变压器冷却系统故障及处理

变压器冷却系统故障及处理

变压器冷却系统故障及处理

对于强迫油循环风冷、水冷和导向水冷却的变压器,当冷却系统(指风扇、潜油泵、冷却水系统等)发生故障而停用冷却装置时,应进行以下处理:

(1)当变压器控制盘上出现“冷却装置工作电源故障”或“备用电源故障”光字信号时,应立即查明原因,使冷却装置尽快恢复工作。

(2)当变压器控制盘上出现“冷却水中断”光字信号时,应迅速检查原因,使冷却装置恢复工作。

(3)如果同时出现上述两种故障信号,则应注意变压器上层油温和油枕油位的变化。当冷却装置全部停运时,会出现油温急剧上升和可能从防爆管(或安全气道)跑油的现象。当冷却装置恢复运行后,油枕油位又急剧下降,且油位下降到标尺-20℃以下并有继续下降趋势时,应立即停用重瓦斯保护装置。如果在规定时间内无法使冷却装置恢复运行,则应汇报值长,并使变压器退出运行。

冷却系的维护与保养

冷却系的维护与保养

发动机冷却系统的保护 实习指导教师:闫英 一、引言: 如果一台发动机,冷却系统的维修率一直居高不下,往往会引起发动机其他构件损坏,特别是随着车辆行驶里程的增加,冷却系统的工作效率逐渐下降,对发动机的整体工作能力产生较大影响,冷却系统的重要性在于维护发动机常温下工作,尤如人体的皮肤汗腺,如果有一天,人体的汗 腺不能正常工作,那么身体内的热量将无法散去,轻则产生中暑,重则休克。 二、冷却系统的作用 冷却系统的功用是带走发动机燃烧所产生的热量,使发动机维持在正常的温度范围内。发动机冷却的方式可分为风冷式发动机及水冷式发动机,水冷式发动机是靠发动机冷却水在中循环来冷却。 三、冷却系统的组成 水冷却系统一般由散热器、节温器、水泵、水道、风扇等组成。散热器负责循环水的冷却,它的水管和散热片多用铝材制成,铝制水管做成

扁平形状,散热片带波纹状,注重散热性能,安装方向垂直于空气流动的方向,尽量做到风阻要小,冷却效率要高。散热器又分为横流式和垂直流动两种。 发动机是由冷却液的循环来实现的,强制冷却液循环的部件是水泵,它由曲轴皮带带动,推动冷却液在整个系统内循环。一般冷却液对发动机的冷却,要根据发动机的工作情况而随时调节。当发动机温度低的时候,冷却液就在发动机本身内部做小循环,当发动机温度高的时候,冷却液就在发动机—散热器之间做大循环。实现冷却液做不同循环的控制部件是节温器。可以将节温器看作一个阀门,其原理是利用可随温度伸缩的材料(石蜡或乙醚之类的材料)做开关阀门,当水温高时材料膨胀顶开阀门,冷却液进行大循环,当水温低时材料收缩关闭阀门,冷却液小循环。 为了提高散热器的冷却能力,在散热器后面安装风扇强制通风。以前的轿车散热器风扇是由曲轴皮带直接带动的,发动机启动它就要转,不能视发动机温度变化而变化,为了调节散热器的冷却力,要在散热器上装上活动百页窗以控制风

变压器常见故障大汇总及案例分析

电力变压器常见故障的分析与处理 变压器是靠电磁感应原理工作的,改变电压、联络电网、传输和分配电能;电力变压器是变电站核心设备,结构复杂,运行环境恶劣,发生故障和事故对电网和供电可靠性影响大,需要针对具体情况立即采取措施;变压器故障的分析判别牵扯的学科领域多,既要有电工、高电压、绝缘材料、化学分析等基础知识,还要熟悉自动化、热学等;变压器的故障种类多,表现形式千差万别,需要熟悉结构原理、熟悉现场运行条件、熟悉每台设备特点等,具体问题,具体分析。 第一章:大型变压器显性故障的特征与现场处理 显性故障:是指故障的特征和表现形式比较直观明显的故障,在此,结合现场实际,对大型变压器显性故障的原因和特征进行了叙述和分析,介绍了现场常见的处理办法,也是一些比较简单的办法。 一、外观异常和故障类型: 变压器在运行过程中发生异常和故障时,往往伴随相应外观特征,通过这些简单的外部现象,可以发现一些缺陷并对异常和故障进行定性分析,提出进一步分析或处理的方案。而且可以对一些比较复杂的故障确定检修和试验方案.以下从几个方面进行分析和处理:

1、防爆筒或压力释放阀薄膜破损。 当变压器呼吸不畅,进入变压器油枕隔膜上方的空气,在温度升高时,急剧膨胀,压力增加,若引起薄膜破损还会伴有大量的变压器油喷出;主要有以下原因和措施: 1)呼吸器因硅胶多或油封注油多、管路异物而堵塞。硅胶应占呼吸器的2/3,油封中有1/3的油即可,可用充入氮气的办法对管路检查2)(油枕)安装检修时紧固薄膜的螺栓过紧或油枕法兰不平,(压力释放阀)外力损伤或人员误碰。更换损坏的薄膜或油枕. 3)变压器内部发生短路故障,产生大量气体。一般伴随瓦斯继电器动作;可先从瓦斯继电器中取气样,若点火能够燃烧,需取油样色谱分析和进行电气检查,确定故障性质,故障原因未查明,消除缺陷前变压器不能投运。 4)弹性元件膨胀器内部卡涩.更换或由制造厂处理. 5)隔膜结构的油枕在检修或安装时注油方法不当,未按规定将油枕上部的气体排净。停电将变压器油注满油枕,再将变压器油放至合适的油位高度。 6)胶囊结构的油枕因油位低等原因,胶囊堵塞油枕与变压器本体的管路联结口。在管路联结口处装一支架,防止胶囊直接堵塞联结口。 2、套管闪络放电。 套管闪络放电会使其本身发热、老化,引发变压器出口短路事故;低压套管尤其严重;其主要原因和措施有:

