核医学重点整理

核医学重点整理
核医学重点整理

核医学考试:

题型:选择题(单选20*1,多选5*2)

名词解释5个*4 /、

问答题4道+病例题1道共50分

所给重点混合分布在A,B卷;病例题重点仅此一道,AB卷相同,请重点背下来。

录音已存放至教室电脑,同时上传一份重点(仅供参考)。

所给重点价值80-85分,请自行把握。

注意:试卷答案以上课PPT内容为标准,其次参照课本内容。请认真对照录音复习课件。选择题内容跟所给重点有关,或分布在所提及重点的相关章节。

放射免疫章节较不重要,可简要看看。

名词解释:

闪烁现象:骨转移癌患者在治疗中定期做全身骨显像时,少数患者在化疗或放疗后近期(2~3个月)内可见病灶显像剂浓集增加,

似有恶化,但临床上却属改善,这种不匹配的现象称“闪烁现象”。

超级骨显像:指肾影不明显,全身骨影普遍异常增浓且清晰,软组织本底低,是弥漫性骨转移的一种表现,亦见于甲状旁腺功能亢进和软骨病。肾功能衰竭时肾影也不明显,但血液中存留多量99mTc-MDP致软组织明显而骨影不清晰。

放射性活度:是用来描述放射性物质衰变强弱的物理量,表示单位时间内发生衰变的原子核数。国际单位是贝可(Bq),定义1Bq 等于每秒内发生一次核衰变,可写成1Bq=1s-1。常用单位是居里(Ci)。两者换算关系:1Ci= 1 Bq=

传能线密度(LET):直接电离粒子在其单位长度径迹上消耗的平均能量,常用单位为KeV/um,其值取决于两个因素:\. 1、粒子

所载的能量高低和粒子在组织内的射程。高LET射线的电离能力强,能有效杀伤病变细胞;低LET的射线电离能力弱,不能有效

杀伤病变细胞。

SUV (标准化摄取值):是描述病灶放射性摄取量的半定量分析指标,在18F-FDG PET显像时,SUV对于鉴别病变良恶性具有

一定参考价值。SUV=(单位体积病变组织显像剂活度(Bq/ml)/显像剂注射剂量(Bq))x体重(g)

有效半减期及其计算公式:是指生物体内的放射性核素由于从体内排出和物理衰变两个因素作用,减少至原有放射性活度的一

半所需要的时间。

T e=(T p xT b)/(T p+T b)/

内放射治疗:是将非密封辐射源(放射性核素治疗药物)引入人体内病变的器官或组织,通过射线的辐射生物学效应破坏病变,达到治疗病变的目的,能用于治疗体内各器官和组织病变。

韧致辐射:粒子在介质中受到阻滞而急剧减速时能将部分能量转化为电磁辐射,即X射线。它的发生概率与B -粒子的能量及介

质的原子序数成正比。因此在防护上B -粒子的吸收体核屏蔽物应采用低密度材料,如有机玻璃、铝等。

湮没辐射:当B +粒子与物质作用能量耗尽时和物质中的自由电子结合,正负电荷抵消,两个电子的静止质量转化为两个方向相

反、能量各为的两个丫光子,这一过程称为湮没辐射或光化辐射。正电子发射CT的探测原理就是利用湮没辐射事件发生两个方

向互为相反的丫光子,并通过符合电路对这一事件进行空间定位。

同质异能素书上P4

可逆性心肌缺血(本次未提及):在负荷影像存在缺损,而静息或者延迟显像又出现显像剂分布或充填,应用201TI显像时,这种

随时间改善称为“再分布”,常提示心肌可逆性缺血。

问答题:

2、肾上腺髓质显像的正常及异常表现

正常影像:利用131I-MIBG显像时,正常人肾上腺髓质一般不显影。利用123I-MIBG显像时,常于注射后24小时肾上腺髓质对

称显影,唾液腺、心肌显影尤其清晰,心肌显影程度也与血浆去甲肾上腺素浓度呈负相关。

异常影像:

(1) 双侧肾上腺清晰显影:提示生侧肾上腺髓质增生 (2) 单侧肾上腺清晰显影:多提示嗜铬细胞瘤,不显影侧正常

(3) 肾上腺以外异常显影:排除其他干扰后,可诊断为异位嗜铬细胞瘤;若一侧肾上腺部位也可见明显浓聚影,则肾上腺以外 的浓聚区应考虑为恶性嗜铬细胞瘤的转移灶;对于小儿患者,如腹壁或骨骼处有异常浓聚影,应高度怀疑为神经母细胞瘤。 1、试述在1311治疗分化型甲状腺癌时,去除残留甲状腺组织的意义

(1) 131I 通过发射的B 射线,去除残留甲状腺组织的同时,也消除了隐匿在甲状腺组织中的微小 DTC 病灶,降低DTC 的复发率

和转移发生的可能性。

Tg 的正常来源,有利于通过检测血清 Tg 水平的变化,对 DTC 的复发或转移进行诊 Tg 水平的变化是 DTC 复发或体内存在 DTC 转移病灶的敏感而特异的指标。 131I 显像发现DTC 转移灶,同时利于用 131I 对转移灶的治疗。

2、 1311治疗甲亢适应症和禁忌症:

适应证:(1)甲状腺呈轻度弥漫性肿大,年龄在

25岁以上者;

(2 )抗甲状腺药治疗效果差,有药物过敏史或治疗复发者; (3) 有手术禁忌,不愿手顺或手术复发者; (4) 甲状腺1311的半衰期大于3天者

禁忌证:(1)新近发生心肌梗死的甲亢患者;

(2 )妊娠或哺乳期,1311可通过胎盘和乳汁分泌有可能影响胎儿甲状腺发育; '

(3) 严重肾功能不全者,1311主要由肾脏排出。

3、 简述18F-FDG PET 在临床肿瘤学应用中的适应症

(1) 肿瘤的临床分期:能检出原发病灶,且能全面直观地显示病变全身的累及范围,明确临床分期,为选择合理的治疗方案

提供客观依据。

(2) 评价疗效:提供功能代谢信息,可在治疗的早期显示肿瘤组织的代谢变化而获得疗效信息。

(3) 肿瘤的良恶性鉴别诊断:可从不同角度提供病灶的生物学特征信息,为良恶性肿瘤鉴别提供科学依据。 (4)

肿瘤残余和治疗后纤维组织形成或坏死的鉴别:残余肿瘤组织代谢率明显高于治疗后形成的纤维瘢痕或坏死组织,同时 全身扫描时刻及时发现转移灶。

//

(5) 检测复发及转移:对恶性肿瘤的复发及转移灶的检查具有重要意义。 (6) 寻找原发灶

(7) 指导临床活检:全身扫描有利于帮助临床医师选择表浅,远离血管、神经等重要结构部位的高代谢病灶进行活检,容易

获得正确诊断信息。

//

(8) 指导放疗计划:可提供由一系列肿瘤生物学因素决定的治疗靶区内放射敏感性不同的区域,即生物靶区。

4、 18F-FDG 肿瘤显像的原理

18

F -FD

G 是葡萄糖的类似物,是临床最常用的显像剂。静脉注射

18

F -FD

G 后,在葡萄糖转运蛋白的帮助下通过细胞膜进入细胞,

细胞内的18F-FDG 在己糖激酶作用下磷酸化,生成 6-PO 4-18F-FDG 由于18F-FDG 与葡萄糖的结构不同(2-位碳原子上的羟基被18F

取代),6-PO 4-18F-FDG 不能被磷酸果糖激酶识别进入糖酵解途径的下一个反应过程

,只能滞留在细胞内进一步代谢, 而且不能通过

细胞膜而滞留在细胞内。在葡萄糖代谢平衡状态下,

6-PO 4-18F-FDG 滞留量大体上与组织细胞葡萄糖消耗量一致,因此, 18

F-FDG

能反映体内葡萄糖利用情况。绝大多数恶性肿瘤具有高代谢的特点,尤其是糖酵解作用明显增强,因此肿瘤细胞内可积聚大量 18F-FDG,而且18

F 具有发射正电子的特性,经 PET 显像可显示肿瘤的部位、大小、数量及肿瘤内的放射性分布。

(2) 给予去除剂量131I 后进行的全身显像,常可发现诊断剂量

的方案有重要意义。

131I 全身显像未能显示的 DTC 病灶,这对制定病人随访和治疗

(3 )残留甲状腺组织被彻底去除后,体内无

断,当残留甲状腺组织被完全去除后,血清 (4)残留甲状腺组织完全去除后,有利于用

5、18F-FDG PET-CT显像常见的假阳性和假阴性

假阳性:

(1)局部或全身感染性病灶:如结核、化脓性疾病、霉菌病等

(2)非特异性炎性病灶:如嗜酸性肉芽肿、慢性胰腺炎、甲状腺炎、食管炎、胃炎及肠炎、非特异性淋巴结炎等

(3)一些良性肿瘤可不同程度摄取FDG,如垂体瘤、肾上腺腺瘤、甲状腺滤泡状腺瘤等

(4)治疗后改变:炎症、瘢痕组织、放射性肺炎、化疗后骨髓增生或胸腺增生

(5)生理性摄取与伪影

假阴性:

(6)肿瘤太小

(7)细支气管肺泡癌、类癌、富粘液成分的肿瘤(如胃癌)、高分化肝细胞肝癌、肾脏透明细胞癌、成骨性和骨硬化性骨骼转移肿瘤等

(8)近期曾给予大剂量类固醇激素治疗、肿瘤坏死、高血糖症等

6、运动负荷心肌灌注显像的原理

正常冠状动脉有较强的储备能力,当躯体剧烈运动时,全身血容量增加,心脏负荷加重,心肌耗氧量增加,并通过神经体液调节,使冠状动脉扩张,血流量增加,心肌收缩力增强。而在冠脉狭窄时,静息状态下,动脉狭窄区的心肌仍可能维持其供血,因此,心肌显像正常或仅轻度异常,但在运动负荷的情况下,供血正常的心肌血流呈3至5倍的增加,放射性药物的摄取也随之增加,而冠脉狭窄区的心肌不能相应增加血液灌注,使病变区与正常区的心肌显像剂分布差异增大,有利于显示缺血病灶和鉴别缺血病变是可逆性还是不可逆性。

7、心肌灌注显像的主要临床应用

(1)显示心肌缺血:

诊断冠心病:诊断标准为在两个(以上)不同断层方向、连续两个以上剖面出现相同室壁心肌节段性示踪剂减低或缺损。

冠心病危险程度的分级;

冠心病高危人群评估;

(2)急性心肌梗塞:可诊断急性心肌梗死,评估梗死范围,监测溶栓治疗,估计预后,鉴别急性胸痛。

(3)存活心肌探测:可探测出“坏死心肌”、顿抑心肌、冬眠心肌,为治疗提供依据。

(4)心肌缺血治疗疗效观察

(5)微血管性心绞痛鉴别诊断:心肌内小冠状血管的结构与功能变化引起的心绞痛。冠脉造影正常,运动心电图和心肌灌注显像阳性

(6)其他心脏疾病:扩张型心肌病、肥厚型心肌病、病毒性心肌炎、心肌桥对心肌供血的影响等

(7)心室室壁瘤的诊断:在短轴剖面上近心尖部壁薄,示踪剂缺损,腔径大于基地。在水平长轴剖面上,近心尖部缺损,心肌呈倒“八”字形。

& SPECT?血流灌注显像原理

静脉注射分子量小,不能带电荷且脂溶性高的脑显像剂99m Tc双胱乙酯、123I-安非他明,它们能通过正常血脑屏障进入脑细胞,随后在水解酶或者是脂解酶的作用下,转变为水溶性物质或经还原型谷胱甘肽作用分解成带电荷的次级产物,不能扩散出脑细胞,从而滞留在脑组织内,显像剂进入脑细胞的量与局部脑血流量呈正比,通过观察脑内各部位放射性分布的多少,

可判断rCBF的情况。

(简略版)能自由穿透血脑屏障进入脑组织的放射性核素脑显像剂,在脑组织中浓聚的数量与血流量呈正比,并在脑组织内稳定停留,可以用核医学仪器进行显像以获得脑血流灌注显像。

9、简述正常肾图三段名称和临床意义正常肾图由示踪剂出现段(a段)、聚集段(b段)和排泄段(c段)组成。

a段:静脉注射显像剂10S左右,肾图曲线出现急剧上升段,其高度在一定程度上反映肾动脉血流灌注量。

b段:继a段之后的斜行上升段,经3~5分钟达到高峰。其上升的斜率和高度反映肾小管上皮细胞从血中摄取131I-0IH的速度和量,与肾脏的有效血浆流量、肾小球滤过率和肾小管分泌功能有关,直接反映肾小球和肾小管的功能,即实质功能。

c段:继b段之后的下降段,一般前部下降较快,斜率与b段相近,后部较缓慢,下降的斜率代表显像剂由肾盂经输尿管排入膀胱的速度,主要与尿流量和尿路通畅程度相关。因尿量大小受肾有效血浆流量和肾小球滤过率的影响,所以在尿路通畅时也是反映肾脏功能的指标。

10、简述常见的异常肾图图形特点和临床意义

单侧异常肾图:

(1)持续上升型:a段基本正常,b段持续上升,至检查结束时也不见下降的c段。出现在单侧者多见于急性上尿路梗阻;

双侧同时出现,多见于急性肾衰和继发于下尿路梗阻所致的双侧上尿路引流受阻。

(2)抛物线型:a段正常或稍低,b段上升缓慢,峰时后延,c段下降缓慢,峰顶圆钝,呈抛物线状,多见于脱水、肾缺血、肾功能受损和上尿路引流不畅伴轻、中度肾盂积水。\

(3)高水平延长线型:a段基本正常,b段上升缓慢,近似于同水平延伸,不见明显下降的c段。多见于上尿路梗阻伴肾盂积水及肾功能受损。

(4)低水平延长线型:a段明显下降,b段上升不明显,c段与b段保持在同一水平延伸,b段和c段无明显界限。常见于肾功能严重损害和急性肾前性肾功能衰竭,也可见于慢性上尿路严重梗阻伴肾功能受损。

(5)低水平递降型:a段低,b段不出现,a段后曲线逐渐递减,见于肾脏无功能、肾缺如或肾切除术后。

(6)阶梯状下降型:a、b段正常,c段呈规则或不规则阶梯状下降。常见于尿反流或因疼痛、精神紧张、尿路感染等所致的尿路痉挛。

双侧异常肾图:

小肾图:双侧对比,一侧肾图正常,而另一侧肾图幅度明显减低,峰值差>30%,但曲线形态保持正常,多见于一侧肾动脉狭窄或先天性一侧肾脏发育不良。

11 .全身骨显像的适应症

1.恶性肿瘤骨转移早期诊断

*协助临床分期和确定治疗方案

*骨转移癌临床疗效观察

2.原发骨肿瘤

* 了解有/无转移

*手术范围判定

*活检定位

*协助确定放疗照射野

*疗效评价

3.主诉骨痛,排除骨肿瘤

4.血清碱性磷酸酶f,排除骨骼疾病

5.协助全身性代谢性骨病诊断

12. ECT与CT的不同点

这部分没有给课件,请参照书本相关内容

11、肺灌注显像的主要临床应用(本次未提及)

(1) 肺血栓栓塞:肺灌注显像结合肺通气显像可诊断肺栓塞,提高诊断特异性。

(2) 肺动脉高压症的评价:肺血流分布逆转,肺上部高于肺下部的"翻转”现象。

(3) 肺肿瘤手术适应证的选择和肺功能预测:

(4) 疑大动脉炎综合症等疾病累及肺血管者:灌注显像呈显像剂分布缺损改变。

(5) 急性呼吸窘迫综合征(ARDS、慢性阻塞性肺疾病(CODP患者肺血管受损程度与治疗效果:ARDS典型表现为主

要分布于肺周边区和体位相对低垂区的多发、非节段性显像剂分布缺损区。COPD肺灌注显像也表现为多发非节段

性显像剂分布缺损区,但缺损区主要分布在肺下野。

(6) 慢性阻塞性肺疾病肺减容术术前评价

(7) 心脏及肺内右向左分流患者的诊断和定量分析:显像剂进入体循环,主要分布于血供丰富的脑和肾等器官。

(8) 肺移植排斥反应的预测:在单侧肺移植术后早期,相对灌注分数<53%时提示出现慢性排斥反应的可能性大。

病例分析:

男,28岁,骨折后内固定,术后患者出现全身乏力,伴寒战,发热,固定部位疼痛加重,体温升高,白细胞,中性粒细胞升高,临床考虑有外伤后骨髓炎或急性软组织蜂窝织炎

问:1、选一个最合适的放射性核素显像治疗方法以鉴别这两种疾病

2、试述此项方法的鉴别要点采用三时相骨显像的方法来鉴别。

鉴别要点:急性骨髓炎时,血流相、血池相、延迟相均可见病变局部显像剂异常聚集,并随时间而增浓,其显像剂消失较慢;可伴周围软组织充血;但延迟相有时可见血管栓塞、脓液压迫所致冷区”)

急性蜂窝织炎血流相、血池相显像剂异常聚集,但放射性消退迅速,延迟相正常。24小时延迟显像,这两种病变上述差异更加

明显。

部分选择题;(老师未提及此部分内容,仅供参考)

1、最常用的正电子药物是18F-FDG;

SPECT t显像中使用MDP ;

肾显像中用TPA

不能取代SPECT勺药物是18 F-FDGo

3、1311治疗甲亢时,影响治疗剂量的因素

固定计量法:给所有病人一个固定的剂量

计算剂量法:用公式(Z x甲状腺大小(g) x100) /24小时RAIU

Z为计划每克甲状腺组织给药的Bq或卩ci数,范围为100~200M ci. RAUI是甲状腺摄131I率

临床上结合实际情况,如病程长,甲状腺腺体较硬,第一次治疗未愈患者再次治疗可适当增加剂量,病程短,手术后复发者可适当减量。

4、哪些核素可以用于治疗:

131l 89Sr 186Re 80Sr 153Sm 32P

5、99m Tc-DMSA用于肾静态显像,其中+5价锝标志的DMSA可作为肿瘤的显像剂

6、18F-FDG在炎性病变中可摄取

7、除18F-FDG外,11C标记的药物应用也逐年增加

&用于肾血管狭窄:卡托普利介入试验

用于鉴别机械性尿路梗阻与非梗阻性尿路扩张:利尿药介入试验

9、甲状腺试验:如过氯酸钾释放试验还有甲状腺激素抑制试验的临床意义

过氯酸钾释放试验:正常人释放率<10%。>10%提示碘有机化部分障碍,>50%提示碘有机化明显障碍。慢性淋巴细胞性甲状腺炎

甲状腺激素可以正常、增高或降低,但过氯酸钾释放试验呈阳性,提示有碘机化过程障碍。

甲状腺激素抑制试验:正常人抑制率>50%,抑制率25%~50%为轻度抑制,<25%或无抑制者提示甲亢。可用于甲亢与缺碘性甲状腺肿的鉴别诊断。甲亢者抑制率<50%或未被抑制,缺碘性甲状腺肿患者抑制率>50%。可用于甲亢治疗效果和预测复发,若甲亢治疗后抑制率>50%说明垂体与甲状腺轴之间的反馈调节关系已经恢复正常,甲亢已治愈,复发可能性小。

核医学重点归纳.(精选)

绪论 1定义: 核医学是利用放射性核素诊断、治疗疾病和进行医学研究的学科。 2核医学的内容出来显像外还有器官功能测定、体外分析法、放射性核素治疗 第一章 1、元素:具有相同质子数的原子,化学性质相同,但其中子数可以不同,如131I和127I; 2、核素:质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。同一元 素可有多种核素,如131I、127I、3H、99m Tc、99Tc分别为3种元素的5种核素; 3、同质异能素:质子数和中子数都相同,但处于不同的核能状态原子,如99m Tc、99Tc 。 4、同位素:凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互 称为该元素的同位素。 5、放射性核素:原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素称 为放射性核素 6、放射性衰变:放射性核素的原子由于核内结构或能级调整,自发地释放出一种或一种以上 的射线并转化为另一种原子的过程称为放射性衰变。 7、电子俘获:原子核俘获核外的轨道电子使核内一个质子转变成一个中子和放出一个中微子 的过程 8、放射性衰变基本规律 对于由大量原子组成的放射源,每个原子核都可能发生衰变,但不是所有原子在同一时刻都发生衰变,某一时刻仅有极少数原子发生衰变。放射性核素衰变是随机的、自发的按一定的速率进行,各种放射性核素都有自己特有的衰变速度。放射性核素原子随时间而呈指数规律减少,其表达式为: N=N e-λt 指数衰减规律: N = N e-λt N 0: (t = 0)时放射性原子核的数目 N: 经过t时间后未发生衰变的放射性原子核数目 λ:放射性原子核衰变常数大小只与原子核本身性质有关,与外界条件无关; 数值越大衰变越快 9、半衰期:放射性原子核数从N 0衰变到N 的1/2所需的时间 10、放射性活度(A) 定义:单位时间内发生衰变的原子核数1Bq=1次× S-1 1Ci=3.7×1010 Bq 1Ci=1000mCi 11、比放射性活度定义:单位质量或体积中放射性核素的放射性活度。 单位: Bq/kg; Bq/m3; Bq/l 12、电离当带电粒子通过物质是和物质原子的核外电子发生静电作用,是电子脱离原子轨道 而发生电离 13、激发如果核外电子获得的能量不足以使其形成自由电子,只能有能量较低的轨道跃迁到 能量较高的轨道 14、散射带电粒子与物质的原子核碰撞而改变运动方向的过程 15、韧致辐射带电粒子受到物质原子核电场的影响,运动方向和速度都发生变化,能量减低, 多余的能量以x射线的形式辐射出来 16、湮灭辐射正电子衰变产生的正电子具有一定的动能,能在介质中运行一定得距离,当其 能量耗尽是可与物质中的自由电子结合,而转化为 17、光电效应光子同(整个)原子作用把自己的全部能量传递给原子,壳层中某一电子获得动 能克服原子束缚跑出来,成为自由电子,光子本身消失了。

2018年《核医学与技术》考前复习(九)

2018年《核医学与技术》考前复习(九) 单选题-1/知识点:综合复习题 目前常用Tc标记白细胞的放射性药物是 A.Tc-ECD B.Tc-DTPA C.Tc-HMPAO D.Tc-EHIDA E.Tc-MAG 单选题-2/知识点:综合复习题 滤泡型甲状腺癌患者下列哪种方法检查更好 A. F-FDG PET/CT B. I-MIBG SPECT C. I SPECT D.CT E.MRI 单选题-3/知识点:综合复习题 下列哪一项不是放射自显影的用途

A.脏器显像研究 B.细胞动力学研究 C.药物的定位分布及代谢研究 D.受体的定位研究 E.毒物的定位与分布研究 单选题-4/知识点:综合复习题 影响血清TBG升高的主要因素 A.妊娠 B.新生儿期 C.高雌激素血症 D.他莫昔芬(三苯氧胺) E.以上都对 单选题-5/知识点:综合复习题 膀胱尿反流显像方法,哪项说法是正确的 A.直接法和间接法都采用通过静脉注射显像剂 B.直接法和间接法都采用通过导尿管注入显像剂 C.直接法通过静脉注射显像剂,间接法通过导尿管注入显像剂 D.间接法通过静脉注射显像剂,直接法通过导尿管注入显像剂 E.属于静态显像方法 单选题-6/知识点:综合复习题

下列关于重建断层图像的描述正确的是 A.迭代法适合解决具有严格数学分析答案的计算问题 B.迭代法较早用于图像重建,现已逐渐淘汰 C.迭代的次数越多,图像重建的越精确 D.MEML算法基于傅立叶变换,逐渐取代了迭代法 E.OSEM算法基于傅立叶变换,逐渐取代了迭代法 单选题-7/知识点:试题 肺栓塞在肺显像中的典型表现为 A.灌注显像有缺损区,通气显像正常 B.灌注显像正常,通气显像有缺损 C.灌注和通气显像均有缺损区 D.灌注和通气显像均无缺损区 E.灌注和通气显像均正常 单选题-8/知识点:试题 新型SPECT(有定位CT的)是通过下列哪项技术获得功能解剖图像的 A.定量显像技术 B.半定量显像技术 C.平面显像 D.体外分析 E.图像融合技术

