小波变换简介

小波变换简介
小波变换简介

小波分析是当前数学中一个迅速发展的新领域,它同时具有理论深刻和应用十分广泛的双重意义。

小波变换的概念是由法国从事石油信号处理的工程师J.Morlet在1974年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的认可。正如1807年法国的热学工程师J.B.J.Fourier提出任一函数都能展开成三角函数的无穷级数的创新概念未能得到著名数学家https://www.360docs.net/doc/bc18582754.html,grange,https://www.360docs.net/doc/bc18582754.html,place 以及A.M.Legendre的认可一样。幸运的是,早在七十年代,A.Calderon表示定理的发现、Hardy空间的原子分解和无条件基的深入研究为小波变换的诞生做了理论上的准备,而且J.O.Stromberg还构造了历史上非常类似于现在的小波基;1986年著名数学家Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat合作建立了构造小波基的同样方法及其多尺度分析之后,小波分析才开始蓬勃发展起来,其中比利时女数学家I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作用。它与Fourier变换、窗口Fourier变换(Gabor变换)相比,这是一个时间和频率的局域变换,因而能有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier 变换不能解决的许多困难问题,从而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展。

小波分析的应用是与小波分析的理论研究紧密地结合在一起地。现在,它已经在科技信息产业领域取得了令人瞩目的成就。电子信息技术是六大高新技术中重要的一个领域,它的重要方面是图象和信号处理。现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。从数学地角度来看,信号与图象处理可以统一看作是信号处理(图象可以看作是二维信号),在小波分析地许多分析的许多应用中,都可以归结为信号处理问题。现在,对于其性质随实践是稳定不变的信号,处理的理想工具仍然是傅立叶分析。但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波分析。

事实上小波分析的应用领域十分广泛,它包括:数学领域的许多学科;信号分析、图象处理;量子力学、理论物理;军事电子对抗与武器的智能化;计算机分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。在信号分析方面的滤波、去噪声、压缩、传递等。在图象处理方面的图象压缩、分类、识别与诊断,去污等。在医学成像方面的减少B超、CT、核磁共振成像的时间,提高分辨率等。

(1)小波分析用于信号与图象压缩是小波分析应用的一个重要方面。它的特点是压缩比高,压缩速度快,压缩后能保持信号与图象的特征不变,且在传递中可以抗干扰。基于小波分析的压缩方法很多,比较成功的有小波包最好基方法,小波域纹理模型方法,小波变换零树压缩,小波变换向量压缩等。

(2)小波在信号分析中的应用也十分广泛。它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测等。

(3)在工程技术等方面的应用。包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学方面。

小波变换的理论是近年来兴起的新的数学分支,它是继1822年法国人傅立叶提出傅立叶变换之后又一里程碑式的发展,解决了很多傅立叶变换不能解决的困难问题。傅立叶变换虽然已经广泛地应用于信号处理领域,较好地描述了信号的频率特性,取得了很多重要的成果,但傅立叶变换却不能较好地解决突变信号与非平稳信号的问题。小波变换可以被看作是傅立叶变换的发展,即它是空间(时间)和频率的局部变换。与傅立叶变换一样,小波变换的基本思想是将信号展开成一族基函数之加权和,即用一族函数来表示或逼近信号或函数。这一族函数是通过基本函数的平移和伸缩构成的。

小波变换用于图象编码的基本思想就是把图象进行多分辨率分解,分解成不同空间、不同频率的子图象,然后再对子图象进行系数编码。系数编码是小波变换用于压缩的核心,压缩的实质是对系数的量化压缩。根据S.Mallat的塔式分解算法,图象经过小波变换后被分割成四个频带:水平、垂直、对角线和低频,低频部分还可以继续分解。

图象经过小波变换后生成的小波图象的数据总量与原图象的数据量相等,即小波变换本身并不具有压缩功能。之所以将它用于图象压缩,是因为生成的小波图象具有与原图象不同的特性,表现在图象的能量主要集中于低频部分,而水平、垂直和对角线部分的能量则较少;水平、垂直和对角线部分表征了原图象在水平、垂直和对角线部分的边缘信息,具有明显的方向特性。低频部分可以称作亮度图象,水平、垂直和对角线部分可以称作细节图象。对所得的四个子图,根据人类的视觉生理和心理特点分别作不同策略的量化和编码处理。人眼对亮度图象部分的信息特别敏感,对这一部分的压缩应尽可能减少失真或者无失真,例如采用无失真DPCM编码;对细节图象可以采用压缩比较高的编码方案,例如矢量量化编码,DCT等。目前比较有效的小波变换压缩方法是Shapiro提出的小波零树编码方案。

