线近似于直线。因此,设计永磁电机时,往往选择高牌号的钕铁硼(即材料的(BH)max高)以获得高的气隙磁密。电机运转时,由于交变的退磁场存在,以及负荷突然变化时,瞬间大电流产生的退磁场作用,要求选择矫顽力足够高的钕铁硼磁钢。 在合金中添加镝(鋱)等元素提高钕铁硼的内禀矫顽力(jHc),但磁体的剩磁(Br)会随之降低。因此,用于风力发电机的高性能钕铁硼磁钢兼顾了它的矫顽力和剩磁。 国外风力发电机用钕铁硼磁钢的磁性参数表 剩余磁感应强度 Br [T] 磁感应矫顽力 bHc [kA/m] 内禀矫顽力 jHc [kA/m] 最大磁能积 (BH)max [kJ/m3] Nom Min Nom Min Nom Min Nom Min 1.35 1.29 995 963 1831 1592 334 318 (表中是室温下磁性参数) 三、钕铁硼永磁的温度稳定性 风力发电机工作在旷野里,经受着酷暑和严寒的考验;同时电机损耗也导致电机温升。上表给出的烧结钕

相关文档
最新文档