医学影像设备学期末复习重点简答题考试重点

模拟影像和数字影像有何不同? 成像类型模拟数字 成像特点一次采集,固定不变一次采集,多重成像存储与传输方式硬件存储与传输无胶片软件传输 灰阶动态范围小大 密度分辨率较小较高 其他连续,直观,获取方便线性好,层次丰富,可进行后 处理 DR&CR性能比较有哪些优点?1.辐射剂量地,X线量子检测(DQE)高;2.空间分辨力可达3.6Lp/mm;3.工作效率高,省去了屏-胶系统更换胶片的繁琐程序;4.应用DR系统的后处理功能,可获得优异的图像质量。DSA的时间减影方式有哪几种?1.常规方式;2.脉冲方式PI;3.超脉冲方式SPI;4.连续方式;5.时间间隔差方式;6.路标方式;7.心电触发脉冲式ECG。MRI成像基本原理:当处于磁场中的物质受到射频电磁波的激励时,如果RF电磁波的频率与磁场强度的关系满足拉莫尔方程,则组成物质的一些原子核会发生共振(MR),此时原子核吸收了RF电磁波的能量,当RF电磁波停止激励时,吸收了能量的原子核又会把这部分能量释放出来,即发射MR信号,通过测量和分析此MR信号,可得到物质结构中的许多物理和化学信息。MRI设备的缺点:①扫描速度慢;②易出现运动、流动伪影;③定量诊断困难;④对钙化灶和骨皮质病灶不够敏感;⑤禁忌证多。磁体的作用、分类及场强的选择:作用:长生一个均匀的静磁场,使处于该磁场中的人体内氢原子和被磁化而形成磁化强度矢量;分类:永磁体,常导磁体,超导磁体;场强的选择:磁体场强有低、中、高、超高场四大类。应用型MRI设备:低中场;应用兼研究型MRI设备:高场;研究性MRI设备:超高场。场强的选择一般应以能完成任务所要求的最低场强为原则。三个梯度场的关系:Gx使样品X方向各点信号的频率与x有关,因此Gx叫做频率编码梯度磁场;Gy使样品Y方向上信号的相位与y有关,因此Gy叫做相位编码梯度磁场;Gz使样品Z方向信号的频率与z有关,在Gz和一定带宽的RF磁场共同作用下,样品中只有与Z轴垂直的一定厚度截层上的磁化强度才能产生MR信号,因此Gz叫做选层梯度磁场。简述X线产生原理:X线的发生程序是接通电源,经过降压变压器,供X线管灯丝加热,产生自由电子并云集在阴极附近。当升压变压器向X线管两级提供高压电时,阴极与阳极间的电势差陡增,处于活跃状态的自由电子,受强有力的吸引,使成束的电子以高速由阴极向阳极行进,撞击阳极钨靶原子结构。此时发生了能量转换,其中约1%以下能量形成X线,其余99%以上则转换为热能。前者主要由X线管窗口发射,后者由散热设施散发。简述IP的读出原理:需采用激光扫描系统,随着高精度电动机带动IP匀速移动,激光束由摆动式反光镜或旋转多面体反光镜进行反射,对IP整体进行精确而均匀地逐行扫描。受激光激发而产生的PSL荧光被高效导光器

核医学重点整理(仅供参考)

核医学考试: 题型:选择题(单选20*1,多选5*2) 名词解释5个*4 问答题4道+ 病例题1道共50分 所给重点混合分布在A,B卷;病例题重点仅此一道,AB卷相同,请重点背下来。 录音已存放至教室电脑,同时上传一份重点(仅供参考)。 所给重点价值80-85分,请自行把握。 注意:试卷答案以上课PPT内容为标准,其次参照课本内容。请认真对照录音复习课件。 选择题内容跟所给重点有关,或分布在所提及重点的相关章节。 放射免疫章节较不重要,可简要看看。 名词解释: 闪烁现象:骨转移癌患者在治疗中定期做全身骨显像时,少数患者在化疗或放疗后近期(2~3个月)内可见病灶显像剂浓集增加,似有恶化,但临床上却属改善,这种不匹配的现象称“闪烁现象”。 超级骨显像:指肾影不明显,全身骨影普遍异常增浓且清晰,软组织本底低,是弥漫性骨转移的一种表现,亦见于甲状旁腺功能亢进和软骨病。肾功能衰竭时肾影也不明显,但血液中存留多量99mTc-MDP致软组织明显而骨影不清晰。 放射性活度:是用来描述放射性物质衰变强弱的物理量,表示单位时间内发生衰变的原子核数。国际单位是贝可(Bq),定义1Bq 等于每秒内发生一次核衰变,可写成1Bq=1s-1。常用单位是居里(Ci)。两者换算关系:1Ci=3.7x1010Bq 1 Bq=2.703X10-11Ci 传能线密度(LET):直接电离粒子在其单位长度径迹上消耗的平均能量,常用单位为KeV/um,其值取决于两个因素:1、粒子所载的能量高低和粒子在组织内的射程。高LET射线的电离能力强,能有效杀伤病变细胞;低LET的射线电离能力弱,不能有效杀伤病变细胞。 SUV(标准化摄取值):是描述病灶放射性摄取量的半定量分析指标,在18F-FDG PET 显像时,SUV对于鉴别病变良恶性具有一定参考价值。SUV=(单位体积病变组织显像剂活度(Bq/ml)/显像剂注射剂量(Bq))x体重(g) 有效半减期及其计算公式:是指生物体内的放射性核素由于从体内排出和物理衰变两个因素作用,减少至原有放射性活度的一半所需要的时间。 T e=(T p xT b)/(T p+T b) 内放射治疗:是将非密封辐射源(放射性核素治疗药物)引入人体内病变的器官或组织,通过射线的辐射生物学效应破坏病变,达到治疗病变的目的,能用于治疗体内各器官和组织病变。 韧致辐射:粒子在介质中受到阻滞而急剧减速时能将部分能量转化为电磁辐射,即X射线。它的发生概率与β-粒子的能量及介质的原子序数成正比。因此在防护上β-粒子的吸收体核屏蔽物应采用低密度材料,如有机玻璃、铝等。 湮没辐射:当β+粒子与物质作用能量耗尽时和物质中的自由电子结合,正负电荷抵消,两个电子的静止质量转化为两个方向相反、能量各为0.511MeV的两个γ光子,这一过程称为湮没辐射或光化辐射。正电子发射CT的探测原理就是利用湮没辐射事件发生两个方向互为相反的γ光子,并通过符合电路对这一事件进行空间定位。 同质异能素书上P4 可逆性心肌缺血(本次未提及):在负荷影像存在缺损,而静息或者延迟显像又出现显像剂分布或充填,应用201TI显像时,这种随时间改善称为“再分布”,常提示心肌可逆性缺血。 问答题: 2、肾上腺髓质显像的正常及异常表现 正常影像:利用131I-MIBG显像时,正常人肾上腺髓质一般不显影。利用123I-MIBG显像时,常于注射后24小时肾上腺髓质对称显影,唾液腺、心肌显影尤其清晰,心肌显影程度也与血浆去甲肾上腺素浓度呈负相关。

核医学考试 分章重点总结

K L M N 原子核结构: X为元素符号 Z为质子数 N为中子数 A为质量数 元素——具有相同质子数的原子,化学性质相同,但其中子数可以不同,如131I 和127I; 核素——质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。同一元素可有多种核素,如131I、127I、3H、99m Tc、99Tc分别为3种元素的5种核素; 同位素——凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。eg 131i 127i 同质异能素——质子数和中子数都相同,但处于不同的核能状态原子,如99mTc、99Tc .基态:能量处于量低的稳定能级状态称之为基态。