小波变换的基本原理

10.2小波变换的基本原理 地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。 小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。 下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。 10.2.1小波分析的基本原理 小波函数的数学表达

小波变换的几个典型应用

第六章小波变换的几个典型应用 6.1 小波变换与信号处理 小波变换作为信号处理的一种手段,逐渐被越来越多领域的理论工作者和工程技术人员所重视和应用,并在许多应用中取得了显著的效果。同传统的处理方法相比,小波变换取得了质的飞跃,在信号处理方面具有更大的优势。比如小波变换可以用于电力负载信号的分析与处理,用于语音信号的分析、变换和综合,还可以检测噪声中的未知瞬态信号。本部分将举例说明。 6.1.1 小波变换在信号分析中的应用 [例6-1] 以含躁的三角波与正弦波的组合信号为例具体说如何利用小波分析来分析信号。已知信号的表达式为 应用db5小波对该信号进行7层分解。xiaobo0601.m 图6-1含躁的三角波与正弦波混合信号波形 分析: (1)在图6-2中,逼近信号a7是一个三角波。 (2)在图6-3中细节信号d1和d2是与噪声相关的,而d3(特别是d4)与正弦信号相关。 图6-2 小波分解后各层逼近信号 图6-3 小波分解后各层细节信号 6.1.2 小波变换在信号降躁和压缩中的应用 一、信号降躁 1.工程中,有用信号一般是一些比较平稳的信号,噪声通常表现为高频信号。2.消躁处理的方法:首先对信号进行小波分解,由于噪声信号多包含在具有较高频率的细节中,我们可以利用门限、阈值等形式对分解所得的小波系数进行处理,然后对信号进行小波重构即可达到对信号的消躁目的。 小波分析进行消躁处理的3种方法: (1)默认阈值消躁处理。该方法利用ddencmp生成信号的默认阈值,然后利用wdencmp函数进行消躁处理。 (2)给定阈值消躁处理。在实际的消躁处理过程中,阈值往往可通过经验公式获得,且这种阈值比默认阈值的可信度高。在进行阈值量化处理时可利用函数wthresh。 (3)强制消躁处理。该方法时将小波分解结构中的高频系数全部置为0,即滤掉所有高频部分,然后对信号进行小波重构。方法简单,消躁后信号比较平滑,但易丢失信号中的有用成分。 小波阈值去噪方法是目前应用最为广泛的小波去噪方法之一。 3.信号降噪的准则: 1.光滑性:在大部分情况下,降噪后的信号应该至少和原信号具有同等的光滑性。

MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1) dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname') [cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT 说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信 号进行分解。 (2) idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname') X=idwt(cA,cD,Lo_R,Hi_R) X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L) 说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经 小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。 X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能

--------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1) wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分 格式:Y=wcodemat(X,NB,OPT,ABSOL) Y=wcodemat(X,NB,OPT) Y=wcodemat(X,NB) Y=wcodemat(X) 说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16; OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现 一维、二维和 N 维 DFT OPT='row' ,按行编码 OPT='col' ,按列编码

基于小波变换的图像分割的研究

摘要 近年来,对图像分割的研究一直是图像技术研究的焦点。图像分割是一种很重要的图像分析技术,它的目的是把图像分为具有各种特性的区域并把感兴趣的部分提取出来。它融合了多个学科的成果,并且成功应用于工业、农业、医学、军事等领域,得到了广泛的应用。 图像分割是一个经典的问题,实现方法有很多种,但是至今仍没有一种通用的解决方法。经过研究发现,区分真正的噪声和边缘是图像分割的难题之一,然而小波变换则可以解决这一问题,小波变换是一种时--频两域的分析工具。本文则基于小波变换对图像分割技术进行研究,主要介绍了小波阈值分割方法。文中通过直方图、建立模型等手段对这两种方法做出具体的讨论,并利用Matlab分别对两种方法进行仿真,并得到了有效的结果。根据仿真结果我们可以看出不同分割方法的不同分割效果,从而更好地理解这些方法。 关键词:图像分割;小波变换;阈值;