变压器的常见故障及处理方法

浅议变压器常见故障及处理 令狐采学 摘要:变压器在电力系统的安全、平稳运行中起着至关重要的作用。本文从变压器的结构和原理入手,结合我场变压器的实际情况,针对实际变电运行中变压器的主要异常现象和原因进行分析,提出一些自己的观点。 关键词:变压器原理结构参数异常处理 引言:电力是现在工业的主要能源,并且电能的输送能量之大、距离之远也决定了必须采用超高压输送电能,以减少此过程中的损耗。而实际中由于发电机结构上的限制,通常只能发出10kv 的电压,因此,必须经过变压器的升压才可以完成电能的输送。变压器也理所应当成为电力系统中核心设备之一。如果变压器出现了故障,就会在很大程度上影响电能的输送以及正常的变电运行,所以能够掌握和分析变压器常见的故障和异常现象,及主要原因,提出防范解决措施,就显得尤为重要。 电力变压器是利用电磁感应原理制成的一种静止的电力设备。它可以将某一电压等级的交流电能转换成频率相同的另一种或几种电压等级的交流电能,是电力系统中重要电气设备。下面将从变压器的分类、结构、异常现象和原因分析等几个方面进行介绍: 一、变压器的分类、结构及主要参数

(一)、变压器的分类 根据用途的不同,变压器可以分为电力变压器(220kv以上的是超高压变压器、35-110kv的是中压变压器、10kv为配电变压器)、特种变压器(电炉变压器、电焊变压器)、仪用互感器(电压、电流互感器)。 根据相数分为,单相变压器和三相变压器。 根据冷却方式分为,油浸自冷式、强迫风冷式、强迫油冷式和水冷式变压器。 根据分接开关的种类分为有载调压变压器和无载调压变压器。 根据绕组数分为,单绕组变压器、双绕组变压器和三绕组变压器。 (二)、变压器的结构 虽然变压器的种类依据不同方式进行分类,有很多种,但是一般常用的变压器的结构都很相似: 1、绕组:变压器的电路部分。 2、铁芯:变压器的磁路部分。 3、油箱:变压器的外壳,内装满变压器油(绝缘、散热)。 4、油枕:对油箱里的油起到缓冲作用,同时减小油箱里的油与空气的接触面积,不易受潮和氧化。 5、呼吸器:利用硅胶吸收空气中的水分。 6、绝缘套管:变压器的出线从油箱内穿过油箱盖时必须经过绝缘套管以使带电的引线与接地的油箱绝缘。

