MITF导致Waardenburg综合征的果蝇模型研究

MITF导致Waardenburg综合征的果蝇模型研究
MITF导致Waardenburg综合征的果蝇模型研究

MITF导致Waardenburg综合征的果蝇模型研究目的在课题组前期对国人WS患者进行突变筛查及致病基因功能研究的基础上,利用Mitf RNA干扰果蝇模型,观察果蝇表型及寿命变化,并利用表达谱芯片筛选Mitf RNAi时果蝇Wg/Wnt通路上表达量异常的基因,在体内实验水平探索Mitf 基因通过影响Wg/Wnt通路而导致WS的作用机制。方法1、利用果蝇GAL4-UAS 系统,观察Mitf RNA干扰果蝇的表型变化:将UAS-Mitf RNAi雄果蝇果蝇(实验组)和w1118雄果蝇果蝇(对照组)分别与elav-GAL4、ey-GAL4、DA-GAL4处女雌果蝇杂交,观察子代果蝇表型变化;2、观察杂交所得各组果蝇寿命变化:在实验组和对照组与各GAL4品系杂交得到的子代果蝇中,分别取健康雄果蝇,在相同条件下培养,统计其死亡时间和个体数,计算其最高寿限(90%死亡时间),半数死亡时间,绘制寿命曲线;3、利用Affymertrix GeneChip(?) Drosophila

Genome2.0Array果蝇表达谱芯片筛选缺陷表型果蝇Wg/Wnt通路上表达量异常的基因。结果1、实验组Mitf RNAi>ey-GAL4子代果蝇眼睛均较对照组

w1118>ey-GAL4子代果蝇眼睛变小,无明显性别差异;实验组Mitf

RNAi>elav-GAL4子代果蝇全部出现残翅表型,而对照组w1118> elav-GAL4子代全部翅膀发育正常;实验组Mitf RNAi>DA-GAL4子代果蝇与对照组Mitf RNAi>DA-GAL4子代果蝇相比,未见明显表型变化;2、实验组果蝇和对照组存活时间没有明显差异(p>0.05),实验组果蝇较对照组半数死亡时间略有提前,最高寿限略短;3、通过分析表达谱芯片数据,发现在残翅果蝇Wg/Wnt通路上有15个基因表达量异常,其中上调的基因有4个,分别为Wnt6, Apc, wdb,fz2;下调的基因有11个,分别为:CkIIbeta2, Pka-C2, CG15800, Roclb, Ssl, Ste12DOR, skpF, sinah, skpD, CG32568, Apc2。

结论1、Mitf RNAi果蝇与ey-GAL4果蝇杂交出现小眼表型及Mitf单独作用对果蝇寿命影响不显著与哺乳动物WS模型一致,进一步证实了Mitf不仅在基因序列上与脊椎动物有高度保守性,在基因功能上也有一定的保守性;2、Mitf RNAi 果蝇与elav-GAL4果蝇杂交子代出现残翅表型,与临床上WS3和WS4表型类似,不仅提示了Mitf可能通过某种机制调控Wnt通路的功能,也说明利用果蝇来研究WS是可行的;3、在Mitf RNAi时表达谱芯片筛选出15个表达量异常的基因,提示Mitf可能是通过上述基因来影响Wg/Wnt信号通路功能的。

基于科学史的摩尔根果蝇杂交实验再探究

基于科学史的摩尔根果蝇杂交实验再探究人教版高中生物学必修2第2章第2节“基因在染色体上”的主要内容是摩尔根如何通过实验巧妙的证明“基因在染色体上”。通过实际听课及对本节课教学案例的搜集与分析,发现在实际教学过程中存在一些问题。本文在梳理常见问题的基础上,对科学史进行了深入挖掘,为一线教师更好的开展基于科学史的实验教学提供思路和借鉴。 1 摩尔根果蝇杂交实验教学中存在的问题 1.1 对果蝇杂交实验的历史路径认识不清晰 新教材P31(旧教材P29)描述“后来他们又通过测交等方法,进一步验证了这些解释”。 但教材并未说明摩尔根做了哪些测交,导致教师在讲授这部分内容时,忽略科学史发展的真正路径,错误的从已知出发,引导学生做出假设进行推断。比如,介绍完摩尔根的果蝇杂交实验现象后,就让学生尝试按照①眼色基因仅位于Y染色体上;②眼色基因仅位于X染色体上;③眼色基因位于X、Y染色体的同源区段上的3种假设在染色体上标注基因(如W表示X染色体上的红眼基因,w表示X染色体上的白眼基因),解释摩尔根的实验现象。 实际上,摩尔根在实验过程中并未面临过这样的问题,并不存在同时提出这三种假设然后一一排除,最终保留正确假设的过程。这样做不仅不符合科学史,也造成了推理环节的缺失,让学生对实验本质的理解出现障碍,从而使这个知识点成为学生学习的难点。

1.2 对教材理解不透彻,缺乏科学思维的引导 教师之所以对实验的真实过程认识不清晰,有一个重要原因就是对教材中的某些关键表述没有深入理解。比如新教材P31“由于白眼的遗传和性别相联系,而且与X 染色体的遗传相似,于是摩尔根及其同事设想.....”,通过什么实验确定白眼的遗传一定与性别相联系呢?何为与X染色体的遗传相似?这句话的背后是摩尔根做出假设的依据,不能理解这句话的含义,就会出现上述的第一个问题。 再比如,不乏有教师在讲本实验的测交实验时,单纯的以验证“控制眼色的基因位于X染色体上”为目的,错误的认为:如果用F1中的红雌与白雄测交,那么后代出现的四种表现型(红眼雌蝇,白眼雌蝇,红眼雄蝇,白眼雄蝇)的比例为1:1:1:1,是不能判断眼色基因与X染色体的关系,所以摩尔根的测交实验并没有这一组。 实际上这样的观点是将问题转化为:基因到底在常染色体还是性染色体上。这是有违摩尔根的初衷的,摩尔根真正的意图是想要通过实验找到基因在染色体上的证据,来验证自己对萨顿观点的怀疑是否正确。测交1结果与预测一致,可以证明基因在染色体上随着减数第一次分裂发生分离。因此在教师用书(旧)的第58页中描述到:“子一代红眼雌果蝇与白眼雄果蝇交配......后代......比例是1:1:1:1。摩尔根圆满地说明了他的实验结果”。 2 摩尔根果蝇杂交实验的真实历程 2.1 摩尔根果蝇杂交实验的背景