Abstract In recent years, the study of image segmentation has been the focus of imaging technology. Image segmentation is an important image analysis, its purpose is to take the various characteristics part out of the image. It combines the results of multiple disciplines, and successfully applied to such fields as industry, agriculture, medicine, military, and a wide range of applications. There are many ways to achieve image segmentation, but could not find a common solution. After the study found that the distinction between real noise and the edge of one of the difficult problem of image segmentation, wavelet transform can solve this problem, wavelet transform is a time - frequency domain analysis tools. In this paper, image segmentation technique based on wavelet transform to study the two wavelet segmentation method, the wavelet thresholding segmentation method. Histogram, the establishment of model and other means to make a specific discussion of these two approaches, and use the Matlab simulation, and the effective results of the two methods, respectively. According to the results of the simulation we can see the different segmentation results of different segmentation methods, in order to better understand these methods. Key words:Image; Wavelet transform; Threshold

小波变换详解

基于小波变换的人脸识别 近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。 具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。 4.1 小波变换的研究背景 法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。在早期的信号处理领域,傅立叶变换具有重要的影响和地位。定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下: ()()dt e t f F t j ωω-? ∞ -∞ += (4-1) 傅立叶变换的逆变换为: ()()ωωπ ωd e F t f t j ? +∞ ∞ -= 21 (4-2) 从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率

的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。 尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进行分析,但却无法将两者有效地结合起来,因此傅立叶变换在信号的局部化分析方面存在严重不足。但在许多实际应用中,如地震信号分析、核医学图像信号分析等,研究者们往往需要了解某个局部时段上出现了哪个频率,或是某个频率出现在哪个时段上,即信号的时频局部化特征,傅立叶变换对于此类分析无能为力。 因此需要一种如下的数学工具:可以将信号的时域和频域结合起来构成信号的时频谱,描述和分析其时频联合特征,这就是所谓的时频局部化分析方法,即时频分析法。1964年,Gabor 等人在傅立叶变换的基础上引入了一个时间局部化“窗函数”g(t),改进了傅立叶变换的不足,形成窗口化傅立叶变换,又称“Gabor 变换”。 定义“窗函数”(t)g 在有限的区间外恒等于零或很快地趋于零,用函数(t )g -τ乘以(t)f ,其效果等同于在t =τ附近打开一个窗口,即: ()()()dt e t g t f G t j f ωττω-+∞ ∞--=?, (4-3) 式(4-3)即为函数f(t)关于g(t)的Gabor 变换。由定义可知,信号(t)f 的Gabor 变换可以反映该信号在t =τ附近的频谱特性。其逆变换公式为: ()()()ττωτωπ ωd G t g e d t f f t j ,21 ? ?+∞ ∞ --- = (4-4) 可见()τω,f G 的确包含了信号(t)f 的全部信息,且Gabor 窗口位置可以随着 τ的变化而平移,符合信号时频局部化分析的要求。 虽然Gabor 变换一定程度上克服了傅立叶变换缺乏时频局部分析能力的不

(完整版)小波原理课件

我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是basis。如果你暂时有些遗忘了basis的定义,那么简单说,在线性代数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。小波变换自然也不例外的和basis有关了。再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。 既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵( Tv_n = av_n,a是eigenvalue )。总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。 好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。接下来先看看,傅立叶变换是在干嘛。 傅立叶级数最早是Joseph Fourier 这个人提出的,他发现,这个basis不仅仅存在与vector space,还存在于funct ion space。这个function space本质上还是一个linear vector space,可以是有限的,可以是无限的,只不过在这个空间里,vector就是function了,而对应的标量就是实数或者复数。在vector space里,你有vector v可以写成vector basis的线性组合,那在function space里,function f(x)也可以写成对应function basis的线性组合,也有norm。你的vector basis可以是正交的,我的function basis也可以是正交的(比如sin(t)和sin(2t))。唯一不同的是,我的function basis是无穷尽的,因为我的function space的维度是无穷的。好,具体来说,那就是现在我们有一个函数,f(x)。我们希望将它写成一些cos函数和一些sin函数的形式,像这样 again,这是一个无限循环的函数。其中的1,cosx, sinx, cos2x …..这些,就是傅立叶级数。傅立叶级数应用如此广泛的主要原因之一,就是它们这帮子function basis是正交的,这就是有趣的地方了。为什么function basis正交如此重要呢?我们说两个vector正交,那就是他俩的内积为0。那对于function basis呢?function basis怎么求内积呢? 现在先复习一下vector正交的定义。我们说两个vector v,w如果正交的话,应符合:

小波变换与傅里叶变换的对比异同

小波变换与傅里叶变换的对比、异同 一、基的概念 两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi 标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL定理。(时频能量守恒)。 二、离散化的处理 傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。一般只将a二进离散化,此时b是任意的。这样小波被称为二进小波。第二步,离散b。怎么离散化呢?b取多少才合适呢?于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以b取尺度的整数倍就行了。也就是越胖的小波,对应频谱越窄,平移量应该越大,采样间隔越大。当然,第一二两步的频域理解,即在满足频域窗口中心是3倍的频域窗口半径的前提下,频域就在统计上是完美二分的。(但很多小波满足不了这个条件,而且频域窗口能量不?,所以只是近似二分的).这时的小波变换,称为离散二进小波变换.第三步,引入稳定性条件.也就是经过变换后信号能量和原信号能量有什么不等式关系.满足稳定性条件?后,也就是一个小波框架产生了可能.他是数值稳定性的保证.一个稍弱的稳定条件???,就是?

MATLAB小波变换指令及其功能介绍(超级有用).

MATLAB 小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1 dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname' [cA,cD]=dwt(X,Lo_D,Hi_D别可以实现一维、二维和 N 维 DFT 说明:[cA,cD]=dwt(X,'wname' 使用指定的小波基函数 'wname' 对信号X 进行分解,cA 、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。 (2 idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname' X=idwt(cA,cD,Lo_R,Hi_R X=idwt(cA,cD,'wname',L函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L 说明:X=idwt(cA,cD,'wname' 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L 和 X=idwt(cA,cD,Lo_R,Hi_R,L 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能 --------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1 wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式: Y=wcodemat(X,NB,OPT,ABSOL Y=wcodemat(X,NB,OPT Y=wcodemat(X,NB

基于小波变换的图像处理.

基于小波变换的数字图像处理 摘要:本文先介绍了小波分析的基本理论,为图像处理模型的构建奠定了基础,在此基础上提出了小波分析在图像压缩,图像去噪,图像融合,图像增强等图像处理方面的应用,最后在MATLAB环境下进行仿真,验证了小波变化在图像处理方面的优势。 关键词:小波分析;图像压缩;图像去噪;图像融合;图像增强 引言 数字图像处理是利用计算机对科学研究和生产中出现的数字化可视化图像 信息进行处理,作为信息技术的一个重要领域受到了高度广泛的重视。数字化图像处理的今天,人们为图像建立数学模型并对图像特征给出各种描述,设计算子,优化处理等。迄今为止,研究数字图像处理应用中数学问题的理论越来越多,包括概率统计、调和分析、线性系统和偏微分方程等。 小波分析,作为一种新的数学分析工具,是泛函分析、傅立叶分析、样条分析、调和分析以及数值分析理论的完美结合,所以小波分析具有良好性质和实际应用背景,被广泛应用于计算机视觉、图像处理以及目标检测等领域,并在理论和方法上取得了重大进展,小波分析在图像处理及其相关领域所发挥的作用也越来越大。在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。但短时傅立叶分析只能在一个分辨率上进行,所以对很多应用来说不够精确,存在很大的缺陷。而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。 本文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,然后研究了小波分析在图像处理中的应用,包括图像压缩,图像去噪,图像融合,图像增强等,本文重点在图像去噪,最后用Matlab进行了仿真[1]。

小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参

数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式: (k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。 假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

基于小波变换的语音信号去噪(详细)