探究营配调一体化中台区线损管理模式

探究营配调一体化中台区线损管理模式 发表时间:2019-09-19T11:35:11.087Z 来源:《建筑学研究前沿》2019年11期作者:赵家云李泳宇仇梦颖杨茜茜 [导读] 如何利用营配调一体化手段建立台区线损管理新机制,实现结果管理向过程管控转变成为了现阶段营销精益化管理关注的重点。国网安徽省滁州市城郊供电公司安徽滁州市 239000 摘要:台区线损管理当中,降低线损是供电企业经营管理的系统工程。该项工作设计范围较广,本文主要研究营配调一体化建设,通过分析影响营配调一体化建设的影响因素,对营配调一体化中的台区线损管理模式进行了探析,对相关专业人员提供一定的借鉴意义。 关键词:营配调一体化;台区线损;管理模式 降低线损是供电企业自身经营管理中的一项综合性的系统工程,台区线损管理作为线损管理的一个重要组成部分,涉及配电网规划管理、运行管理、检修管理、营销用电管理、计量管理、抄核收管理等方面,全面体现了电网经营企业对台区设备及用户的管理水平,反映了企业的经营成本和经济效益。低压线路特有的技术状况和用户用电的多样性决定了台区线损统计错综复杂,传统按月度统计线损率的方法已经不适应新形势的发展要求。如何利用营配调一体化手段建立台区线损管理新机制,实现结果管理向过程管控转变成为了现阶段营销精益化管理关注的重点。 1营配调一体化系统建设 1.1影响因素分析 为了全面确保营配数据采录和治理的有效开展,必须适当改造地理信息系统,绩效管理系统,营销业务应用系统,并且处理好相关问题。第一,加强营销应用系统表箱管理,注重管理表箱资产及其对应关系。加强电网设备与高压用户,在此期间需要全面识别和分析低压用户表箱和电网设备之间存在的关联性,并且在实际应用期间注重存量数据中所具备的各项功能。在营销系统应用期间,相关人员可以将空间地理信息维护机制增设在系统中,这样能够有效维护分布式电源,公用变压器,低压用户表箱以及地理信息系统中电网设备关联关系。第三,完善营销业务应用系统以及绩效管理系统的信息互通和传递功能。配电,营销以及地理信息系统的有效集成能够确保营配业务的高效运行,从而实现精细化业扩管理,全程化故障报修 1.2台区线损管理发展趋势 营配协同工作和建设用电信息采集系统可以为配电变压器台区线损创造有利条件,全面提升线损统计及时性和准确性。通过制定营配系统集成改造技术方案,详细划分信息变更流程,有利于治理存量数据,维护增量数据。在此期间应当保证两个系统存在相同信息。其次,注重建设和维护用电信息采集系统,保证配电变压器,电量采集装置以及用户计量装置的完整性,提升采集率的稳定性以及线损统计准确性。最后,应用营配调集成数据,有利于建立线损统计模块,并且对当前分线线损统计进行扩展。改进和完善台区线损分析,审核以及稽查管理流程,并且将管理环节作为营销管理校验器,全面实现专业化管理。 2营配信息一体化平台的搭建 营配信息一体化平台是指运用现代化的信息技术,在企业统一的电网设备和客户信息模型、基础资料和拓扑关系的基础上应用于面向客户的供电可靠性管理、客户停电管理、线损四分管理、业务报装辅助决策及配网建设规划等领域的基于GIS的标准化、一体化企业信息平台。营配信息一体化的共享数据包括:电网设备、客户信息模型、计量模型以及项目及工单模型。营配信息一体化主要应用于电网设备模型关于配电网络的描述,根据GIS对整个电网的电气拓扑连接关系采用图形进行描述。客户信息模型主要指的是利用营配信息化利用大数据对客户关系进行管理,包括客户档案及户变、户表等用户与电网接入关系等。计量模型包括表计、通信终端、量测、量测类型、量测值、量度单位。项目及工单模型包括配网基建工程、配网大修改工程、客户业扩工程以及户表变更等影响电网、客户、计量的各类工程项目和工作传单。 3营配调一体化中台区线损管理的模式分析 3.1实时采集和监控台区运行状态 第一,自动化抄表。在應用用电信息采集系统之后,可以对电力用户的用电数据信息进行采集。扩展用户范围,并且能够有效采集多种数据类别。包含负荷数据,电量数据,工况数据,电能质量数据以及事件记录数据等。之后以网页服务接口形式将系统所采集的数据信息传递到营销业务应用系统当中,有利于结算电力用户的电费。 第二,监测配电变压器。用电信息采集系统后台可以对所有配电变压器最大负载率,月平均功率因数、负载率,电流三相不平衡度进行计算,并且可以有效监测和统计配电变压器电流三相不平衡超限,重超载,最大电流超限,平均功率因数分段等运行状态。之后利用网页进行统计分类,并且针对性分析和处理配电变压器异常情况。 第三,在线监测电能质量。用电信息采集系统可以自动采集智能电能表终端上报停复电情况和电压曲线,并且联合营销业务系统所传递的基础信息对所有监测点电压超限时间长度,停电时间,供电可靠率和电压合格率进行计算,进一步监测累计停电次数,时间,供电可靠率以及电压合格率等。之后利用网页服务接口将数据同步到电能质量在线监测系统中进行处理。 第四,支持配电网运行。在管理期间,充分发挥出通电信息采集系统的各项功能,确保调度信息和营销生产信息之间实现数据共享,在配电网建设调度过程中能够提供较多重要数据信息。通过实时监测台区状态方式能够在第一时间掌握电网无功电压,停电事件和负荷分布情况,通过对配电变压器设备运行状态进行监控可以有效统计监测负荷,网供负荷。在分析配电变压器以及线路运行数据之后,可以确保线路负荷切割和电网运行合理性,及时维护设备运行状况,保证配电网运行安全性。 营配集成完成台区户变关系梳理,根据营销业务应用系统的台区户变关系,用电信息采集系统自动生成相应的台区线损考核单元,计算台区考核计量点及用户计量点的电量,从而计算出分台区的实时线损,可保证线损计算的实时性,也成为检验营配集成效果的有效手段。 3.2实时线损分析和诊断预警 营配集成方式能够对台区户变关系进行梳理,按照台区户变关系可以确保营销业务应用系统生成台区线损考核单元,有利于计算用户电力使用量和考核计量点,使电力人员了解分台区实时线损情况,也可以对营配集成效果进行检验。其具体实施过程表现如下:第一,采

电力变压器常见故障及处理方法

编号:SM-ZD-29412 电力变压器常见故障及处 理方法 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

电力变压器常见故障及处理方法 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1、在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是电网中最重要和最关键的设备、变压器如果发生严重事故,不但会导致自身损坏,还会中断电力供应,后患无穷。 2、常见故障及其诊断措施 2.1铁心多点接地 变压器铁心只允许有一点接地,若出现两点及以上接地,为多点接地。多点接地运行将导致铁心出现故障,危及变压器安全运行。应及时处理。 吊壳检查(1)铁心夹件垫脚与铁轭间的绝缘纸板是否脱落破损,按要求更换厚度相同的新纸板。 (2)紧固铁心夹件所有螺丝,防止铁心移位、变形。 (3)清除油中金属异物、金属颗粒及杂质,清除油箱各部位油泥,对变压器进行真空滤油、注油、彻底清除油中水分及杂质。

变压器的常见故障分析及维护措施实用版

YF-ED-J1765 可按资料类型定义编号 变压器的常见故障分析及维护措施实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

变压器的常见故障分析及维护措 施实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 摘要: 在中国高速的现代化发展中,电 力工业的安全运行起着关键作用。本文主要从 变压器的常见故障的原因进行分析,并对变压 器的维护提出一点建议。 关键词:变压器故障原因输电线路 变压器是电力系统的重要设备,其状态好 坏,直接影响电网的安全进行。由于变压器在设 计、制造、安装和进行维护等方面原因使绝缘 存在缺陷,抗短路能力降低,因此近年来主变的 事故较多,其中威胁安全最严重的为绕组局部放