激发态:原子获得能量时,即具有较高的能级状态时称为原子的激发态。 退激:处于激发态时电子不稳定,非常容易将多余的能量以光子的形式辐射释放出来而回到基态的过程称为退激。 一、核衰变方式 1. α衰变:α粒子得到大部分衰变能,α粒子含2个质子,2个中子 α衰变:241Am(镅)→237Np(镎)+4He α衰变:射程短、能量大、破坏力强、屏蔽用低原子序数物质即可 2. β衰变 ?β-衰变:3215P → 3216S + β- + Ue + 1.71MeV(富中子)β-衰变:3H→3He+ β- ? ?正电子衰变:137N → 136C + β++ υ + 1.190MeV(贫中子)正电子衰变:11C→11B+ β+ ? β射线本质是高速运动的电子流 β衰变:射程、能量适中适合治疗、显像、屏蔽首先低原子序数物质再用高原子序数物质 γ衰变 γ衰变往往是继发于α衰变或β衰变后发生,这些衰变后,原子核还处于较高能量状态,由激发态回复到基态时,原子核释放出γ射线。 ?99Mo → 99m Tc + β-→ 99Tc + γ (T : ①66.02d; ②6.02h) 1/2 ?131I → 131Xe + β- +γ :8.04d) (T 1/2 γ衰变:99m Tc→99Tc γ衰变射程长、能力低、适合显像屏蔽用高原子序数物质 γ衰变特点: 1.从原子核中发射出光子 2.常常在α或β衰变后核子从激发态退激时发生 3.产生的射线能量离散 4.可以通过测量光子能量来区分母体的核素类别 P26 对于由大量原子组成的放射源,每个原子核都可能发生衰变,但不是所有原子在同一时刻都发生衰变,某一时刻仅有极少数原子发生衰变,但其衰变数目与原子核数目的比率是固定不变化,这个的概率称之为衰变常数(λ) 带电粒子与物质的作用(α,β) Ionization 电离 Excitation 激发

13核医学总结

13核医学总结 13核医学总结 13核医学总结本文简介:核医学绪论核医学是一门利用开放型放射性核素诊断和治疗疾病的学科将放射性核素引入拟检查的脏器内,利用放射性核素探测仪器实现脏器和病变显示的方法称作放射性核素显像。是一种独特的功能显像,显示的是器官的血供、功能与代谢活动。凡不将放射性核素引入体内者称体外检查法或体外核医学,最有代表性的是放射免疫分析(R。 13核医学总结 核医学 绪论 核医学是一门利用开放型放射性核素诊断和治疗疾病的学科 将放射性核素引入拟检查的脏器内,利用放射性核素探测仪器实现脏器和病变显示的方法称作放射性核素显像。是一种独特的功能显像,显示的是器官的血供、功能与代谢活动。 凡不将放射性核素引入体内者称体外检查法或 体外核医学,最有代表性的是放射免疫分析(Radioimmunoassay

RIA) 元素:具有相同质子数的原子,化学性质相同,但其中子数可以不同,因而物理性 能不同,如131I和127I 。 核素:质子数相同,中子数也相同,且具有相同能态的原子,称为一种核素。 同位素:凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。 每秒钟1次核衰变,称为1贝克 核医学必备的物质条件:放射性药物 放射性试剂 核医学仪器 放射性药物 凡引入体内用作诊疗的放射性核素及其标记化合物。分为:诊断用药(γ射线) 治疗用药(β- 射线 ) 放射性试剂 不需引入体内的放射性核素及其标记化合物。 静态显像(static

imaging) 当显像剂在脏器内或病变处的浓度处于稳定状态时进行显像称为静态显像。 多用作观察脏器和病变的位置、形态、大小和放射性分布。 阳性显像(positive imaging) 又称热区显像(hot spot imaging)指在静态影像上主要以放射性比正常增高为异常的显像 阴性显像(negative imaging) 又称为冷区显像(cold spot imaging)指在静态影像上主要以放射性比正常减低为异常的显像 中枢神经系统 脑血流灌注显像 原理 应用一类能自由通过血脑屏障(BBB Blood

医学影像设备学期末复习题-32页精选文档

医学影像设备学期末复习题 一、选择题(每题1分,共50分) 1.CT是( C )问世的 A.1960年 B.1963年 C.1972年 D.1978年 E.1982年 2.常见超声成像设备不包括( D ) A.A型 B.B型 C.D型 D.F型 E.M型3.按主机功率分类,中型X线机的标称功率( D ) A.>10Kw B.10kW~20kW C.20kW~50kW D.10kW~40kW E.>40kW 4.荧光屏中荧光纸接受X线照射时发出( A )光 A.黄绿色 B.红绿色 C.蓝绿色 D.蓝紫色 E.黄紫色 5.固定阳极X线管的阳极靶面一般是由( D )制成 A.铁 B.铜 C.铝 D.钨 E.镍6.阳极帽的主要作用是吸收( B ) A.散射电子 B.二次电子 C.折射电子 D.发射电子 E.聚焦电子 7.固定阳极X线管的主要缺点是( D ) A.瞬时负载功率大、焦点尺寸小 B.瞬时负载功率大、焦点尺寸大C.瞬时负载功率小、焦点尺寸小 D.瞬时负载功率小、焦点尺寸大E.以上都不对

8.高压电缆芯线数目不包括( D ) A.2 B.3 C.4 D.5 E.以上都对 9.高压交换闸不切换( D ) A.X线管管电压 B.大焦点灯丝加热电压 C.小焦点灯丝加热电压 D.旋转阳极启动电压 E.X线管 10.某台X线机高压变压器初级输入300伏,其次级输出电压为90千伏,则变压比为( B ) A.1:200 B.1:300 C.1:400 D.1:500 E.1:600 13.程控X线机是单片机控制的( A ) A.工频X线机 B.中频X线机 C.高频X线机 D.超高频X线机 E.以上都不是 14.高频机中,逆变电路的作用是改变电源( D ) A.电压峰值 B.电流峰值 C.容量 D.频率 E.稳定性 15.X线机的机房通风措施不包括( E ) A.电动抽风 B.中央空调 C.柜式空调 D.窗式空调 E.电风扇 16.CR是用( B )记录X线影像 A.胶片 B.IP板 C.增感屏 D.闪烁晶体探测器 E.以上都不对

核医学复习重点

核医学复习重点 填空: 1.核医学定义、内容 核医学是利用核素及其标记物进行临床诊断、疾病治疗以及生物医学研究的一门学科,是核科学技术与医学相结合的产物,是现代医学的重要组成部分。 核医学的主要内容就是放射性核素分子水平的靶向显像诊断,放射性核素分子水平的靶向治疗,利用放射性核素靶向、灵敏特点进行医学研究。 2.放射性药物定义,99m Tc、131I及18F的特性(射线,能量,半衰期等) 放射性药物指含有放射性核素供医学诊断和治疗用的一类特殊药物。用于机体内进行医学诊断或治疗的含放射性核素标记的化合物或生物制剂。 3.SPECT,PET中文名称 单光子发射计算机断层成像术SPECT PET 正电子发射型计算机断层显像 4.显像类型 书本P24 5.放射性核素显像特点 P28 6.放射性核素发生器,物理半衰期,放射性活度及国际制、旧单位及换算。 放射核素发生器是从长半衰期的核素(称为母体)中分离短半衰期的核素(称为子体)的装置。常用的发生器有:Mo–Tc发生器、W–Re发生器、Sr–Rb发生器、Rb–Kr发生器 7.脑血流灌注显像临床应用 脑血管疾病:脑梗死、短暂性脑缺血发作;癫痫;阿尔兹海默症;帕金森氏病;

脑积水、脑脊液漏、脑脊液分流术后疗效观察;脑肿瘤脑功能研究、脑外伤、脑死亡、颅内感染等 8.甲状腺摄131I率检查适应症,禁忌症,诊断甲亢的重要指标。P74 9.甲状腺显像(冷、凉、温、热结节,甲状腺炎) P76 表8-3、P78 10.外照射的防护措施有那些? 时间、距离、设置屏蔽 P56 11.最常用的心室收缩功能参数及正常值,最常用的心室舒张功能参数? P102~103 12.目前评价心肌活力最可靠的无创性检查方法是( PET心肌代谢显像)。名词解释 1.放射性核素:原子核不稳定,它能自发放射出一种或几种核射线,由一种核素衰变为另一种核素者。 2.物理半衰期:放射性核素因物理衰变减少至原来的一半所需的时间 放射性活度:单位时间内衰变的原子数量等于原子核衰变常数与其核数目之乘积。核医学中反映放射性强弱的常用物理量。国际单位:贝克勒尔(Bq)、旧单位是居里(Ci) 1居里(Ci)=3.7×1010贝可(Bq) 3.放射性核素发生器: 放射核素发生器是从长半衰期的核素(称为母体)中分离短半衰期的核素(称为子体)的装置。常用的发生器有:Mo–Tc发生器、W–Re 发生器、Sr–Rb发生器、Rb–Kr发生器 4.心肌可逆性缺损:负荷显像出现的灌注缺损于静息显像基本恢复,一般代表负荷诱发的心肌缺血 不可逆性缺损:又称固定性灌注缺损,是指静息和负荷显像比较,灌注缺损在部位、面积和程度上无变化 5.反向运动:又称矛盾运动,指心脏舒张时病变心肌向中心凹陷,收缩时向外膨出,与正常室壁运动方向相反,是诊断室壁瘤的特征影像。 6.超级影像:超级骨显像显像剂在全身骨骼分布呈均匀对称性异常浓聚,软组织分布很少,骨骼影像非常清晰,而肾影常缺失 7.热结节,冷结节,凉结节,温结节 P76