测试信号处理作业 题目:基于小波变换的语音信号去噪 年级:级 班级:仪器科学与技术 学号: 姓名: 日期:2015年6月

基于小波变换的语音信号去噪 对于信号去噪方法的研究是信号处理领域一个永恒的话题。经典的信号去噪方法,如时域、频域、加窗傅立叶变换、维纳分布等各有其局限性,因此限制了它们的应用范围。小波变换是八十年代末发展起来的一种新时-频分析方法,它在时-频两域都具有良好的局部化特性;并且在信号去噪领域获得了广泛的应用。 目前已经提出的小波去噪方法主要有三种:模极大值去噪、空域相关滤波去噪以及小波阈值去噪法。阈值法具有计算量小、去噪效果好的特点,取得了广泛的应用。然而在阈值法中,阈值的选取直接关系到去噪效果的优劣。如果阈值选取过小,那么一部分噪声小波系数将不能被置零,从而在去噪后的信号中保留了部分噪声信息;如果阈值选的偏大,则会将一部分有用信号去掉,使得去噪后的信号丢失信息。 1、语音信号特性 由于语音的生成过程与发音器宫的运动过程密切相关,而且人类发音系统在产生不同语音时的生理结构并不相同,因此使得产生的语音信号是一种非平稳的随机过程(信号)。但由于人类发生器官变化速度具有一定的限度而且远小于语音信号的变化速度,可以认为人的声带、声道等特征在一定的时间内(10- 30ms)基本不变,因此假定语音信号是短时平稳的,即语音信号的某些物理特性和频谱特性在10-30ms的时间段内近似是不变的,具有相对的稳定性,这样可以运用分析平稳随机过程的方法来分析和处理语音信号。在语音增强中就是利用了语音信号短时谱的平稳性。 语音信号基本上可以分为清音和浊音两大类。清音和浊音在特性上有明显的区别,清音没有明显的时域和频域特性,看上去类似于白噪声,并具有较弱的振幅;而浊音在时域上有明显的周期性和较强的振幅,其能量大部分集中在低频段内,而且在频谱上表现出共振峰结构。在语音增强中可以利用浊音所具有的明显的周期性来区别和抑制非语音噪声,而清音由于类似于白噪声的特性,使其与宽带平稳噪声很难区分。 由于语音信号是一种非平稳、非遍历的随机过程,因此长时间时域统计特性对语音信号没有多大的意义,而短时谱的统计特性对语音信号和语音增强有着十分重要的作用。语音信号短时谱幅度统计特性的时变性,使得语音信号的分析帧在趋于无穷大时,根据中心极限定理,其短时谱的统计特性服从高斯(Gauss)分布,而在实际应用时只能在有限帧长下进行处理,因此,在有限帧时这种高斯分布的统计特性是一种近似的描述,这样就可以作为分析宽带噪声污染的带噪语音信号增强应用时的前提和假设。

整数小波变换作业

小波变换:S 整数变换作业 1. 题目:用整数小波的S 或2/6变换对256*256 Lena 灰度图像进行非标准方法的3级分解与重构。 2. 总体设计:本题目的意义在于通过实验体会整数小波变换,由于MA TLAB 自身对矩阵操作的方便性,以及其丰富的库函数(如可以用来直接显示图象),我决定用MA TLAB 编程完成本次作业。要说明的是,这里并不是直接利用MA TLAB 中的wavelet 工具箱中的已有小波函数对图象进行整数小波分解,而是用下面的已知分解公式进行小波分解和重构。分解公式:1,,21,21,,21,[] j k j k j k j k j k j k d s s s s d -+--=-=+ 重构公式:,21,1,,211,,2[] j k j k j k j k j k j k s s d s d s --+-=-=+ ,其中[ ]表示取整。 进行非标准小波分解,即交替进行3次行变换和3次列变换,程序对每次变换后的结果都保存为位图文件,运行后可以在程序所在路径下看到保存的6个分解位图文件和6个重构位图文件。最后还会在一个图像中显示每次分解后的图像,以便于对比。 3. 实现方法:编写S 变换的分解和重构子程序,分别对图像数据进行一次行列分解和列行重构,程序返回该次变换后的行列矩阵,在主程序中可以连续三次调用行列变换,即完成对原始图像的3级分解和重构,这里的变换是完全可逆的,也就是能够完全恢复原图像数据。通过对比3次重构后返回的数据与原图像数据后发现它们完全相同。主要用的MA TLAB 工具函数有: imread( )---------读取图像数据,为uint8类型,需变为double 类型才能进行各种运算 imwrite()---------用于保存图像,这里用它来保存每一级变换后的图像 image( )----------显示图像,需要给出色谱表colormap ,这里是灰度图,用colormap =gray (256)即可 subplot( )--------用于分开绘图,即在一个窗口下绘制多个图像,在这里用于输出变换后的图像,以便对比。 更详细的内容请参考函数文件SDecompose.m 和SRecompose.m ,分别是分解和重构图像的函数,main.m 是演示主程序。 命令行下输入main 运行后,按照提示输入要处理的图像文件名称即可(要求是256×256的灰度图像,否则结果可能会出错。程序所在目录下的lena.bmp 和girl.bmp 就是256×256的灰度图像)可以直接按键盘‘d ’键,程序会默认使用lena.bmp 进行演示。 3级分解完成后,输出后面的3级分解效果图。命令窗中会给出提示,按下任意键将继续进行图像3级重构,完成后会输出后面的3级重构图。 进行分解和重构同时已经将分解和重构得到的图像存盘,在当前工作目录下即可看到保存的12个位图文件,其中分解和重构图像各有6个。若要查看清晰的变换图像,可以 打开它们查看。 4. 经验教训:本次作业用MA TLAB 而不是VC 实现,虽然看上去简单许多,但是对于我