电性故障。根据国家电力公司对 2001 年全国110kV 及以上主变事故的调查,得知绕组的事故占总事故台数的 74.6%(福建省网为80%)。因此,提高变压器安全运行是极其重要的。 1 变压器故障原因分析 多种因素都可能影响到绝缘材料的预期寿命,负责电气设备操作的人员应给予细致地考虑。这些因素包括:误用、振动,过高的操作温度、雷电或涌流、过负荷、对控制设备的维护不够、清洁不良、对闲置设备的维护不够、不恰当的润滑以及误操作等。 1.1 雷击 雷电波看来比以往的研究要少,这是因为改变了对起因的分类方法。现在,除非明确属于

电力变压器常见故障及处理方法

仅供参考[整理] 安全管理文书 电力变压器常见故障及处理方法 日期:__________________ 单位:__________________ 第1 页共5 页

电力变压器常见故障及处理方法 1、在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是电网中最重要和最关键的设备、变压器如果发生严重事故,不但会导致自身损坏,还会中断电力供应,后患无穷。 2、常见故障及其诊断措施 2.1铁心多点接地 变压器铁心只允许有一点接地,若出现两点及以上接地,为多点接地。多点接地运行将导致铁心出现故障,危及变压器安全运行。应及时处理。 吊壳检查(1)铁心夹件垫脚与铁轭间的绝缘纸板是否脱落破损,按要求更换厚度相同的新纸板。 (2)紧固铁心夹件所有螺丝,防止铁心移位、变形。 (3)清除油中金属异物、金属颗粒及杂质,清除油箱各部位油泥,对变压器进行真空滤油、注油、彻底清除油中水分及杂质。 2.2变压器渗油 变压器渗油会影响变压器的安全,造成不必要的停运及事故隐患,因此,我们有责任解决变压器渗油问题。 油箱焊接渗油:平面接缝处渗油可直接进行焊接、拐角及加强筋连接处渗油则渗漏点难找准,补焊后往往由于内应力的作用再次渗漏油。对于这样的漏点可加用铁板进行补焊,两面连接处,可将铁板裁成仿锤状进行补焊;三面连接处可根据实际位置将铁板裁成三角形补焊。 高压套管升高座或进入孔法兰渗油:主要原因是胶垫安装不合适造成的。处理方法为:对法兰紧固螺丝,将施胶枪嘴拧入该螺丝孔,然后用高压将密封胶注入法兰间隙,直至各法兰螺丝帽有胶挤出为止。 第 2 页共 5 页

低压侧套管渗油:原因是受母线拉伸和低压侧引线引出偏短,胶珠压在螺纹上造成的,可按规定对母线加装软连接;如低压引出线偏短,可重新调整引出线长度;如引出线无法调整,可在安装胶珠的各密封面加密封胶;为了增大压紧力可将瓷质压力帽换成铜质压力帽。 2.3接头过热 载流接头是变压器的重要组成部分,接头连接不好,将引起发热甚至烧断,严重影响变压器的正常运行和电网的安全运行,因此,接头过热问题一定要及时解决。铜铝连接,变压器的引出线头都是铜制的,在室外和潮湿的环境中,不能将铝导体用螺栓与铜端头连接。因为当铜与铝的接触面间渗入含有溶解盐的水份。即电解液时,在电耦的作用下,会产生电解反应,铝被强烈电腐蚀。触头很快遭到破坏,引起发热造成事故,为避免上述现象的发生,就必须采用一头为铝、另一头为铜的特殊过渡接头。普通连接,在变压器上是较多见的,它们都是过热的重点部位,对平面接头,对接面加工成平面,清除平面上的杂质,并抹导电膏,确保接触良好。 油浸电容式套管发热:处理的方法可以用定位套固定方式的发热套管,先拆开将军帽,若将军帽引线接头丝扣烧损,应用牙攻进行修理,确保丝扣配合良好,然后在定位套和将军帽之间垫一个和定位套截面大小一致、厚度适宜的薄垫片,重新安装将军帽,使将军帽在拧紧情况下,正好可以固定在套管顶部法兰上。引线接头和将军帽丝扣公差配合应良好,否则应更换。确保在拧紧的情况下,丝扣之间应有足够的压力,减少接触电阻。 作为一名电力检修工人,发现并及时处理设备缺陷是我的职责,彻底处理好每一项设备隐患是我的荣耀,我会一直朝着这个目标努力工作 第 3 页共 5 页

变压器常见故障分析

电力变压器状态监测与故障诊断 内容摘要; 电力变压器是电力系统中最关键的设备之一,它承担着电压变换,电能分配和传输,并提供电力服务。在运行中,配电变压器经常发生故障。本文简要介绍了电力变压器的分类和结构组成,并针对配电变压器故障率高这一实际情况,着重分析了配电变压器常见的故障和异常现象及主要原因,分析了这些故障对变压器的危害及针对这些故障进行了分析,对消除故障的方法进行了归纳总结,同时提出了一些具体的防范解决措施,为防止和减少配电变压故障的发生。 特别介绍我在工作中遇到的一些变压器故障(局部放电)进行的探索及通过一些方法进行认证的过程。 关键词:变压器、故障诊断、故障处理、局部放电

目录 内容摘要 ............................................................ I 引言 (1) 1 电力变压器简要介绍 (2) 1.1 电力变压器的分类 (2) 1.2 电力变压器的主体结构 (2) 1.2.1 油浸电力变压器 (2) 1.2.2 干式变压器 (3) 2 电力变压器常见的故障类型及故障产生原因 (4) 2.1 变压器发生故障的原因 (4) 2.1.1 制造工艺存在缺陷 (4) 2.1.2 、缺乏良好的管理及维护 (5) 2.1.3 、绝缘老化 (5) 2.2 变压器故障按严酷程度分类 (5) 2.3 变压器故障按部位分类分析 (5) 2.3.1 、绕组故障分析 (5) 2.3.2 、铁心故障分析 (6) 2.3.3 、分接开关故障分析 (6) 2.3.4 、引线故障分析 (7) 2.3.5 、套管故障分析 (7) 2.3.6 、绝缘故障分析 (7) 2.3.7 、密封不良 (8) 2.4 从变压器的异常声音判断故障 (8) 2.5 变压器温度异常导致原因 (9) 2.6 喷油爆炸导致原因 (10) 2.7 油位显著下降及严重漏油导致原因 (10) 2.8 油色异常,有焦臭味导致原因 (10) 3 变压器中的局部放电的预防及局部放电产生后处理 (11) 4 结论 (16) 参考文献: (17)

