自动控制原理Matlab实验1(初步认识MATLAB和系统仿真)

自动控制原理Matlab实验1(初步认识MATLAB和系统仿真)
自动控制原理Matlab实验1(初步认识MATLAB和系统仿真)

《自动控制原理》课程实验报告

实验名称初步认识MATLAB和系统仿真

专业班级 ********* 学

************

姓名**

指导教师李离

学院名称电气信息学院

2012 年 11 月 5 日

Lab1_1_1.m

程序:

y0=0.15;

wn=sqrt(2);

zeta=1/(2*sqrt(2));

t=[0:0.1:10];

c=(y0/sqrt(1-zeta^2));

y=c*exp(-zeta*wn*t).*sin(wn*sqrt(1-zeta^2)*t+acos(zeta)); bu=c*exp(-zeta*wn*t);bl=-bu;

plot(t,y,t,bu,'k--',t,bl,'k--'),grid

xlabel('Time (sec)'),ylabel('y(t) (meters)')

legend(['\omega_n=',num2str(wn),' \zeta=',num2str(zeta)])

仿真结果:

(1)零输入响应曲线

理论分析:0<ζ<1,对于二阶响应,其瞬态响应应该是一个按照指数衰减的振荡过程,ζ越小,衰减越慢,该系统是欠阻尼系统。从图中也可以看出,系统是零输入响应,是个震荡衰减的过程,符合理论判断。

Lab1_1_2.m

程序:

y0=0.15;

wn=sqrt(2);

zeta=1;

t=[0:0.1:10];

y=y0*(exp(-wn*t)+wn*t.*exp(-wn*t));

plot(t,y),grid

xlabel('Time (sec)'),ylabel('y(t) (meters)')

legend(['\omega_n=',num2str(wn),' \zeta=',num2str(zeta)])

仿真结果:

(2)零输入响应曲线

理论分析:在图中可以看到,随着时间的增加,响应在逐渐减小。当t>7时,响应近似为零,即Y(t)=0. ζ=1 ,系统是临界阻尼系统。对C(t)求导可以发现,系统是个单调地久的过程,不会出现震荡。

Lab1_1_3.m

程序:

y0=0.15;

wn=sqrt(2);

zeta=sqrt(2);

t=[0:0.1:10];

s1=-wn*(zeta+sqrt(zeta^2-1));

s2=-wn*(zeta-sqrt(zeta^2-1));

k1=(1-zeta/sqrt(zeta^2-1))/2;

k2=(1+zeta/sqrt(zeta^2-1))/2;

y=y0*(k1*exp(s1*t)+k2*exp(s2*t));

plot(t,y),grid

xlabel('Time (sec)'),ylabel('y(t) (meters)')

legend(['\omega_n=',num2str(wn),' \zeta=',num2str(zeta)]) 仿真结果:

(3)零输入响应曲线

理论分析:结果的零输入响应曲线是随着时间增加而递减。当时间趋于无穷时,其输入响应为零。系统的阻尼系数ζ>1,同样对C(t)求导可以发现,同阻尼系数ζ=1类似,也是个单调递减的过程,不会出现震荡。

Lab1_2.m

程序:

p=[1 3 0 4];

r=roots(p)

p=poly(r)

运行结果:

r =-3.3553 0.1777 + 1.0773i 0.1777 - 1.0773i

p =1.0000 3.0000 -0.0000 4.0000

理论分析:传递函数为4

s2

3

3+

+s。由于函数的分母为1,所以没有极点,零点有三个,分别是-3.3553 0.1777 + 1.0773i 和0.1777 - 1.0773i 。由于系统是个线性系统,其特征方程的根并非全为负实数或者有负实部的共轭复数。所以,可以判断,该系统不是稳定的。

Lab1_3.m

程序:

p=[3 2 1]; q=[1 4]; n=conv(p,q) value=polyval(n,-5) 运行结果:

n = 3 14 9 4 value = -66

理论分析:传递函数为491423+++s s s 。没有极点,零点有三个,分别是:-4.0000,-0.3333+0.4714i 和-0.3333-0.4714i 。由于系统是线性系统,其特征方程的根都在复数平面虚轴的左半部分,即:特征方程的根均为负实数和具有负实部的共轭复数,由系统的稳定性定义可知该系统是稳定的。