基于果蝇优化算法的多元质量控制故障模式诊断_杨明顺

文章编号:1006-4710(2015)02-0138- 06基于果蝇优化算法的多元质量控制故障模式诊断 杨明顺,梁艳杰,雷丰丹,刘永,杜少博 (西安理工大学机械与精密仪器工程学院,陕西西安710048 )摘要:针对目前以神经网络为代表的主流智能故障模式诊断方法存在训练时间长、收敛速度慢、容易陷入局部最优等缺陷, 本文将果蝇优化算法用于多变量生成过程故障模式诊断,重点分析了果蝇优化算法(FOA)的原理及其搜索优势,设计了一种基于FOA的多变量生产过程故障模式诊断算法。将所设计的果蝇优化算法应用于汽车曲轴生产过程控制,并与神经网络模型处理结果进行对比。对比结果表明,果蝇优化算法训练时间短,收敛速度快且诊断结果更加准确。关键词:多变量生产过程;果蝇优化算法;过程控制;故障诊断;BP神经网络;质量控制中图分类号:TH122,TP391 文献标志码:A A fault diag nosis for multivariate production processbased on Fruit Fly  Optimization AlgorithmYANG Mingshun,LIANG Yanjie,LEI Fengdan,LIU Yong ,DU Shaobo(Faculty of Mechanical and Precision Instrument Engineering,Xi’an University  of Technology,Xi’an 710048,China)Abstract:Neural network served as a representative of the mainstream intelligent fault mode diag -nosis method,has had such defects as long learning time,difficulty  of convergence and easilyplunging into a local optimal solution.Thus,a Fruit Fly  Optimization Algorithm for multivari-able process fault diagnosis model is established in this paper,the princip le and search advantageof Fruit Fly Optimization Algorithm(FOA)is emphatically  analyzed and a multivariable processfault diagnosis model based on FOA algorithm is designed.The Fruit Fly  Optimization Algorithmis used for analyzing  control sample data in the automobile crankshaft production,and a contrastis made with the results obtained from the neural network model.And contrast results show  thatFruit Fly Optimization Algorithm has a short training  time,fast convergence rate and more accu-rate diag nosis result.Key  words:multivariate production process;Fruit Fly Optimization Algorithm(FOA);processcontrol;fault diagnosis;BP artificial neural network;quality control收稿日期:2014-09- 06基金项目:国家自然科学基金资助项目(60903124);陕西省教育厅科学研究计划资助项目(14JK1521 );西安理工大学青年科技创新团队建设计划资助项目(102- 211408)。作者简介:杨明顺,男,副教授,博士,主要研究方向为制造系统优化与控制、集成产品开发决策、集成质量管理。 E-mail:yangming shun@xaut.edu.cn。 在生产过程质量控制当中, 为了避免单个质量特性控制可能引起的“过控”或者“欠控”现象,必须同时考虑多个相互关联的多质量特性的相互影响以及其共同对产品质量的影响,因此多元质量控制故 障模式诊断成为保证产品质量的一个重要方面[ 1- 2]。多元质量控制诊断的研究对象是多变量正态过程,且变量间往往不是独立而是相关的,一个或几个变量的均值(或/和方差)或/和变量间的相关关系偏离总体,过程都会失控,监控该过程的控制图都会发出警告信号。国内外许多学者对此进行了广泛研 究。针对多元质量控制图不能准确确定导致失控信号产生的变量或变量集这一缺陷,Mojtabsa Sale-hi[3] 提出了一种基于混合学习的模型, 从而实现在多变量制造过程中失控信号在线分析;Zhang Jiu-j iu[4]针对使用单一控制图对多变量过程中数据平均值和变化同时进行监控的问题,提出了一种新的包含指数加权移动平均过程和广义似然比测试的控制图,实现多变量过程中平均值与变化过程的同时 监控;文昌俊[5]在分析多元T2控制图和多元过程能力指数的基础上,利用主成分分析法实现了多元 831 西安理工大学学报Journal of Xi’an University  of Technology(2015)Vol.31No.2

摩尔根的果蝇实验室

摩尔根的果蝇实验室 假如你们问我怎么会有这些发现……我的回答是:一靠勤奋,……二靠明智地使用各种假说——我所说的“明智”,指的是愿意放弃任何假说,除非能为它们找到可靠的证据,三靠实验材料得当,……最后还靠少开些遗传学大会。 托马斯·亨特·摩尔根在国际遗传学大会上的主席致辞 托马斯·亨特·摩尔根的大名看来要名垂史册了,这实现了他父亲的愿望。摩尔根只有一个儿子,而儿子名下全是女儿。摩尔根这一支系后继无人,全家为之惋借。这时,他们想起了摩尔根的外孙詹姆斯·芒廷说的一句话:“赞美这个姓氏吧,把基因传递下去!”但更为重要的是摩尔根把这份文化遗产传给了几十个年青的遗传学家。 摩尔根在自己身边聚合了一群才华出众的学生,他们聪明能干,既善于独立开展工作,又有集体主义精神。摩尔根完全可以从哥伦比亚大学的研究生中挑选自己的工作班子,而且也确有许多研究生在蝇室内外干过一段时间研究工作。但他实在算得上知人善任,唯才是举,毫无门户之见,绝不计较对方的学历。他曾一度替一位普通动物学教授代课,在班上遇见了艾尔弗雷德·亨利·斯特蒂文特和卡尔文·B.布里奇斯。他俩都是年仅十几岁的本科学生。斯特蒂文特写了一篇文章,论述他父兄在亚拉巴马州的农场里养的马的毛色。摩尔根看了稿子,印象很深,于是帮助他发表,题目是《纯种马谱系之研究》。后来,摩尔根让他干果蝇计数的工作。可惜斯特蒂文特是色盲,限制了他发现体色突变的能力。但工作不到两年,他年仅二十一岁时就做出了一件极为了不起的贡献:画出了基因在染色体上呈直线排列的顺序,不久后定名为“染色体图”。 1910年,摩尔根给年青的大学生上尔文·布里奇斯一份在实验室洗瓶子的工作。当布里奇斯透过厚厚的玻璃瓶发现了一只硃砂眼突变果蝇时,他马上被提升为摩尔根的私人助手,因为他的视力非同小可,这种突变常人用显微镜也不一定能看得出来。据说当时摩尔根还得自掏腰包支付布里奇斯的薪金。后来布里奇斯发现了好多突变。他还发现了一些不寻常的遗传方式,他自己推测,这是由于一对染色体没有像通常那样分向两极,他称这种现象为“不分离现象(nondisjunction)”。他英年早逝,至1938年离开人世,始终是摩尔根亲密的同伴。布里奇斯和斯特蒂文特一样,读完大学取得学士学位后就直接在摩尔根指导下攻读博士学位。他们十七年的主要工作是“为哥伦比亚大学数苍蝇”。 在摩尔根蝇室工作的学生中,知名度最高的也许要算H.J.马勒。他1910年已在哥伦比亚大学取得学士学位,当时正在读硕士研究生。1911和1912两年他在康奈尔大学医学院学习,但过后又回哥伦比亚大学读博士学位,同时兼任助教或带学生实验,时间当是1912-1915年和1918-1920年,中间那段时间在赖斯大学朱利安·赫胥黎手下工作。虽然马勒不像斯特蒂文特和布里奇斯那样自始至终同原来的老师保持亲密的关系,但他们师