冷却塔日常维护和保养

冷却塔系统日常维护与保养 一.冷却塔的工作原理 该设备是一种机力通风型冷却塔,其工作原理是把所需冷却处理的水压到冷却塔塔上部,再通过配水系统均匀地喷洒于填料上,热水从填料上部落下,同时不饱和空气从塔下部上升,在填料间隙的流动中,热水与不饱和各空气进行冷热交换,空气把热量向上传递,变成热空气,再由风机抽出塔外,从而达到水温降低的效果。 二.冷却塔运行规程 2.1冷却塔运行前准备 2.1.1清扫现场,保证塔内、塔上无零星杂物。 2.1.2复验各部件安装位臵是否符合安装要求,各紧固件有否松动。 2.1.3检查电动机绝缘电阻,以免电机运转时烧坏。 2.1.4冷却塔运行前必须清理管道内杂质,以免堵塞布水器上出水孔,造成配水不均匀。 2.1.5检查风机叶片处的叶尖与风筒壁间隙,保证叶尖与风筒壁间隙在252 mm之间,达不到上述要求应于调整。 2.2循环水系统试运行 2.2.1逐步打开进水总管闸,通过阀门将水量调至额定值。 2.2.2冷却塔采用旋转布水器,应观察布水器旋转情况,布水器应运转平稳,布水均匀,如有异常情况,按常见故障及排除的规定排除。 2.2.3冷却塔出水应保证畅通。 2.2.4检查冷却塔塔体有否渗漏,如有渗漏应及时密封。 2.3风机系统试运行 2.3.1清扫现场 2.3.2复验各部件安装位臵是否符合安装要求,各紧固件连接件有否松动。 2.3.3检查叶片安装角是否正确、一致,各叶片水平位臵误差是否在允许范围内。 2.3.4检查叶轮、叶片安装紧固螺栓是否牢固,轴端止动保险是否安全可靠。 2.3.5检查电机绝缘电阻是否达到标准。 2.3.6手工转动风机叶轮,整机运转应轻重均匀。 2.3.7点动电机,检查叶片旋转方向是否正确,本公司叶片旋转方向为顺时针方向。 2.3.8连续运转1小时,测定,记录电机电流值、电压值、振动值,检查减速机是否有不正常响声等其它异常现象。 2.3.9观察塔体震动状况 2.3.10如上述2.8条不在设计范围内,则关闭风机,调整叶片安装角直到符合要求。 2.3.11连续运行4小时停机后: 2.3.11.1复验各部件的位臵有否走动。 2.3.11.2检查各连接件,紧固件有否松动。 2.3.11.3检查各密封部件是否漏油。 2.3.11.4检查电机、减速机温度是否符合要求。

变压器常见故障及处理电子教案

变压器常见故障及处 理

变压器常见故障及处理 1 异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接触,或者是因为静电放电引起的异常响声,而各种测量表计指示和温度均无反应,这类响声虽然异常,但对运行无大危害,不必立即停止运行,可在计划检修时予以排除。 2 温度异常

变压器在负荷和散热条件、环境温度都不变的情况下,较原来同条件时的温度高,并有不断升高的趋势,也是变压器温度异常升高,与超极限温度升高同样是变压器故障象征。 引起温度异常升高的原因有: ①变压器匝间、层间、股间短路; ②变压器铁芯局部短路; ③因漏磁或涡流引起油箱、箱盖等发热; ④长期过负荷运行,事故过负荷; ⑤散热条件恶化等。 运行时发现变压器温度异常,应先查明原因后,再采取相应的措施予以排除,把温度降下来,如果是变压器内部故障引起的,应停止运行,进行检修。 3 喷油爆炸 喷油爆炸的原因是变压器内部的故障短路电流和高温电弧使变压器油迅速老化,而继电保护装置又未能及时切断电源,使故障较长时间持续存在,使箱体内部压力持续增长,高压的油气从防爆管或箱体其它强度薄弱之处喷出形成事故。 (1)绝缘损坏:匝间短路等局部过热使绝缘损坏;变压器进水使绝缘受潮损坏;雷击等过电压使绝缘损坏等导致内部短路的基本因素。 (2)断线产生电弧:线组导线焊接不良、引线连接松动等因素在大电流冲击下可能造成断线,断点处产生高温电弧使油气化促使内部压力增高。 (3)调压分接开关故障:配电变压器高压绕组的调压