Lab1_4.m

程序:

num1=[10]; den1=[1 2 5]; sys1=tf(num1,den1) num2=[1]; den2=[1 1]; sys2=tf(num2,den2) sys=sys1+sys2 运行结果:

sys1 = 5

2102++s s

sys2 =

1

1

+s sys =5

7315

122

32+++++s s s s s 理论分析:传递函数为5

7315

12232+++++s s s s s 。极点有三个,分别是:-1.0000+2.0000i ,

-1.0000-2.0000i 和-1.0000 。零点有两个,分别是:-10.5826和-1.4174 。其特征方程为:020194s 23=+++s s 。因为4*19-1*12>0 , 所以该系统是稳定的。

Lab1_5.m

程序:

sys=tf([1 10],[1 2 1]) p=pole(sys) z=zero(sys) 运行结果:

sys =1

210

s 2+++s s

p = -1 -1 z = -10

理论分析:传递函数为1

210

s 2+++s s ,多项式有连个相等的极点-1,有一个零点-10,

其特征方程为:0113s 2=++s 。根据系统稳定性判断方法可知该系统是稳定的。

Lab1_6.m

程序:

numg=[6 0 1]; deng=[1 3 3 1]; sysg=tf(numg,deng); z=zero(sysg) p=pole(sysg)

n1=[1 1]; n2=[1 2]; d1=[1 2*i]; d2=[1 -2*i]; d3=[1 3]; numh=conv(n1,n2); denh=conv(d1,conv(d2,d3)); sysh=tf(numh,denh) sys=sysg/sysh pzmap(sys) 运行结果:

z =0 + 0.4082i 0 - 0.4082i

p =-1.0000 -1.0000 + 0.0000i -1.0000 - 0.0000i

sysh =12

432

3s 232+++++s s s s

sys =2

916146124752518s 62

3452345++++++++++s s s s s s s s s

Lab1_6.m 零极点分布图

理论分析:传递函数为2

91614612

4752518s 623452345++++++++++s s s s s s s s s 。该系统有三个

极点,分别是:-1.0000 , -1.0000 + 0.0000i 和-1.0000 - 0.0000i 。有两个零点,分别是:0 + 0.4082i 和0 - 0.4082i ,系统的特征方程为:01413913924s 72345=+++++s s s s ,其特征方程的根为:r=-2.9785 ,-0.1832+2.0001i ,-0.1823-2.0001i ,-0.0418+0.4059i ,-0.0418-0.4059i 。可以看出特征方程的根全部都在复数平面虚轴的左半部分,所以该系统是稳定的。

Lab1_7.m A:

程序:

numg=[1];deng=[500 0 0]; sysg=tf(numg,deng); numh=[1 1];denh=[1 2]; sysh=tf(numh,denh); sys =series(sysg,sysh); Sys 运行结果:

sys =2

310005001

s s s ++

B:

程序:

numg=[1 1];deng=[1 2 4]; sysg=tf(numg,deng); numh=[1 1];denh=[1 2]; sysh=tf(numh,denh); sys =series(sysg,sysh); Sys 运行结果:

sys =8841

2s 23

2+++++s s s s

A:

程序:

numg=[1];deng=[500 0 0]; sysg=tf(numg,deng); numh=[1 1];denh=[1 2]; sysh=tf(numh,denh); sys =parallel(sysg,sysh); Sys 运行结果:

sys =232310005002s 500500s s s s ++++

B:

程序:

numg=[1 1];deng=[1 2 4]; sysg=tf(numg,deng); numh=[1 1];denh=[1 2]; sysh=tf(numh,denh); sys =parallel(sysg,sysh); Sys 运行结果:

sys =8

s 846s 942323++++++s s s s

Lab1_8.m

A:

程序:

numg=[1]; deng=[500 0 0]; sys1=tf(numg,deng); numc=[1 1]; denc=[1 2]; sys2=tf(numc,denc); sys3=series(sys1,sys2); sys=feedback(sys3,[1]) 运行结果:

sys =1

s 10005001

s 23++++s s

B:

程序:

numg=[1 1]; deng=[1 2 4]; sys1=tf(numg,deng); numc=[1 1]; denc=[1 2]; sys2=tf(numc,denc); sys3=series(sys1,sys2); sys=feedback(sys3,[1]) 运行结果:

sys =9

s 1051

2s 232+++++s s s

Lab1_9.m

A:

程序:

numg=[1]; deng=[500 0 0]; sys1=tf(numg,deng); numh=[1 1]; denh=[1 2]; sys2=tf(numh,denh); sys=feedback(sys1,sys2);

Sys

运行结果:

sys =

1s 10005002

s 23++++s s

B:

程序:

numg=[1 1]; deng=[1 2 4]; sys1=tf(numg,deng); numh=[1 1]; denh=[1 2]; sys2=tf(numh,denh); sys=feedback(sys1,sys2); sys 运行结果:

sys =9s 1052

3s s 23

2+++++s s

Lab1_10.m

程序:

ng1=[1]; dg1=[1 10]; sysg1=tf(ng1,dg1);

ng2=[1]; dg2=[1 1]; sysg2=tf(ng2,dg2);

ng3=[1 0 1]; dg3=[1 4 4]; sysg3=tf(ng3,dg3); ng4=[1 1]; dg4=[1 6]; sysg4=tf(ng4,dg4);

nh1=[1 1]; dh1=[1 2]; sysh1=tf(nh1,dh1);

nh2=[2]; dh2=[1]; sysh2=tf(nh2,dh2);

nh3=[1]; dh3=[1]; sysh3=tf(nh3,dh3);

sys1=sysh2/sysg4;

sys2=series(sysg3,sysg4);

sys3=feedback(sys2,sysh1,+1);

sys4=series(sysg2,sys3);

sys5=feedback(sys4,sys1);

sys6=series(sysg1,sys5); sys=feedback(sys6,[1]) 运行结果:

sys =712

2196312825171066205122

s 5664234562345++++++++++++s s s s s s s s s s

Lab1_11.m

程序:

num=[1 4 6 6 5 2];

den=[12 205 1066 2517 3128 2196 712]; sys1=tf(num,den); sys=minreal(sys1) 运行结果:

sys =33.597.12313775.728.161667.0s 25.025.025.008333.02345234+++++++++s s s s s s s s

四、实验报告

现代信号处理Matlab仿真——例611

例6.11 利用卡尔曼滤波估计一个未知常数 题目: 设已知一个未知常数x 的噪声观测集合,已知噪声v(n)的均值为零, 方差为 ,v(n)与x 不相关,试用卡尔曼滤波估计该常数 题目分析: 回忆Kalman 递推估计公式 由于已知x 为一常数,即不随时间n 变化,因此可以得到: 状态方程: x(n)=x(n-1) 观测方程: y(n)=x(n)+v(n) 得到A(n)=1,C(n)=1, , 将A(n)=1,代入迭代公式 得到:P(n|n-1)=P(n-1|n-1) 用P(n-1)来表示P(n|n-1)和P(n-1|n-1),这是卡尔曼增益表达式变为 从而 2v σ1??(|1)(1)(1|1)(|1)(1)(1|1)(1)()()(|1)()[()(|1)()()]???(|)(|1)()[()()(|1)](|)[()()](|1)H w H H v x n n A n x n n P n n A n P n n A n Q n K n P n n C n C n P n n C n Q n x n n x n n K n y n C n x n n P n n I K n C n P n n --=----=----+=--+=-+--=--2()v v Q n σ=()0w Q n =(|1)(1)(1|1)(1)()H w P n n A n P n n A n Q n -=----+21 ()(|1)[(|1)]v K n P n n P n n σ-=--+22(1)()[1()](1)(1)v v P n P n K n P n P n σσ-=--=-+