小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑∑ ∑∑+∞-∞=+∞ -∞ =+∞-∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

整数小波变换

整数提升算法 % integar wavelet transform %using 9-7 filter %signal symmetry extention mathod:(2,2) ...CBAABCDEFFED... %ss dd %sd ds %clear all; %fid=fopen('f:\data\aviris\aviris69.raw','rb'); %status=fseek(fid,512*512*2*40,'bof'); row=256; col=256; %orin=double(fread(fid,[row col],'uint16')); orin=ss; %%%%%%%%%%%%%%%%%% COEFFECIENT DEFINITION %%%%%%%%%%%%%%%%%%%%%%%%%%%% a=-1.586134342; b=-0.05298011854; r=0.8829110762; d=0.4435068522; %k=1.149604398; %%%%%%%%%%%%%%%%%%%========================%%%%%%%%%%%%%%%% %%%%%%%%%%%% %init d1_1=zeros(row,col/2); %high frequency components d1=zeros(row,col/2); s1_1=zeros(row,col/2); %low frequency components s1=zeros(row,col/2); sd_1=zeros(row/2,col/2); %high frequency components sd=zeros(row/2,col/2); dd_1=zeros(row/2,col/2); dd=zeros(row/2,col/2); ds_1=zeros(row/2,col/2); ds=zeros(row/2,col/2); ss_1=zeros(row/2,col/2); %low frequency components ss=zeros(row/2,col/2); %%%%%%%%%%%%%%%%%%==============================%%%%%%%%%%%%% %%%%%%%%%%% %%%border extension %LINE TRANSFORM d1_1(:,col/2)=orin(:,col-1)+round(a*(orin(:,col)+orin(:,col-1))); for j=1:(col/2-1) d1_1(:,j)=orin(:,2*j-1)+round(a*(orin(:,2*j)+orin(:,2*j+2))); end s1_1(:,1)=orin(:,2)+round(b*(d1_1(:,1)+d1_1(:,1))); for j=2:col/2 s1_1(:,j)=orin(:,2*j)+round(b*(d1_1(:,j)+d1_1(:,j-1))); end d1(:,col/2)=d1_1(:,col/2)+round(r*(s1_1(:,col/2)+s1_1(:,col/2))); for j=1:(col/2-1) d1(:,j)=d1_1(:,j)+round(r*(s1_1(:,j)+s1_1(:,j+1))); end s1(:,1)=s1_1(:,1)+round(d*d1(:,1)*2);

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状 答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。 在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。 为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。 短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨率分析(Multi-resolution)的特点,而且在时频两域都具有表征信号局部特征的能力,使一种窗口大小固定不变,但其形状可改变,时间窗和频率窗都可以改变的时频局部化分析方法。小波变换在低频部分具有较高的频率分辨率和较低的时间分辨率。在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于探测正常信号中夹带的瞬态反常现象并展示其成分,所以被誉为分析信号的显微镜。 小波分析最早应用在地震数据压缩中, 以后在图像处理、故障诊断等方面取得了传统方法根本无法达到的效果. 现在小波分析已经渗透到了自然科学、应用

相关文档
最新文档