健康管理师考试重点归纳总结

第一章健康管理概论 健康管理是以现代健康概念(生理、心理和社会适应能力)和新的医学模式(生理、心理、社会)以及中医治未病为指导,通过采用现代医学和现代管理学的理论、技术、方法和手段,对个体或群体整体健康状况及其影响健康的危险因素进行全面检测、评估、有效干预与连续跟踪服务的医学行为及过程。 其目的是以最小投入获取最大健康效益。 健康管理的八大目标: 1.完善健康和福利 2.减少健康危险因素 3.预防疾病高危人群患病 4.易化疾病的早期诊断 5.增加临床效用、效率 6.避免可预防的疾病相关并发症的发生 7.消除或减少无效或不必要的医疗服务 8.对疾病结局作出度量并提供持续的评估和改进 健康管理的特点: 标准化足量化个体化系统化 健康管理的三个基本步骤: 1.了解和掌握健康,开展健康信息收集和健康检查 2.关心和评价健康,开展健康风险评价和健康评估 3.干预和促进健康,开展健康风险干预和健康促进 健康风险评估是手段,健康干预是关键,健康促进是目的 健康管理的五个服务流程: 1.健康调查与健康体检 2.健康评估 3.个人健康咨询 4.个人健康管理后续服务 5.专项的健康和疾病管理服务 健康管理的六个基本策略: 1.生活方式管理 2.需求管理 3.疾病管理 4.灾难性病伤管理 5.残疾管理 6.综合群体健康管理 生活方式管理的特点: 1.以个体为中心,强调个体的健康责任和作用

2.以预防为主,有效整合三级预防 生活方式的四大干预技术: 教育激励训练营销 影响需求管理的四大主要因素: 1.患病率 2.感知到的需要 3.消费者选择偏好 4.健康因素以外的动机(残疾补贴、请病假的能力等) 需求管理的策略: 1.小时电话就诊和健康咨询 2.转诊服务 3.基于互联网的卫生信息数据库 4.健康课堂 5.服务预约 疾病管理的三个特点: 1.目标人群是患有特定疾病的个体 2.不以单个病例和(或)其单次就诊事件为中心,而关注个体或群体连续性的健康状况与 生活质量 3.医疗卫生服务以及干预措施的综合协调至关重要 灾难性病伤管理的五大特点: 1.转诊及时 2.综合考虑各方面因素,制订出适宜的医疗服务计划 3.具备一支包含多种医学专科及综合业务能力的服务队伍,能够有效应对可能出现的多种 医疗服务需要 4.最大程度地帮助病人进行自我管理 5.尽可能使患者及其家人满意 残疾管理的八大目标: 1.防止残疾恶化 2.注重功能性能力 3.设定实际康复和返工的期望值 4.详细说明限制事项和可行事项 5.评估医学和社会心理学因素 6.与病人和雇主进行有效沟通 7.有需要时要考虑复职情况 8.实行循环管理 《健康中国2030规划纲要》 1.强调预防为主,防患未然

肿瘤放射生物学期末复习

肿瘤放射生物学 一、名解 1、核反应:指在具有一定能量的粒子轰击下,入射粒子(或原子核)与原子核(称靶核)碰撞导致原子核状态发生变化或形成新核的过程。 2、核衰变:原子核自发射出某种粒子而变为另一种核的过程。 3、半衰期:放射性核素衰变其原有核素一半所需的时间。 4、原初效应:指从照射之时起到在细胞学上观察到可见损伤的这段时间内,在细胞中进行着辐射损伤的原初和强化过程。 5、继发效应:是指在原发作用发生的基础上,因原发作用形成的各种活性基团不断攻击生命大分子,导致生物显微结构的破坏,继而发生一系列生物学、生物化学的损伤效应。 6、直接作用:电离辐射的能量直接沉积于生物大分子,引起生物大分子的电离和激发,破坏机体的核酸、蛋白质、酶等具有生命功能的物质,这种直接由射线造成的生物大分子损伤效应称为直接作用。 7、间接作用:电离辐射首先作用于水,使水分子产生一系列原初辐射分解产物(H·,OH·,水合电子等),再作用于生物大分子引起后者的物理和化学变化。 8、确定性效应:指发生生物效应的严重程度随着电离辐射剂量的增加而增加的生物效应。这种生物效应存在剂量阈值,只要照射剂量达到或超过剂量阈值效应肯定发生。 9、随机性效应:指生物效应的发生概率(而不是其严重程度)与照射剂量的大小有关的生物效应。这种效应在个别细胞损伤(主要是突变)时即可出现,不存在剂量阈值。 10、辐射旁效应:电离辐射引起受照细胞损伤或功能激活,产生的损

伤或激活信号可导致其共同培养的未受照射细胞产生同样的损伤或 激活效应,称辐射旁效应。 11、十日法规:对育龄妇女下腹部的X射线检查都应当在月经周期第1天算起的10天内进行,以避免对妊娠子宫的照射 12、复制叉:DNA在复制时复制区域的双螺旋解开所产生的两条单链和尚未解开的双螺旋形成的“Y”形区。 13、半保留复制:一个DNA分子可复制成两个DNA分子,新合成的两个子代DNA分子与亲代DNA分子的碱基顺序完全一样。每个子代DNA 中有一条链来自亲代DNA,另一条链是新合成链,这种合成方式称为半保留复制。 14、分子交联:生物大分子与生物大分子发生互相连结,电离辐射作用后,可通过自由基的作用,产生DNA-DNA交联、DNA-蛋白质交联。导致DNA正常分子结构的破坏。 15、亚致死损伤修复:将预定的照射剂量分次给予,生物效应明显减轻,表明在两次照射间隔中细胞有所修复,这种修复称作SLDR 16、潜在致死损伤修复:照射后改变细胞所处的状态和环境,如延长接种或给予不良的营养和环境条件,均能提高存活率。 17、损伤的“耐受”:DNA分子的损伤有时不能立即修复。特别是在复制已经开始,而损伤又在复制叉附近时,细胞会通过另一些机制,使复制能进行下去,待复制完成后,再通过某种机制修复残留的损伤。复制时损伤并未消除,故称“耐受”。 18、原癌基因:在正常细胞内,调控细胞增殖和分化的重要基因,当受到物理、化学、病毒等生物因素作用被活化而失调时,才会导致正常细胞的恶性转化。