配电变压器常见故障分析

何金奎 (中铝山西分公司氧化铝一分厂,山西河津043300) 摘要:本文介绍了配电变压器常见的一些故障,并提出了相应的判断方法,为准确判定变压器常见故障提供了一定的借鉴。 关键词:变压器;故障判断; 响声;油温 配电变压器是电力设备的主体设备,关系到电网安全经济运行。随着系统容量的增大和电网规模的扩大,配电变压器故障给电网安全经济运行带来的影响越来越大;系统的稳定和经济运行也对变压器提出了越来越高的要求。因此,对配电变压器进行在线检测,及时掌握设备的状态,一直是电力工作者的梦想和追求。变压器的状态检测,就是通过对有关参数、信号的采集和分析,生产主管部门立即组织人员进行综合分析,诊断设备的状态,减少损失, 避免恶性事故的发生, 将传统的定期维护转为状态维护,从而提高电网的安全经济运行,改善对用户的服务质量。对变压器常见在线故障现象可通过以下几方面判断分析,进而采取相应的措施。 1 从变压器的声音判断故障 其方法是用木棒的一端顶在变压器的油箱上,另一端贴近耳边仔细听声音,据其异常声音可判断以下故障: (1)变压器过负荷:变压器过负荷严重时,会发出很高而且沉重的“嗡嗡”声。 (2)电压过高:当电源电压过高时,会使变压器过励磁,响声增大且尖锐。 (3)绕组发上短路:音响中夹有水的沸腾声,发出"咕噜、咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。此时,应立即停止变压器运行,进行检修。 (4)调压分接开关不到位或接触不良:当变压器投入运行时,分接开关不

到位,将发出较大的“啾啾”响声,严重时造成高压熔丝熔断;如果分接开关接触不良,就会产生轻微的“吱吱”火化放电声,一旦负荷加大,就有可能烧坏分接开关的触头。遇到这种情况,要及时停电修理。 (5)掉入异物和穿芯螺杆松动:当变压器夹紧铁心的穿芯螺杆松动,铁心上遗留有螺帽零件或变压器中掉入小金属物件时,变压器将发出“叮叮当当”的敲击声或“呼…呼…”的吹风声以及“吱啦、吱啦”的象磁铁吸动小垫片的响声,而变压器的电压、电流和温度却正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (6)变压器的铁心接地线断:当变压器的铁心接地断线时,变压器将产生“哗剥哗剥”的轻微放电声。 (7)内部放电:送电时听到“噼啪噼啪”的清脆及铁声,则是导电引线通过空气对变压器外壳的放电声;如果听到通过液体沉闷的“噼啪”声,则是导体通过变压器的油面对外壳的放电声。如属绝缘距离不够,则应停电吊心检查,加强绝缘或增设绝缘隔板。 (8)变压器高压套管脏污或裂损:当变压器的高压套管脏污,表面釉质脱落或裂损时,会发生表面闪络,听到“嘶嘶”或“哧哧”的响声,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。 (9)外部线路断线或短路:当线路在导线的连接处或T接处发生断线,在刮风时时接时断,接触时发生弧光或火花,这时变压器就发出像青蛙的“唧哇、唧哇”的叫声;当低压线路发生接地或出现短路事故时,变压器就发出“轰轰”的声音;如果短路点较近,变压器将发出像老虎的吼叫声。 (10)声响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些

变压器常见故障及处理

变压器常见故障及处理 1 异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接触,或者是因为静电放电引起的异常响声,而各种测量表计指示和温度均无反应,这类响声虽然异常,但对运行无大危害,

不必立即停止运行,可在计划检修时予以排除。 2 温度异常 变压器在负荷和散热条件、环境温度都不变的情况下,较原来同条件时的温度高,并有不断升高的趋势,也是变压器温度异常升高,与超极限温度升高同样是变压器故障象征。 引起温度异常升高的原因有: ①变压器匝间、层间、股间短路; ②变压器铁芯局部短路; ③因漏磁或涡流引起油箱、箱盖等发热; ④长期过负荷运行,事故过负荷; ⑤散热条件恶化等。 运行时发现变压器温度异常,应先查明原因后,再采取相应的措施予以排除,把温度降下来,如果是变压器内部故障引起的,应停止运行,进行检修。 3 喷油爆炸 喷油爆炸的原因是变压器内部的故障短路电流和高温电弧使变压器油迅速老化,而继电保护装置又未能及时切断电源,使故障较长时间持续存在,使箱体内部压力持续增长,高压的油气从防爆管或箱体其它强度薄弱之处喷出形成事故。 (1)绝缘损坏:匝间短路等局部过热使绝缘损坏;变压器进水使绝缘受潮损坏;雷击等过电压使绝缘损坏等导致内部短路的基本因素。 (2)断线产生电弧:线组导线焊接不良、引线连接松动等因素在大电流冲击

变压器的常见故障与对策分析报告

毕业论文中文摘要 在供配电系统中,变压器占有着很重要的地位,因此,提高变压器工作的可靠性对于保证安全供电具有非常重要的意义。然而,近年来由于大部分变压器使用年限较久,加之不少变压器长年累月运行在较恶劣的环境中,变压器出现的安全事故频频发生,而且呈现不断上升的趋势,严重影响着生产的安全、可靠、长周期运行。为此,本文就将通过对变压器的常见故障进行分析,并且提出相应的处理措施,以此来保证变压器的正常、安全运行。 关键词:变压器;故障;对策

毕业论文 引言 电力系统的安全运行关系到国民经济建设以及人们的正常生活,因此对电力设备的运行可靠性的要求在不断地提高。在现代电气设备的运行和维护中,变压器是输变电系统中最重要的设备之一。 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。变压器作为电力系统重要的变电设备,担负着电压变换和电能传输任务,其运行状态将直接影响到供电的可靠性和整个系统的正常运行。变压器一旦发生事故,造成的直接和间接经济损失都是难以估量的。因此对变压器的常见故障进行分析,并提出一些具体的、行之有效的方法来解决变压器的故障,是我国当前电力企业所面临的重要任务之一。 一、变压器的常见故障分析