摩尔根果蝇实验中白眼基因为何不能在Y染色体上

摩尔根果蝇实验中,白眼基因为什么不能在Y染色体上 1.对教材内容的分析 1903年,美国遗传学家萨顿用蝗虫细胞作为实验材料,研究精子和卵细胞的形成过程。他发现了减数分裂过程中,基因和染色体的行为的一致性,所以萨顿用类比推理的方法提出假说:基因在染色体上。但是类比推理的出的结论并不具有逻辑的必然性,其正确与否,还需要观察和实验的检验。 接下来,美国生物学家摩尔根用果蝇杂交实验为基因位于染色体上提供了证据。摩尔根选用果蝇作为实验材料的原因:果蝇是一种昆虫,有体小、繁殖快、生育力强、饲养容易等优点。1909年,摩尔根从野生型的红眼果蝇培养瓶中发现了一只白眼的雄果蝇,这只例外的白眼雄果蝇特别引起了他的重视,他抓住这个例外不放,用它作了一系列设计精巧的实验。 摩尔根首先做了实验一: P 红眼(雌)× 白眼(雄) ↓ F1红眼(雌、雄) ↓F1雌雄交配 F2红眼(雌、雄)白眼(雄) 3/4 1/4 从实验一中,不难看出F1中,全为红眼,说明红眼对白眼为显性,而F2中红眼和白眼数量之比为3:1,这也是符合遗传分离规律的,也表明果蝇的红眼和白眼由一对等位基因来控制。所不同的是白眼性状总与性别相关联。如何解释这一现象呢?

摩尔根认为,既然果蝇的眼色遗传与性别相关联,说明控制红眼和白眼的基因在性染色体上。在20世纪初期,生物学家对于果蝇的性染色体有了一定的了解。果蝇是XY型性别决定的生物,果蝇的Y染色体比X染色体长一些。X染色体和Y染色体上的片段可以分为三个区段:X染色体上的非同源区段、Y染色体上的非同源区段和同源区段。(如下图)。在雌果蝇中,有一对同型的性染色体XX,在雄果蝇中,有一对异型的性染色体XY。 那果蝇的眼色基因到底在哪里呢?是在Ⅰ、Ⅱ、Ⅲ中哪个区段上呢? 教材出示了摩尔根的假设,他认为:控制白眼性状的隐性基因由X染色体所携带,Y染色体上不带有白眼基因的等位基因, 即控制果蝇眼色的基因在Ⅰ区段上。之后摩尔根用这个假设合理的解释了他所得到的实验现象即实验一。后来通过测交实验 进行了验证。到这里,难免让人产生如此疑问:摩尔根怎么如此“草率”的认为控制眼色的基因在Ⅰ区段上?难道不需要排除基因在Ⅱ、Ⅲ区段的可能性吗? 事实上,摩尔根的果蝇实验是很严谨的,他除了做了上面的实验一,还做了如下两个实验。 实验二:将实验一中所得的F1中的红眼雌蝇和白眼雄蝇进行杂交。 P 红眼(雌)×白眼(雄) ↓

智能优化算法

智能计算读书报告(二) 智能优化算法 姓名:XX 学号:XXXX 班级:XXXX 联系方式:XXXXXX

一、引言 智能优化算法又称为现代启发式算法,是一种具有全局优化性能、通用性强、且适用于并行处理的算法。这种算法一般具有严密的理论依据,而不是单纯凭借专家的经验,理论上可以在一定时间内找到最优解或者近似最优解。所以,智能优化算法是一数学为基础的,用于求解各种工程问题优化解的应用科学,其应用非常广泛,在系统控制、人工智能、模式识别、生产调度、VLSI技术和计算机工程等各个方面都可以看到它的踪影。 最优化的核心是模型,最优化方法也是随着模型的变化不断发展起来的,最优化问题就是在约束条件的限制下,利用优化方法达到某个优化目标的最优。线性规划、非线性规划、动态规划等优化模型使最优化方法进入飞速发展的时代。 20世纪80年代以来,涌现出了大量的智能优化算法,这些新颖的智能优化算法被提出来解决一系列的复杂实际应用问题。这些智能优化算法主要包括:遗传算法,粒子群优化算法,和声搜索算法,差分进化算法,人工神经网络、模拟退火算法等等。这些算法独特的优点和机制,引起了国内外学者的广泛重视并掀起了该领域的研究热潮,并且在很多领域得到了成功地应用。 二、模拟退火算法(SA) 1. 退火和模拟退火 模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis 等人于1953年提出。1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域。它是基于Monte-Carlo迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。模拟退火算法是一种通用的优化算法,理论上算法具有概率的全局优化性能,目前已在工程中得到了广泛应用,诸如VLSI、生产调度、控制工程、机器学习、神经网络、信号处理等领域。 模拟退火算法是通过赋予搜索过程一种时变且最终趋于零的概率突跳性,从而可有效避免陷入局部极小并最终趋于全局最优的串行结构的优化算法。 模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟

对摩尔根果蝇杂交实验的疑问与解惑

对摩尔根果蝇杂交实验的疑问与解惑 合肥二中赵春宏(230022) 摘要本文针对课堂教学中教师和学生提出的,关于摩尔根果蝇杂交实验中存在的疑问,通过查阅资料,分析解决了相关问题,并进一步思考教材的设计,如何挖掘利用素材,培养学生思维。 关键词摩尔根果蝇杂交实验测交 高中生物必修2第2章第2节《基因在染色体上》一节,是培养学生思维的很好素材。本节介绍了科学家对遗传现象的探究过程,难点较多,有教师和学生对摩尔根的果蝇交配实验的描述和解释存有疑问。结合这些疑问,我通过查阅资料和分析理解,对问题进行了解答。 1疑问1:开始发现的白眼果蝇进行几次交配? 1.1疑问来源 教材32页“科学家的故事”介绍:在实验室,白眼果蝇临死前抖擞精神,与一只红眼果蝇交配,把突变基因传了下来。 教师教学用书57页叙述同上,但58页第二段叙述:“摩尔根做了回交实验。用最初出现的那只白眼雄蝇和它的后代中的红眼雌蝇交配,结果……”。 显然以上两处叙述有矛盾。 1.2资料描述 查找的国内遗传学著作,也有两种不同的叙述。但在美国学者的相关著作中都没有提到“用最初出现的那只白眼雄蝇和它的后代中的红眼雌蝇交配”。 《遗传学的先驱摩尔根评传》第五章叙述:它这样养精蓄锐,终于同一只正常的红眼雌蝇交配以后才死去,留下了突变基因,以后繁衍成一个大家系。之后叙述是:用白眼雄蝇同正常雌蝇杂交,后代全为红眼;白眼雌蝇与正常雄蝇杂交,后代一半为白眼,而且全为雄性。 在摩尔根的《基因论》中提到“孙代白眼雄蝇”与红眼雌蝇交配。 1.3分析解答 综合有关资料可以得出以下结论: 结论(1):最初出现的白眼雄蝇死亡前应该与多只红眼雌蝇进行了交配,只是在与某只红眼雌蝇交配后死去。 因为摩尔根所用的黑腹果蝇最多一次只能产生上百个后代,而很多资料显示F1得到1237个个体。很显然得到这么多后代,只能是开始那一只白眼雄蝇与多只红眼雌蝇交配的结果。正常情况下,摩尔根为了能让那只白眼果蝇顺利实现交配,他会将那只白眼果蝇与多只未交配的雌蝇放在一起,这样那只“白眼儿”就可能与多只雌蝇交配。 结论(2):最初出现的那只白眼雄蝇没有进行回交,教师教学用书58页第二段叙述有误。 很多资料描述摩尔根所做的回交实验有:(1)让F 2的白眼雄蝇与F1的红眼雌蝇交配;(2)让F 3的白眼雌蝇与F1的红眼雄蝇交配。 2疑问2:摩尔根通过哪种测交,进一步验证了解释

2.2“摩尔根果蝇实验教学中四种假设”教学 素材(人教版必修2).ppt

“摩尔根果蝇实验教学中四种假设”教学 摩尔根的实验:1910年,摩尔根从野生型的红眼果蝇培养瓶中发现了一只白眼的雄果蝇,这只例外的白眼雄果蝇特别引起了他的重视,他抓住这个例外不放,用它作了一系列设计精巧的实验。 摩尔根用白眼雄果蝇作了果蝇杂交实验并发现后代的特点之后,提出问题:F2中红眼果蝇与白眼果蝇的数目比例是3:1,这是否符合孟德尔遗传定律?毫无疑问,3:1的特点是符合孟德尔遗传定律的,但是发现这种性状的遗传还跟性别有关,于是能推想到控制这种性状的基因在性染色体上。(先展示实验一,学生回答出红眼对白眼为显性,且眼色的性状符合孟德尔定律。但我又提示:细心的摩尔根在实验结果中又有了新的发现:眼色性状与性别有关,而分离定律不能解释性别问题。你认为控制红、白眼的基因位于什么染色体上?学生想到有可能是在性染色体上。学生想到有可能是在性染色体上。我再次提示:果蝇有两种性染色体,分别是X和Y,且存在同源区段和非同源区段 , 你认为控制果蝇眼色的基因是在哪条染色体上?这时让同学讨论交流,并鼓励学生进行假设。) 摩尔根当年按照这个思维过程思考,当他想到控制这种性状的基因在性染色体上之后,他会一下子就做出这个基因在X染色体上的假设吗?应该不会吧!如果考虑周全的话,他应该会做出那些假设呢?按常理应该会有三种假设:控制果蝇眼色的基因可能在:(1)X染色体上(2)在Y染色体上(3)在XY染色体上都有。 (1) 若仅位于Y染色体的非同源区段,则白眼雄蝇表示为XYb红眼雌蝇表示为XX P XX × XYb ↓

↓雌雄交配 F2 XX 、 XYb ①雌果蝇没有红、白眼色这一对相对性状。 ②摩尔根实验中的雄果蝇无论F1还是F2均为白眼。 与客观事实和实验事实均不符,此假说不成立。 (2) 若仅位于X染色体的非同源区段,则白眼雄蝇表示为XbY,红眼雌蝇表示为XBXB, 摩尔根的实验可表示为下图: P XBXB × ↓ F1 XBXb × XBY ↓雌雄交配 F2 XBXB、XBXb、XBY、XbY 按此假设推出的结果与实验结果符合。 (3) 若位于X、Y的同源区段,则白眼雄蝇表示为XbYb,红眼雌蝇表示为XBXB,摩尔根的实验可表示为下图: P XBXB × ↓