核医学重点总结

第一张绪论 核医学概念:利用放射性示踪技术探索生命现象、研究疾病机制和诊断疾病的学科;是利用放射性核素及其制品进行内照射治疗和近距离治疗的学科。 第二章核医学物理基础、设备和辐射防护 衰变类型:α衰变(产生α粒子);β–衰变(产生βˉ粒子(电子));β+衰变(正电子衰变)与电子不同的是带有正电荷;电子俘获;γ衰变。韧致辐射带电粒子受到物质原子核电场的影响,运动方向和速度都发生变化,能量减低,多余的能量以x射线的形式辐射出来 电子俘获:质子从核外取得电子变为中子。由于外层电子与内层能量差,形成的新核素的不稳定常产生:特征性X射线-能量转化;俄歇电子:能量 使电子脱离轨道。 衰变规律:放射性核素原子数随时间以指数规律减少。指数衰减规律 e-λt N = N (t = 0)时放射性原子核的数目 N 0: N: 经过t时间后未发生衰变的放射性原子核数目 λ:放射性原子核衰变常数大小只与原子核本身性质有关,与外界条件无关; 数值越大衰变越快 带电粒子与物质的相互作用(电离作用、激发作用) γ射线与物质的相互作用(光电效应、康普顿效应、电子对生成)光电效应:康普顿效应:电子对生成: 辐射防护目的:防止有害的确定性效应, 限制随机效应的发生率,使之达到可以接受的水平。 总之是使一切具有正当理由的照射保持在可以合理做到的最低水平。 非随机效应有阈值正相关; 随机效应无阈值严重程度与剂量无关。 基本原则:实践正当化;防护最优化;个人剂量限制。外照射防护措施:1.时间2.距离3.屏蔽电离辐射生物学效应对机体变化:按效应出现的对象,分为躯体效应(somatic effect)及遗传效应(genetic effect)。按效应出现的时间,分为近期效应(short-term effect)及远期效应( long-term effect)。按效应发生的规律,分为随机效应(stochastic effect)及非随机效应( non-stochastic effect)。 2、正电子显像常用标记核素 11C、13N、15O和18F 18F-FDG半衰期:110分钟 第四章放射性示踪与显像技术 放射性核素制备1.核反应堆制备。 2.医用回旋加速器制备。3.放射性核素发生器(长半衰期核素产生短半衰期核素)。应用最广的是99Mo(钼)66h-99mTc

卫生法律法规知识点

1.医师职责:防病治病、救死扶伤、保护人民健康。 2.中专1年→助理5年→执医,大专1年→助理2年→执医,本科1年→执医。 3.医师执业向县级以上人民政府卫生行政部门申请注册。 30日内准予注册。30日内变更注册。刑法完毕或决定吊照起不满2年不予注册。中止执业满2年注销注册。重新注册:3~6个月的培训,并考核合格。15日内申请行政复议或提起诉讼。申请个体行医须执业满五年。 4.对急危患者应当立即抢救,及时转诊。 5.受县级以上人民政府卫生行政部门委托的机构或组织对业务水平、工作成绩和职业道德状况定期考核,不合格者暂停执业3~6个月,再不合格注销注册。 6.违反规定一般暂停执业6个月以上1年以下,情节严重吊照,犯罪刑事。 7.非法行医:取缔,没收,罚款,吊照,造成损害赔偿,犯罪刑事。 8.阻碍医师执业:治安管理处罚条例,犯罪刑事。 9.医疗机构须将《医疗机构执业许可证》、诊疗科目、诊疗时间、收费标准悬挂明显处。必须按照核准登记的诊疗科目开展诊疗活动。不得使用非卫生技术人员从事医疗卫生技术工作。加强医德教育。佩戴载有姓名、职务或职称的胸牌。 10.无法取得患者或家属意见,须取得医疗机构负责人或被授权负责人员的批准。 11.医疗事故:医疗机构及其医务人员在医疗活动中过失造成患者人身损害。非法行医不属于。 12.根据对患者人身造成的损伤程度分为四级:一级:死亡、重度残疾;二级:中度残疾、严重功能障碍;三级:轻度残疾、一般功能障碍;四级:明显人身损害。 13.抢救病历可在抢救结束后6h内补记。 14.病历复印:客观可复印,主观不复印。

15.医务人员在医疗过程中发现医疗事故向科室负责人报告,文都医考,医友互动:480572459。医疗机构向卫生行政部门报告(重大在12h内)。 16.尸检:48h内,最多7日。尸体火化后:让院方拿出充分证据证明自己的医疗行为无过错。 17.当事人对医疗事故鉴定结论不服:15日内再次申请鉴定。 18.鉴定的回避原则:医疗事故争议当事人或近亲属;与医疗事故争议有利害关系;与医疗事故争议当事人有其他关系可能影响公正鉴定的。 19.紧急抢救和特殊体质不属于医疗事故。 20.残疾生活补助费:最长赔偿30年,60周岁以上不超过15年,70周岁以上不超过5年。 21.婚前保健:卫生指导,卫生咨询,医学检查。 22.婚前医学检查:遗传病,传染病(艾滋、淋病、梅毒、麻风),精神病。 23.孕产期保健:母婴,孕妇、产妇,胎儿,新生儿。 24.产前诊断→终止妊娠。按规定终止妊娠或结扎手术免费服务。 25.技术鉴定:对婚前医学检查、遗传病诊断和产前诊断结果有异议。 26.医疗保健机构须经许可,保健工作人员须经考核。 27.法律责任:有证:行政处分,严重吊照;无证:刑事责任。 28.传染病防治原则:预防为主,防治结合,分类管理,依靠科学,依靠群众。 29.甲类:鼠疫,霍乱。 乙类:非典,艾滋,病毒性肝炎,禽流感,肺结核,甲流等。 丙类:手足口病等。 乙类甲制:非典,禽流感,甲流,肺炭疽。 30.预防接种制度:免费,相互配合。

核医学知识点总结

核医学知识点总结 1.核医学(Nuclear medicine) :是用放射性核素及其标记物进行诊断、治疗疾病和医学研究的医学学科。 2.核医学常用设备: 3.放射性药物含有放射性核素, 用于医学诊断和治疗的一类特殊制剂。 放射性药品获得国家药品监督管理部门批准文号的放射性药物 4.核素(nuclide):是指质子数、中子数均相同,并且原子核处于相同能级状态的原子称为一种核素。 同位素(isotope):凡具有相同质子数但中子数不同的核素互称同位素。 同质异能素:(isomer)是指质子数和中子数都相同,但原子核处于不同能态的原子 放射性核素(radionuclide):原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素称为放射性核素。 放射性衰变:放射性核素自发的释放出一种或一种以上的射线并转化为另一种原子的过程。 半衰期:放射性原子核数从N0衰变到N0的1/2所需的时间 5.α衰变:α粒子含2个质子,2个中子,质量大,带电荷,故射程短,穿透力弱。主要用于治疗 β衰变: β-衰变:射线的本质是高速运动的电子流,主要发生于富中子的核素。 特点:穿透力弱,在软组织中的射程仅为厘米水平。可用于治疗。 β+衰变:射线的本质是正电子,主要发生于贫中子的核素。 特点:正电子射程短. 在通常环境中不可能长时间稳定地存在,它碰到电子就会发生湮灭,产生一对能量为511kev、方向相反的γ光子。主要用于正电子发射断层仪显像(PET) 电子俘获原子核俘获一个核外轨道电子使核内一个质子转变成一个中子和放出一个中微子的过程。电子俘获导致核结构的改变伴随放出多种射线。如特征X射线、俄歇电子、γ射线、内转换电子。应用:核医学显像、体外分析、放射性核素治疗 γ衰变:原子核从激发态回复到基态时,以发射光子形式释放过剩的能量。 往往是继发于α衰变或β衰变后发生特点:本质是中性的光子流,不带电荷,运动速度快(光速),穿透力强。适合放射性核素显像(radionuclide imaging)。 6.天然本底辐射:在人类生存的环境中,自然存在的多种射线和放射性物质。包括宇宙射线、宇宙射线感生放射 性核素和地球辐射 7.确定性效应:指辐射损伤的严重程度与所受剂量成正相关,有明显的阈值,剂量未超过阈值不会发生有害效应。 如辐射致眼晶体损伤引发白内障,辐射致皮肤反应(干性或湿性脱皮)、或血液系统疾病如再障等。消化系统反应等。 随机性效应:指效应的发生机率(或发病率而非严重程度)与剂量相关,不存在阈值。如辐射致癌、致畸变的效应。这种效应多是远期效应。 8.辐射防护的目的:防止有害的确定性效应,限制随机效应的发生率,使之得到可以接受的水平。总的是使一切 具有正当理由的照射应保持在可以合理做到的水平。 辐射防护的原则:实践的正当化放射防护最优化个人剂量限值