·变压器的故障主要分为部和外部两种故障。部故障指变压器油箱里面发生的各种故障,主要靠瓦斯和差动保护动作切除变压器;外部故障指油箱外部绝缘套管及其引出线上发生的各种故障,一般情况下由差动保护动作切除变压器。速动保护(瓦斯和差动)无延时动作切除故障变压器,设备是否损坏主要取决于变压器的动稳定性。而在变压器各侧母线及其相连间隔的引出设备故障时,若故障设备未配保护(如低压侧母线保护)或保护拒动时,则只能靠变压器后备保护动作跳开相应开关使变压器脱离故障。因后备保护带延时动作,所以变压器必然要承受一定时间段的区外故障造成的过电流,在此时间段变压器是否损坏主要取决于变压器的热稳定性。因此,变压器后备保护的定值整定与变压器自身的热稳定要求之间存在着必然的联系。根据生产和日常生活实践,通过总结,我们可以将变压器的常见故障归结为以下四类: 1.1绕组故障 绕组故障主要有匝间短路、绕组接地、相间短路、断线及接头开焊等。产生这些故障的原因有以下几点。 1、在制造或检修时,局部绝缘受到损害,遗留下缺陷。 2、在运行中因散热不良或长期过载,绕组有杂物落入,使温度过高绝缘老化。 3、制造工艺不良,压制不紧,机械强度不能经受短路冲击,使绕组变形绝缘损坏。 4、绕组受潮,绝缘膨胀堵塞油道,引起局部过热。

(完整版)冷却塔维护保养方案

冷却塔维护保养方案 冷却塔的运行保养阶段 在冷却塔的使用过程中,可分为三个阶段维护及保养。停机后的清洗保养,开机前的检查调试,正式开机运行中的巡视检查。 (一)冷却塔停机后的清洗、保养 1、散水系统 ①检查冷却塔主水管、分水管、喷头有无破损松动,及时时行修补、固定。彻底清除布水管及喷头内部的污物,以保证水管畅通,喷头布水均匀。 ②彻底冲洗冷却塔水盘及出水过滤网罩,避免水垢污物积存堵塞管道。清洗完毕应打开泄水 阀门,放尽水盘内积水,以免冻坏。 ③检查水盘、塔脚是否漏水,如有漏点,及时补胶。 2、散热系统 ①清洗冷却塔所有换热材(填料),彻底清除掉热材表面、孔间的水垢污物,保证换热材的洁净。拆装换热材时行修补更换。装填时注意布放紧密,不留间隙。 ②清洗挡水帘、消音毯,去除污物。对破损处进行修补更换。挡水帘码放时要求紧密,防止漂水。将冷却塔充水,检查是否漏水(特别是塔体连接处),若漏则更换密封件。 3、传动系统

①电机:检查电机的接线端子是否完好,电机转动是否正常,电机接丝盒作密封,电机轴承加油润滑,电机外壳重新喷漆。长期停机,建议业主每个月至少运转电机3 个小时,保持电机线圈干燥,并润滑轴承表面。 ②减速器:检查减速器转动是否正常,如有异声,立即更换减速机轴承。 ③皮带、皮带轮:调节顶丝,松开皮带,延长皮带使用寿命。检查皮带有无破损、裂纹,必要时建议业主更换新皮带。校核皮带轮,马达架水平度,紧固松动螺栓,有锈蚀螺栓予以更换。 ④风扇:清洗扇叶表面污物,检查扇叶角度,扇叶与风胴间隙,并进行调整。 4、塔体外观 ①对风胴、塔、入风导板进行彻底清洗,保证外观清洁美观。 ②重新紧固各部位螺栓,并更换生锈螺栓。 ③检查塔体外观有无破损、裂纹,及时予以修补。 ④检查塔体壁板立缝处是否严密,必要时重新刷胶修补。 5、冷却塔附件 ①检查自动补水装置--浮球有无损坏、工作是否正常。发现异常及时修理、更换。 ②对冷却塔铁件螺栓重新紧固、更换生锈螺栓,对锈蚀铁件新刷漆。 ③检查进、出水管,补水管的塔体法兰盘有无破损、漏水、冷却塔清洗保养完毕,建议业主用彩条围挡布将冷却塔风胴包裹密封,以防杂物进入冷却塔内部 (二)冷却塔开机前的检查、调式

电力变压器典型故障分析及处理

配电变压器故障的判断分析及处理 摘要:电力变压器是电力系统中最关键的设备之一,它承担着电压变换,电能分配和传输,并提供电力服务。在运行中,配电变压器经常发生故障。本文针对配电变压器故障率高这一实际情况,着重分析了配电变压器常见的故障和异常现象及主要原因,并针对这些故障进行了分析,同时提出了一些具体的防范解决措施,为防止和减少配电变压故障的发生。 关键词:变压器故障;短路故障;绝缘故障;故障处理。 一、变压器发生故障的原因 、制造工艺存在缺陷。如设计不合理、材料质量低劣以及加工不精细等。 、缺乏良好的管理及维护。如检修后干燥处理不充分,安装不细心,以及由于检测能力有限导致某些故障未能及时发现而继续发展或故障设备修复不彻底等。 、绝缘老化。变压器在正常运行中,由于长期受到热、电、机械应力以及环境因素的影响,会发生一些不可逆的变化过程,使绝缘老化,通常这一过程非常缓慢,但当设备发生某些异常情况时,则会加速绝缘老化过程,迅速形成故障。 、恶劣的环境和苛刻的运行条件,以及长期超过技术规定允许的范围运行,往往是直接导致故障的起因。 二、变压器故障按严酷程度分类 、类灾难性:变压器爆炸或完全损坏;