摩尔根的假设

对摩尔根果蝇杂交实验的分析及教学策略 1.对教材内容的分析 1903年,美国遗传学家萨顿用蝗虫细胞作为实验材料,研究精子和卵细胞的形成过程。他发现了减数分裂过程中,基因和染色体的行为的一致性,所以萨顿用类比推理的方法提出假说:基因在染色体上。但是类比推理的出的结论并不具有逻辑的必然性,其正确与否,还需要观察和实验的检验。 接下来,美国生物学家摩尔根用果蝇杂交实验为基因位于染色体上提供了证据。摩尔根选用果蝇作为实验材料的原因:果蝇是一种昆虫,有体小、繁殖快、生育力强、饲养容易等优点。1909年,摩尔根从野生型的红眼果蝇培养瓶中发现了一只白眼的雄果蝇,这只例外的白眼雄果蝇特别引起了他的重视,他抓住这个例外不放,用它作了一系列设计精巧的实验。 摩尔根首先做了实验一: P 红眼(雌) ×白眼(雄) ↓ F1 红眼(雌、雄) ↓F1雌雄交配 F2 红眼(雌、雄)白眼(雄) 3/4 1/4 从实验一中,不难看出F1中,全为红眼,说明红眼对白眼为显性,而F2中红眼和白眼数量之比为3:1,这也是符合遗传分离规律的,也表明果蝇的红眼和白眼由一对等位基因来控制。所不同的是白眼性状总与性别相关联。如何解释这一现象呢? 摩尔根认为,既然果蝇的眼色遗传与性别相关联,说明控制红眼和白眼的基因在性染色体上。在20世纪初期,生物学家对于果蝇的性染色体有了一定的了解。果蝇是XY型性别决定的生物,果蝇的Y染色体比X染色体长一些。X染色体和Y染色体上的片段可以分为三个区段:X染色体上的非同源区段、Y染色体上的非同源区段和同源区段。(如下图)。在雌果蝇中,有一对同型的性染色体XX,在雄果蝇中,有一对异型的性染色体XY。 那果蝇的眼色基因到底在哪里呢?是在Ⅰ、Ⅱ、Ⅲ中哪个区段上呢?

摩尔根白眼果蝇杂交实验的难点突破

摩尔根白眼果蝇杂交实验的难点突破 云南省大理新世纪中学(671000)刘永生 云南省祥云县第一中学(672100)张洪芬 关键词:摩尔根基因染色体性别决定果蝇 1.摩尔根白眼果蝇杂交实验的常规教学设计思路及其问题 人教版基因在染色体上这一节在教学设计上相对困难,尤其是摩尔根白眼果蝇的杂交实验更是设计的难点。最难的就在于摩尔根为什么直接提出假设:控制白眼性状的基因位于X 染色体上,Y染色体上没有对应的基因。 实际教学中笔者见到过两种处理方式,一种就是直接给出这个假设进行教学,这固然是可以的,但是随之带来的问题是,摩尔根后来的所有实验都可以用Y染色体上有隐性基因来解释。而这明显和假设中的Y染色体上没有对应基因不一致。 另一种处理方法是直接提出很多种假设,比如基因在X染色体上而不在Y染色体上,基因同时存在于X和Y染色体上等等。这种枚举的方式看似合理,但是做出这种假设的前提已经默认基因在染色体上了,接下来所做的从逻辑上讲仅是循环论证。而且如果需要枚举,你需要排除各种可能性,比如基因在细胞质、基因在细胞膜或者属于核质互作等等,而细胞质遗传以及核质互作等都是后来的研究成果,摩尔根那个时代根本不清楚,也无从谈起排除这些可能性。 2.摩尔根白眼果蝇杂交实验的假设中为什么忽视了Y染色体 那么摩尔根是如何说服其他科学家相信控制果蝇白眼性状的基因是位于X染色体上呢?在那篇划时代的论文中,摩尔根这样说到“…half of the spermatozoa carry a sex factor X,the other half lack it,i.e.,the male is heterozygous for sex”[1]。这里摩尔根明确指出了雄性果蝇产生两种精子,一种含有一个X,一种不含有X,也就是说雄性果蝇可以视作是杂合的。这里不禁有人要问:果蝇的性别决定中,摩尔根为什么选择性忽视了雄性中的Y染色体呢?实际情况是这样的,果蝇的性别决定不是人那样取决于有无Y 染色体,而是取决于X染色体的数量,有一条X染色体的将表现为雄性,有两条X染色体的将表现为雌性,例如XO和XY在在果蝇中都表现为雄性,XX和XXY都表现为雌性。摩尔根等人在白眼果蝇杂交实验之前就意识到了这一点[2]。这种情况下,摩尔根包括我们很自然地就会在果蝇的性别决定中选择忽视Y染色体。 摩尔根用白眼果蝇进行一系列杂交实验后,发现白眼性状的遗传与性别相关联,而果蝇的性别又取决于X染色体,这种情况下合理的假设只能是白眼基因与X染色体相关联。从而提出:白眼基因位于X染色体上。 3.假说的合理性是突破摩尔根的白眼果蝇杂交实验的关键 笔者认为,教学中要让学生认识到Y染色体在人和果蝇性别决定中的作用不同,否则学生会用将已经掌握的人类性别决定的知识套用到果蝇上面,这种前概念会影响到对摩尔根假

【CN109706174A】去泛素化酶UAScDNAORF质粒及转基因果蝇文库的构建及应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910111055.2 (22)申请日 2019.02.11 (71)申请人 王纪武 地址 200025 上海市黄浦区瑞金二路197号 (72)发明人 王纪武 魏平  (74)专利代理机构 上海伯瑞杰知识产权代理有 限公司 31227 代理人 曹莉 (51)Int.Cl. C12N 15/85(2006.01) C12N 15/57(2006.01) C12N 15/90(2006.01) A01K 67/033(2006.01) A61K 49/00(2006.01) (54)发明名称去泛素化酶UAS-cDNA/ORF质粒及转基因果蝇文库的构建及应用(57)摘要本发明公开了去泛素化酶UAS -cDNA/ORF质粒及转基因果蝇文库的构建及应用;本发明运用模块化设计构建果蝇UAS -cDNA/ORF质粒文库的方法,针对所有41个果蝇去泛素化酶基因,构建了果蝇去泛素化酶UAS -cDNA/ORF质粒及转基因果蝇文库,涵盖了共38个基因。本文库为迄今公开发表的最为完整的果蝇去泛素化酶UAS -cDNA/ORF质粒及转基因果蝇文库,可用于体内外试验在各个特定组织中过表达去泛素化酶,进行各种各样的基因及遗传学筛查,从而系统阐明去泛素化酶与特定基因与疾病的关系,揭示疾病的发病机制, 找到新的治疗靶基因。 权利要求书3页 说明书10页序列表2页 附图2页CN 109706174 A 2019.05.03 C N 109706174 A