影像医学与核医学-xzhmu

影像医学与核医学 Medical Imaging and Nuclear Medicine (专业代码100207) Ⅰ. 医学学术学位硕士研究生培养方案 一、培养目标 为适应医药卫生事业发展的需要,培养德、智、体全面发展的二十一世纪医药卫生高层次专门人才,影像医学与核医学科学术学位培养目标如下: 1.坚持四项基本原则,热爱社会主义祖国,遵纪守法,具有高尚医德医风和为社会主义现代化建设和祖国医学事业献身的精神。 2.了解和掌握科研工作的全过程,在导师指导下能进行科研设计,确立科研路线及分析方法、总结科研结果,并训练有一定的教学能力。 3.系统掌握本专业的基础理论、基本知识和基本技能,了解本专业国内外进展,在临床工作上,能掌握基本操作及常见病的诊断。 4.熟练掌握一门外语,具有较强的听、说、读、写的能力,能熟练地阅读专业外文资料。 5.身心健康。 二、学习年限和总体时间安排 学习年限为三年。 第一学期集中学习公共必修课、指定选修课、专业必修课及选修课等,参加研究生学术例会。 第二至四学期开始临床培训,为期12个月。第一学期结束前开始作文献综述报告、开题报告及评议。第二学期结束前完成文献综述、开题报告及评议。 第五至六学期进行科学研究和答辩12个月。第二学期中期举行预答辩,6月初举行答辩。 研究生第二、三年级均不享受寒暑假,两年中休假日为40天,即每年20天,由研究生申请,导师安排。具体培养进程参照研究生学院颁发的《徐州医学院硕士研究生培养工作进程表》。 三、研究方向 1.影像诊断新技术的开发和应用 2.放射诊断的基础与应用研究

3.介入放射学的基础与应用研究 4.超声诊断的基础与应用研究 5.临床核医学的基础与应用研究 四、课程设置与要求 (一)课程设置(见课程设置表) 包括公共必修课、指定选修课、专业必修课及选修课(根据研究方向不同在导师指导下选择以下各类课程)。 备注:大学英语六级考试未通过的研究生必须选修英语(普通班),通过的研究生可根据自身需要选

(完整word版)核医学重点[1]

核医学:采用核技术来诊断、治疗和研究疾病的一门新兴学科。它是核技术、电子技术、计算机技术、化学、物理和生物学等现代科学技术与医学相结合的产物。 核素:质子数中子数相同,原子核处于相同能级状态的原子 同位素:质子数相同,中子数不同的核素互称同位素 同质异能素:质子数和中子数相同,核能状态不同的原子 放射性核素:原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素 放射性衰变:放射性元素自发地释放放射线和能量,最终转化为其他稳定元素的过程 物理半衰期:表示原子核由于自身衰变从N0衰变到N0/2的时间,以1/2T表示,是恒定不变的。 生物半衰期Tb:指生物体内的放射性核素由于机体代谢从体内排出一半所需要时间。 放射性活度:表示为单位时间内原子核的衰变数量 SPECT单光子发射型计算机断层仪 PET(正电子发射型计算机断层仪)的原理:通过化学方式,将发射正电子的核素与生物学相关的特定分子连接而成的正电子放射性药物注入体内后,正电子放射性药物参加相应生物活动,同时发出正电子射线,湮灭后形成的能量相同(511keV)方向相反的两个γ光子 放射性药物:含有放射性核素供医学诊断和治疗用的一类特殊药物 放射性药物的特点:具有放射性,具有特定的物理半衰期和有效期,计量单位和使用量,脱标及辐射自分解 光子量范围100~250keV最为理想,目前使用较多的放射性核素衰变方式是β-衰变组织内的射程在纳米水平,在这样短的射程内释放所有能量,其生物学特性接近于高LET射线,治疗用放射性药物的有效半衰期不能太短,也不宜过长,以数小时或数天比较理想 吸收剂量:单位质量被照射物质吸收任何电离辐射的平均能量。 确定性效应:辐射损伤的严重程度与所受剂量呈正相关,有明显的阈值,剂量未超过阈值不会发生有害效应 随机效应:研究的对象是群体,是辐射效应发生的几率与剂量相关的效应,不存在具体的阈值 辐射防护的原则:1.实践的正当化2.放射防护最优化3.个人剂量限值 外照射防护措施:1.时间2.距离3.设置屏蔽 放射性核素示踪技术的方法特点:1.灵敏度高2.方法相对简便、准确性较好3.合乎生理条件 4.定性、定量与定位的相对研究相结合 5.缺点与局限性方法学原理:1.合成代谢:根据甲状腺内131I分布的影像可判断甲状腺的位置、形态、大小以及甲状腺结节的功能状态2.细胞吞噬3.循环通路4.选择性浓聚5.选择性排泄6.通透弥散7.离子交换和化学吸附8.特异性结合 静态显像:当显像剂在脏器内或病变处的浓度到达高峰且处于较为稳定状态时进行的显像 动态显像:在显像剂引入体内后,迅速以设定的显像速度动态采集脏器的多帧连续影像或系列影像 局部显像:仅限于身体某一部位或某一脏器的显像 全身显像:利用放射性探测器沿体表做匀速移动,从头至足依序采集全身各部位的放射性,将它们合成为一幅完整的影像 平面显像:将放射性显像装置的放射性探测器置于体表的一定位置采集某脏器的放射性影像 断层显像:用可旋转的或环形的放射性探测装置在体表连续或间断采集多体位平面影

核医学考试重点

第一章核物理基础知识 元素:凡是质子数相同,核外电子数相同,化学性质相同的同一类原子称为一组元素。 同位素(isotope):凡是质子数相同,中子数不同的元素互为同位素如: 1H、2H、3H。 同质异能素:凡是原子核中质子数和中子数相同,而处于不同能量状态的元素叫同质异能素。 核素:原子核的质子数、中子数、能量状态均相同原子属于同一种核素。例如:1H、2H、3H、12C、14C 198Au 、99m Tc、99Tc 1.稳定性核素(stable nuclide) 稳定性核素是指:原子核不会自发地发生核变化的核素,它们的质子和中子处于平衡状态,目前稳定性核素仅有274种, 2.放射性核素(radioactive nuclide) 放射性核素是一类不稳定的核素,原子核能自发地不受外界影响(如温度、压力、电磁场),也不受元素所处状态的影响,只和时间有关。而转变为其它原子核的核素。 核衰变的类型 1.α衰变(αdecay): 2.-衰变(- decay): 3.+衰变: 4.γ衰变: 核衰变规律 1.物理半衰期(physical half life,T1/2):放射性核素衰变速率常以物理半衰期T1/2表示,指放射性核素数从No衰变到No的一半所需的时间。物理半衰期是每一种放射性核素所特有的。数学公式T1/2 =0.693/λ 2.生物半衰期(T b):由于生物代谢从体内排出原来一半所需的时间,称为之。 3.有效半衰期(T e):由于物理衰变与生物的代谢共同作用而使体内放射性核素减少一半所需要的时间,称之。Te、Tb、T1/2三者的关系为:Te= T1/2·Tb / (T1/2+ Tb)。 4.放射性活度(radioactivity, A):是表示单位时间内发生衰变的原子核数。放射性活度的单位是每秒衰变次数。其国际制单位的专用名称为贝可勒尔(Becquerel),简称贝可,符号为Bq。数十年来,活度沿用单位为居里(Ci)1Ci=3.7×1010/每秒。 带电粒子与物质的相互作用 1.电离(charged particles):带电粒子通过物质时和物质原子的核外电子发生静电作用,使电子脱离原子轴道而形成自由电子的过程称电离。 2.激发:如果原子的电子所获得能量还不足以使其脱离原子,而只能从内内层轴道跳到外层轴道。这时,原子从稳定状态变成激发状态,这种作用称为激发。 2.散射:射线由于质量小,进行途中易受介质原子核电场力的作用而改变原来的运动方向,这种现象称为散射。 3.韧致辐射:快速电子通过物质时,在原子核电场作用下,急剧减低速度,电子的一部分或全部动能转化为连续能量的X射线发射出来,这种现象称为韧质辐射。 4.湮没辐射:正电子衰变产生的正电子,在介质中运行一定距离,当能量耗尽时可与物质中的自由电子结合,而转化成两个方向相反,能量各自为0.511Mev的γ光子而自身消失,称湮没辐射。5.吸收(absorption):射线在电离和激发的过程中,射线的能量全部耗尽,射线不再存在,称作吸收。吸收前所经的路程称为射程。吸收的最终结果是使物质的温度升高。 6.光电效应:γ光子和原子中内层(K、L层)电子相互作用,将全部能量交给电子,使之脱离原

相关文档
最新文档