Matlab上机实验答案

Matlab上机实验答案 实验一 MATLAB运算基础 1. 先求下列表达式的值,然后显示MATLAB工作空间的使用情况并保存全部变量。 >> z1=2*sin(85*pi/180)/(1+exp(2)) z1 = >> x=[2 1+2i; 5]; >> z2=1/2*log(x+sqrt(1+x^2)) z2 = - + + -

>> a=::; >> z3=(exp.*a)-exp.*a))./2.*sin(a++log(+a)./2) (>> z33=(exp*a)-exp*a))/2.*sin(a++log(+a)/2)可以验证z3==z33,是否都为1) z3 = Columns 1 through 5 + + + + + Columns 6 through 10 + + + + + Columns 11 through 15 + + + + + Columns 16 through 20 + + + + +

Columns 21 through 25 + + + + + Columns 26 through 30 + + + + + Columns 31 through 35 + + + + + Columns 36 through 40 + + + + + Columns 41 through 45 + + + + + Columns 46 through 50

+ + + + + Columns 51 through 55 + + + + + Columns 56 through 60 + + + + + Column 61 + (4) 2 2 4 2 01 112 2123 t t z t t t t t ?≤< ? =-≤< ? ?-+≤< ? ,其中t=0:: >> t=0::; >> z4=(t>=0&t<1).*(t.^2)+(t>=1&t<2).*(t.^2-1)+(t>=2&t<3).*(t.^ 2-2.*t+1) z4 =

MATLAB仿真实验报告

MATLAB 仿真实验报告 课题名称:MATLAB 仿真——图像处理 学院:机电与信息工程学院 专业:电子信息科学与技术 年级班级:2012级电子二班 一、实验目的 1、掌握MATLAB处理图像的相关操作,熟悉相关的函数以及基本的MATLAB语句。 2、掌握对多维图像处理的相关技能,理解多维图像的相关性质 3、熟悉Help 命令的使用,掌握对相关函数的查找,了解Demos下的MATLAB自带的原函数文件。 4、熟练掌握部分绘图函数的应用,能够处理多维图像。 二、实验条件

MATLAB调试环境以及相关图像处理的基本MATLAB语句,会使用Help命令进行相关函数查找 三、实验内容 1、nddemo.m函数文件的相关介绍 Manipulating Multidimensional Arrays MATLAB supports arrays with more than two dimensions. Multidimensional arrays can be numeric, character, cell, or structure arrays. Multidimensional arrays can be used to represent multivariate data. MATLAB provides a number of functions that directly support multidimensional arrays. Contents : ●Creating multi-dimensional arrays 创建多维数组 ●Finding the dimensions寻找尺寸 ●Accessing elements 访问元素 ●Manipulating multi-dimensional arrays操纵多维数组 ●Selecting 2D matrices from multi-dimensional arrays从多维数组中选择二维矩 阵 (1)、Creating multi-dimensional arrays Multidimensional arrays in MATLAB are created the same way as two-dimensional arrays. For example, first define the 3 by 3 matrix, and then add a third dimension. The CAT function is a useful tool for building multidimensional arrays. B = cat(DIM,A1,A2,...) builds a multidimensional array by concatenating(联系起来)A1, A2 ... along the dimension DIM. Calls to CAT can be nested(嵌套). (2)、Finding the dimensions SIZE and NDIMS return the size and number of dimensions of matrices. (3)、Accessing elements To access a single element of a multidimensional array, use integer subscripts(整数下标). (4)、Manipulating multi-dimensional arrays