1.一种去泛素化酶基因UAS -cDNA/ORF质粒及转基因果蝇文库,其特征在于,所述文库涵盖了共38个果蝇去泛素化酶基因, 如下: 权 利 要 求 书1/3页2CN 109706174 A

实验三-果蝇的伴性遗传

实验七果蝇的伴性遗传 14级生物技术1班王堽20140322142 一、目的 1、记录交配结果和掌握统计处理方法; 2、正确认识伴性遗传的正、反交的差别。 二、原理 1910年,摩尔根在实验室中无数红眼果蝇中发现了一只白眼雄蝇。让这只白眼雄蝇与野生红眼雌蝇交配,F1全是红眼果蝇。让F1的雌雄个体相互交配,则F2果蝇中有3/4为红眼,l/4为白眼,但所有白眼果蝇都是雄性的。这表明,白眼这种性状与性别相连系,外祖父的性状通过母亲遗传给儿子。这种与性别相连的性状的遗传方式就是伴性遗传。摩尔根等对这种遗传方式的解释是:果蝇是XY型性别决定动物,控制白眼的隐性基因(W)位在X性染色体上,而Y染色体上却没有它的等位基因。如果这种解释是对的,那么白眼雄蝇就应产生两种精子:一种含有X染色体,其上有白眼基因(W),另一种含有Y染色体,其上没有相应的等位基因;F1杂型合子(Ww)雌蝇则应产生两种卵子:一种所含的X染色体,其上有红眼基因(W);另一种所含的X染色体,其上有白眼基因(W);后者若与白眼雄蝇回交,应产生1/4红眼雌蝇,l/4红眼雄蝇,1/4白眼雌蝇,l/4白眼雄蝇。实验结果与预期的一样,表明白眼基因(W)确在X染色体上。

果蝇的性染色体有X和Y 两种类型.雌蝇细胞内有2条X染色体,为同配性别(XX),雄蝇为XY是异配性别.性染色体上的基因在其遗传过程中,其性状表达规律总是与性别有关.因此,把性染色体上基因决定性状的遗传方式叫伴性遗传。 果蝇的红眼与白眼是一对由性染色体上的基因控制的相对性状。用红眼雌果蝇与白眼雄果蝇交配,F1代雌雄均为红眼果蝇,F1代相互交配,F2代则雌性均为红眼,雄性红眼:白眼=1:1;相反用白眼雌果蝇与红眼雄果蝇交配,F1代雌性均为红眼,,雄性都是白眼,F1相互交配得F2代,雌蝇红眼与白眼比例为1:1,雄蝇红眼与白眼比例亦为1:1。由此可见位于性染色体上的基因,与雌雄性别有关系。 伴性遗传可归纳为下列规律: 1. 当同配性别的性染色体(如哺乳类等为XX为雌性,鸟类ZZ为雄性)传递纯合显性基因时,F1雌、雄个体都为显性性状。F2性状的分离呈3显性:1隐性;性别的分离呈1雌:1雄。其中隐性个体的性别与祖代隐性体一样,即1/2的外孙与其外祖父具有相同的表型特征。 2.当同配性别的性染色体传递纯合体隐性基因时,F1表现为交叉遗传,即母亲的性状传递给儿子,父亲的性状传递给女儿,F2中,性状与性别的比例均表现为1:1。 3.存在于Y染色体差别区段上的基因 在进行伴性遗传实验时,也会出现例外个体,即在 B 杂交组合,F1

摩尔根果蝇杂交实验的三种假设

按常理应该会有三种假设:控制果蝇眼色的基因可能在:(1)X染色体上(2)在Y染色体上(3)在XY染色体上都有,如果他不作出这样的三种假设之后一一排除的话,别人可能就会用另外两种假设的观点反驳他! 想到这里,我的思路豁然开朗:如果将实验一的结果展示给学生,让学生进行分析,学生肯定能想到控制眼色性状的基因在性染色体上,但是不一定能得出基因由X染色体所携带这个假设。我想我的学生肯定也能想到另外两种假设,于是在课堂我是这样处理的:先展示实验一,学生回答出红眼对白眼为显性,且眼色的性状符合孟德尔定律。但我又提示:细心的摩尔根在实验结果中又有了新的发现:眼色性状与性别有关,而分离定律不能解释性别问题。你认为控制红、白眼的基因位于什么染色体上?学生想到有可能是在性染色体上。我再次提示:果蝇有两种性染色体,分别是X和Y,你认为控制果蝇眼色的基因是在哪条染色体上?这时让同学讨论交流,并鼓励学生进行假设。学生通过讨论后出现分歧,大部分的学生认为控制果蝇眼色的基因位于Y染色体上,有少部分的学生认为该基因在X染色体上,还有个别学生认为可能两个染色体上都有该基因。 该如何让学生推翻错误假设,得到正确结论呢?这个问题是个难点。一般来说在生物学生推翻错误假设的方法就是亲自去做实验,但是在课堂上做果蝇实验也不太现实。我想最好有一种办法能让学生自己把错误结论推翻,这样学生错得心服口服并且又记忆深刻。经过尝试,我发现可以利用刚刚学过的书写遗传图解的方式来解决这一重难点。但是这种基因型的写法是以前没接触过的,所以我先教会大家性染色体上基因的写法: 举两个例子如白眼雄蝇和红眼雌蝇 如果假设基因位于X染色体上,则白眼雄蝇表示为XbY,红眼雌蝇表示为XBXB 如果假设基因位于Y染色体上, 则白眼雄蝇表示为XYb红眼雌蝇表示为XX 如果假设基因X染色体和Y染色体上都有,则白眼雄蝇表示为XbYb,红眼雌蝇表示为XBXB 然后学生在白纸上尝试用遗传图解解释实验现象,经过尝试,大家发现“基因位于Y染色体上”的假设很明显是不正确的,而其余两种假设都可以解释实验一的现象。再如何二者择一呢?这又是一个新的难题。 我想到类比孟德尔所用的测交方法:如果Aa确实产生两种类型的配子,如何找到一组杂交实验能让A和a的基因显出来呢?应该是让其和隐性纯合子杂交。同样,如果假设控制果蝇眼色的基因在XY染色体上都有,那么一只纯合红眼雄蝇基因型应该是XBYB,如何让它产生的两种配子都显出来呢?应该是让其和隐性纯合子:白眼雌蝇杂交,这就是实验三。如何得到白眼雌蝇呢,在摩尔根所作的实验二就可以得到白眼雌蝇。 那么按照两种不同的假设,用纯合红眼雄蝇和白眼雌蝇杂交分别会得到什么样的结果呢?下面是两种不同的假设所得到的结果: 学生按照这样的方法,用不同的假设分别会得到不同的预期,那么哪一种对呢?展示下面摩尔根作的实验三的结果,结论自然显而易见。 在这个过程中,通过尝试书写遗传图解解释实验现象,不仅能提高应用遗传图解分析和解释遗传学问题的能力,还可以提高学生分析现象、推理验证和解决问题的综合思维能力。 以上教学过程的设计是以摩尔根的果蝇实验为材料,以学生的思维过程为线索进行设计,可能当初摩尔根的思路和我们想的并不完全一样,但是我觉得这种教学过程的设计有利于引起学生探究过程中的矛盾冲突,便于突破教学重点和难点。