、类致命性:变压器性能严重下降或严重受损,必须立即停运; 、类临界性:变压器性能轻度下降或轻度受损; 、类轻度性:不甚影响变压器运行但要进行非计划检修。 三、变压器故障按部位分类分析 变压器故障按部位通常可分为绕组、铁心、绝缘、引线、分接开关、套管、密封等七类故障。如下图所示。 、绕组故障分析 变压器绕组是变压器的心脏,构成变压器输入,输出电能的电气回路,其故障模式可分为:绕组短路、绕组断路、绕组松动、变形、位移、绕组烧损。其中绕组短路又可分为:层间短路、匝间短路、股间短路等。 变压器绕组故障除外在因素外,大部分是由于绕组本身结构及绝缘不合理所引起,以绕组短路出现率最高,它不仅影响到绕组本身,而且对铁心、引线、绝缘层等都有极大的影响。这种故障属致命性的,此时变压器内部可能出现局部高温或局部高能量放电现象,如不及时处理会导致变压器绕组完全损坏,严重时其油温声速升高,体积膨胀,甚至导致变压器爆炸,升级为灾害性故障。

变压器的常见故障分析及其处理措施

变压器在电力系统中的作用是变换电压,以利于功率的传输。电压经升压变压器升压后,可以减少输电线路损耗,提高送电的经济性,达到远距离送电的目的。而降压变压器则能把高电压变为用户所需要的各级使用电压,满足用户的需要。 变压器的故障情况变电所的值班人员在变压器运行中发现不正常现象时,应设法尽快消除,并立即报告上级领导并做好记录。当发现变压器严重故障时,可不经向调度汇报即应将变压器停运。若有运行中的备用变压器,尽可能先将其投入运行,然后报告调度和领导。如:1、变压器声响明显增大,很不正常,内部有爆裂声。2、严重漏油或喷油,使油面下降到低于油位设计的指示限度。3、套管有严重的破损和放电现象。4、变压器冒烟着火。 变压器的故障处理 一、变压器声响明显增大,很不正常,内部有爆裂声。 1、检查变压器的负载及冷却介质的温度,并与以往同样负载及冷却条件相比较; 2、检查温度测量装置; 3、检查散热器阀是否打开,冷却装置或变压器室通风情况是否正常。若以上均正常,油温比以往同样条件下高出10℃,且还是在继续上升时,则可断定变压器内部有故障,如铁芯发火或匝间短路等。铁芯发火可能是涡流所致,或夹紧用的穿心螺钉与铁芯接触,或硅钢片的绝缘破坏,此时,差动保护的瓦斯保护不动作。铁芯发火逐渐发展引起油色逐渐变暗,并由于发火部分温度很快上升致使油的温度渐渐升高,并达到发火点的温度,这是很危险的,若不及时切除变压器,就有可能发生火灾或爆炸事故。因此,应立即报告上级,将变压器停运并进行检修。 二、主变压器漏油和着火。 当变压器大量漏油而使油位迅速下降时,禁止将重瓦斯保护改为只作用于信号。因油面过低(低于顶盖)没有重瓦斯保护动作于跳闸,会损坏引线绝缘。有时变压器内部有“咝咝”的放电声,且变压器顶盖下形成了空气层,应有很大的危险,所以必须迅速采取措施,阻止漏油。变压器着火时,应立即切断电源,停止运行冷却器。若是顶盖上部着火,如变压器加装有远离本体的事故排油阀时,应立即打开事故放油阀,将油放至低于着火处放油槽内,同时用二氧化碳灭火机或砂子灭火,并注意油流方向,以防止火灾扩大而引起其他设备着火。 三、主变压器保护动作。 1、瓦斯保护动作时的处理。 瓦斯保护根据事故性质的不同,其动作情况可分为两种:一种是动作于信号,并不跳闸;另一种是两者同时发生。 轻瓦斯保护动作,通常有下列原因:

电力变压器常见故障分析及试验

电力变压器常见故障分析及试验 电力变压器是电力系统中最关键的设备之一,它承担着电压变换、电能分配和传输。因此,变压器的正常运行是对电力系统安全、可靠、优质、经济运行的重要保证,必须最大限度地防止和减少变压器故障和事故的发生。由于变压器长期运行,故障和事故总不可能完全避免,且引发故障和事故又出于多方面的原因。如外力的破坏和影响,不可抗拒的自然灾害,安装、检修、维护中存在的问题和制造过程中遗留的设备缺陷等事故隐患,特别是电力变压器长期运行后造成绝缘老化、材质劣化及预期寿命的影响,已成为发生故障的主要因素。从而危及电力系统的安全运行。 1变压器分类 我国电力变压器产品可按容量大小分为大型变压器(容量大于或等于8000kVA)和中小型变压器(容量小于或等于6300kVA);也可按电压等级分为6kV、10kV、35kV、6 0kV、110kV、220kV、330kV和500kV等。作为电压变换设备,变压器被广泛应用于输电和配电领域,特别是6KV、10kV和35kV电压等级的变压器,在油田生产、商业、居民配电系统中被普遍使用,且数量巨大。 2变压器的原理 变压器的基本原理是电磁感应原理,现以单相双绕组变压器为例说明其基本工作原理(如图): 当一次侧绕组上加上电压U1时,流过电流I1,在铁芯中就产生交变磁通φ1,这些磁通称为主磁通,在它作用下,两侧绕组分别出感应电势E1,E2,感应电势公式为:E=4.44fNφm 式中:E—感应电势有效值 f—频率 N—匝数 φm—主磁通最大值 由于一次绕组与二次绕组匝数不同,感应电势E1和E2大小也不同,电压U1和U2大小也就不同。 3变压器常见故障 变压器故障通常是伴随着电弧和放电以及剧烈燃烧而发生,随后电力设备即发生短路或其他故障,轻则可能仅仅是机器停转,照明完全熄灭,严重时会发生重大火灾乃至

相关文档
最新文档