2011_转基因果蝇的杂交重组和鉴定-实验指导_71109735

3.转基因果蝇的杂交重组和鉴定(开放实验) 实验目的: 把插入在同一个染色体上的不同目的基因通过重组交换整合到同一品系果蝇的同一染色体上,并得到可以稳定保存的品系(balanced或homozygous)。 背景知识: 转基因果蝇(transgenic fly)是将带有目的基因的质粒通过显微注射转入白眼果蝇卵中,这些质粒上一般带有P转座子序列(P elements are transposable pieces of DNA that randomly insert themselves into genomic DNA),使得目的基因可以插入到果蝇染色体中。一般使用白眼果蝇的卵进行显微注射,质粒上带有的mini-white基因(红眼)可以作为转基因成功的标记(marker),带有目的基因的果蝇将成为红眼果蝇。mini-white的表达量决定了果蝇眼睛红色的深浅,这与目的基因插入位置和copy数目有关(可请学生思考为什么——插入位置附近的染色体结构和启动子决定mini-white表达量,纯和果蝇比杂合果蝇表达量也高,有多个插入位点的比单个插入位点的表达量高,一般情况下只有一个插入位点)。常用的带P转座子载体示意图如下: 实验提供几种转基因果蝇,由于受质粒大小的限制,一般一个转基因果蝇品系只能转入一个目的基因,有时需要把不同目的基因整合到同一个果蝇品系中,研究两个基因的功能及相互作用等。如果两个目的基因都插在不同果蝇品系的同一个染色体上,可以通过遗传重组的方法得到重组型后代(眼睛颜色),重组型后代将在同一个染色体上同时带有两个目的基因,并可以建立稳定保持的品系。例如有基因A的转基因果蝇系tA和基因B的转基因果蝇

摩尔根和他的果蝇杂交实验

摩尔根和他的果蝇杂交实验(教学设计) 教学目标: 1.了解科学家摩尔根及其果蝇的故事。 2.了解科学家摩尔根的科学实验过程和方法。 3.说明基因在染色体上的实验证据。 教学重点和难点:基因在染色体上的实验证据。 教学措施:多媒体课件辅助,教材阅读,开展思维探究、交流和学习成果展示。 教学过程: 导课:阅读教材相关内容并简介摩尔根和果蝇有关故事。 摩尔根是一位敢于怀疑、勤奋实践的人。无论对自己的假说还是对别人的学说,他都一概采取依靠事实和运用实验来检验理论是否正确的科学态度。 摩尔根与果蝇的不解之缘:摩尔根与他的学生培养了很多代蝇,他偶然在一群红眼果蝇中发现了一只白眼果蝇,他把这只果蝇视若珍宝。当他的第三个孩子出生后,他赶到医院时,他的妻子醒来问他的第一句话不是“孩子怎么样了”,而是“那只白眼果蝇怎么样了”。虽然身体很虚弱,但这只白眼果蝇没有辜负摩尔根的期望,在临死之前抖擞精神与一只红眼果蝇完成了交配,把难得的白眼基因遗传了来,使摩尔根的杂交实验获得了成功! 教师提问:材料的选择是实验成功的关键!摩尔根选择的是什么

材料呢? 学生答问:红眼果蝇和白眼果蝇 学生看书后回答果蝇的特点:1.相对性状多而明显;2.易饲养;3.繁殖快,后代数量多; 4.染色体数目少。 小结果蝇作为实验材料的优势: 1.相对性状多而明显——结果易观察和分析; 2.易饲养——短时间内可以获得较多的后代,便于分析; 3.繁殖快,后代数量多——便于进行统计学分析; 4.染色体数目少——便于观察。 课件展示果蝇体细胞中染色体组成图并讲述染色体类型及与性别决定的关系。教师提问:雌雄果蝇体细胞中染色体组成有何异同? 学生答问:性染色体不同,常染色体相同。 教师提问:性染色体有何不同? 学生答问:雌性个体性染色体为X、X,雄性个体性染色体为X、Y。 师生共同总结染色体的类型并说明性别是由性染色体决定的。 染色体的类型: 常染色体:与性别决定无关的染色体 性染色体:与性别决定有关的染色体,如X、Y染色体 拓展:展示人体细胞中染色体组成图并思考相关问题:

摩尔根的假设

1903年,美国遗传学家萨顿用蝗虫细胞作为实验材料,研究精子和卵细胞的形成过程。他发现了减数分裂过程中,基因和染色体的行为的一致性,所以萨顿用类比推理的方法提出假说:基因在染色体上。但是类比推理的出的结论并不具有逻辑的必然性,其正确与否,还需要观察和实验的检验。 接下来,美国生物学家摩尔根用果蝇杂交实验为基因位于染色体上提供了证据。摩尔根选用果蝇作为实验材料的原因:果蝇是一种昆虫,有体小、繁殖快、生育力强、饲养容易等优点。1909年,摩尔根从野生型的红眼果蝇培养瓶中发现了一只白眼的雄果蝇,这只例外的白眼雄果蝇特别引起了他的重视,他抓住这个例外不放,用它作了一系列设计精巧的实验。 摩尔根首先做了实验一: P 红眼(雌)×白眼(雄) ↓ F1 红眼(雌、雄) ↓F1雌雄交配 F2 红眼(雌、雄)白眼(雄) 3/4 1/4 从实验一中,不难看出F1中,全为红眼,说明红眼对白眼为显性,而F2中红眼和白眼数量之比为3:1,这也是符合遗传分离规律的,也表明果蝇的红眼和白眼由一对等位基因来控制。所不同的是白眼性状总与性别相关联。如何解释这一现象呢 摩尔根认为,既然果蝇的眼色遗传与性别相关联,说明控制红眼和白眼的基因在性染色体上。在20世纪初期,生物学家对于果蝇的性染色体有了一定的了解。果蝇是XY型性别决定的生物,果蝇的Y染色体比X染色体长一些。X染色体和Y染色体上的片段可以分为三个区段:X染色体上的非同源区段、Y染色体上的非同源区段和同源区段。(如下图)。在雌果蝇中,有一对同型的性染色体XX,在雄果蝇中,有一对异型的性染色体XY。 那果蝇的眼色基因到底在哪里呢是在Ⅰ、Ⅱ、Ⅲ中哪个区段上呢 教材出示了摩尔根的假设,他认为:控制白眼性状的隐性基因由X染色体所携带,Y染色体上不带有白眼基因的等位基因,即控制果蝇眼色的基因在Ⅰ区段上。之后摩尔根用这个假设合理的解释了他所得到的实验现象即实验一。后来通过测交实验进行了验证。到这里,难

基本果蝇优化算法的Python实现

基本果蝇优化算法的Python实现测试函数为:f(x)=3?x2 #coding=utf-8 import random print "这是一个用果蝇优化算法进行测试函数优化的程序" print "该测试函数的精确最优解为 3" #随机初始果蝇群体位置 x_init=10.0*random.random() y_init=10.0*random.random() #print(x_init,y_init) maxgen=500 #迭代次数 sizepop=20 #种群规模 x=range(sizepop+1);y=range(sizepop+1) D=range(sizepop+1);S=range(sizepop+1) Smell=range(sizepop+1) yy=range(maxgen+1) X_best=range(maxgen+1);Y_best=range(maxgen+1) #果蝇寻优开始,利用嗅觉寻找食物 for i in range(sizepop+1): x[i]=x_init+2*random.random()-1 y[i]=y_init+2*random.random()-1 #由于无法得知食物位置,因此先估计与原点之距离(Dist) # ,再计算味道浓度判定值(S),此值为距离之倒数 D[i]=(x[i]**2+y[i]**2)**(0.5) S[i]=1/D[i];Smell[i]=3-S[i]**2 #找出此果蝇群体的中味道浓度最高的果蝇(求极大值) bestSmell=max(Smell) bestindex=Smell.index(bestSmell) #保留最佳味道浓度值与x、y坐标,此时果蝇群体利用视觉往该位置飞去。 x_init=x[bestindex];y_init=y[bestindex]; Smellbest=bestSmell #果蝇迭代寻优开始 for g in range(maxgen+1): #附与果蝇个体利用嗅觉搜寻食物之随机方向与距离

果蝇

生物研究的“宠儿”——果蝇 【2007年01月03日《参考消息》】 【西班牙《趣味》月刊文章】题:亲爱的果蝇(作者祖贝罗阿·马科斯) 从我们出生到死亡,苍蝇一直陪伴在旁。他的出现令我们痛苦,它传播疾病,甚至在人们弥留之际还在我们的眼角、嘴角等身体部位产卵,让我们把它带到坟墓然后吞噬人的尸体。但是不得不说,苍蝇,或至少某些种类的苍蝇是为人类福利作出了贡献的。5l d 自从1910年托马斯·亨特·摩根在他哥伦比亚大学的“苍蝇办公室”里发现了第一只果蝇——其学名为黑腹果蝇,这种昆虫就为人类开辟了一个崭新的生物时代。研究果蝇的科学家表示,一个世纪以来果蝇向生物学家提供了比任何其他复杂生物都更多的基因演变信息。 大大的红眼睛,3毫米左右的细长身体,灰色胸部缀着黑点和长绒毛,腹部呈现黄灰色条纹,黄色爪子,虹状翅膀上有着灰色、黄色和黑色的斑点——这就是果蝇。果蝇每天可以产卵数百只,最喜欢的食物是烂橡胶。果蝇的原产地是非洲西海岸,后来繁衍至其他温带、亚热带和热带地区。它曾经被带往国际空间站,但最重要的是现在果蝇已经成为人类各种疾病和基因研究的实验动物。 基因与人类相似 为什么苍蝇,确切地说是果蝇会成为生物医学研究的对象呢?这是应为从基因角度来看,果蝇与人类有着很多共同之处。人类已知疾病基因中大约有61%与果蝇的基因代码有着必然联系,而果蝇蛋白质的顺序有一半与哺乳动物相似。尽管全世界的果蝇有900种左右,但黑腹果蝇是最普遍的一种。果蝇很容易找到而且易于饲养。他们繁殖迅速,因此可以在短时间内对多代果蝇进行研究。科学家所掌握的大量操作和培育技术又是有利于研究的因素,因此果蝇可以非常方便的代替人类成为实验模型。 果蝇第一次作为试验对象是在19世纪末期,生物学家和基因科学家在其他生物实验失败后将果蝇作为“最后资源”进行研究。1910年,生物学家托马斯·亨特·摩根以果蝇实验,发现果蝇的白眼特征与X染色体有关。这是第一个与性染色体有关的基因遗传证据。从此以后,果蝇在基因研究方面得到了广泛的应用。 也许果蝇最特殊的一次使命是陪伴美国航天局的宇航员们前往国际空间站研究太空旅行对于基因的影响。这项实验被命名为“微重力下果蝇的基因活动”,目的是为了了解宇航员

相关文档
最新文档