Matlab仿真实例-卫星轨迹

卫星轨迹 一.问题提出 设卫星在空中运行的运动方程为: 其中是k 重力系数(k=401408km3/s)。卫星轨道采用极坐标表示,通过仿真,研究发射速度对卫星轨道的影响。实验将作出卫星在地球表面(r=6400KM ,θ=0)分别以v=8KM/s,v=10KM/s,v=12KM/s 发射时,卫星绕地球运行的轨迹。 二.问题分析 1.卫星运动方程一个二阶微分方程组,应用Matlab 的常微分方程求解命令ode45求解时,首先需要将二阶微分方程组转换成一阶微分方程组。若设,则有: 2.建立极坐标如上图所示,初值分别为:卫星径向初始位置,即地球半径:y(1,1)=6400;卫星初始角度位置:y(2,1)=0;卫星初始径向线速度:y(3,1)=0;卫星初始周向角速度:y(4,1)=v/6400。 3.将上述一阶微分方程及其初值带入常微分方程求解命令ode45求解,可得到一定时间间隔的卫星的径向坐标值y(1)向量;周向角度坐标值y(2)向量;径向线速度y(3)向量;周向角速度y(4)向量。 4.通过以上步骤所求得的是极坐标下的解,若需要在直角坐标系下绘制卫星的运动轨迹,还需要进行坐标变换,将径向坐标值y(1)向量;周向角度坐标值y(2)向量通过以下方程转换为直角坐标下的横纵坐标值X,Y 。 5.卫星发射速度速度的不同将导致卫星的运动轨迹不同,实验将绘制卫星分别以v=8KM/s ,v=10KM/s ,v=12KM/s 的初速度发射的运动轨迹。 三.Matlab 程序及注释 1.主程序 v=input('请输入卫星发射速度单位Km/s :\nv=');%卫星发射速度输入。 axis([-264007000-1000042400]);%定制图形输出坐标范围。 %为了直观表达卫星轨迹,以下语句将绘制三维地球。 [x1,y1,z1]=sphere(15);%绘制单位球。 x1=x1*6400;y1=y1*6400;???????-=+-=dt d dt dr r dt d dt d r r k dt r d θ θθ2)(2 22222θ==)2(,)1(y r y ?????????????**-=**+*-===)1(/)4()3(2)4()4()4()1()1()1()3()4()2() 3()1(y y y dt dy y y y y y k dt dy y dt dy y dt dy ???*=*=)] 2(sin[)1(Y )]2(cos[)1(X y y y y

MATLAB全部实验及答案

MATLAB全部实验及答案 实验一、MATLAB基本操作 实验内容及步骤 4、有关向量、矩阵或数组的一些运算 (1)设A=15;B=20;求C=A+B与c=a+b? (2)设A=[1 2 3;4 5 6;7 8 9],B=[9 8 7;6 5 4;3 2 1];求A*B与 A.*B? A*B就是线代里面的矩阵相乘 A.*B是对应位置的元素相乘(3)设a=10,b=20;求i=a/b=0.5与j=a\b=2? (4)设a=[1 -2 3;4 5 -4;5 -6 7] 请设计出程序,分别找出小于0的矩阵元素及其位置(单下标、全 下标的形式),并将其单下标转换成全下标。 clear,clc a=[1 -2 3;4 5 -4;5 -6 7]; [x,y]=find(a<0); c=[]; for i=1:length(x) c(i,1)=a(x(i),y(i)); c(i,2)=x(i); c(i,3)=y(i); c(i,4)=(y(i)-1)*size(a,2)+x(i); end c

(5)在MATLAB命令行窗口运行A=[1,2;3,4]+i*[5,6;7,8];看结果如何?如果改成运行A=[1,2;3,4]+i[5,6;7,8],结果又如何?前面那 个是虚数矩阵,后面那个出错 (6)请写出完成下列计算的指令: a=[1 2 3;3 4 2;5 2 3],求a^2=?,a.^2=? a^2= 22 16 16 25 26 23 26 24 28 a.^2= 1 4 9 9 16 4 25 4 9 (7)有一段指令如下,请思考并说明运行结果及其原因 clear X=[1 2;8 9;3 6]; X( : ) 转化为列向量 (8)使用三元组方法,创建下列稀疏矩阵 2 0 8 0 0 0 0 1 0 4 0 0 6 0 0 0 方法一: clear,clc

Matlab上机实验

Matlab 上机实验 一、 实验目的 1、 掌握绘制MATLAB 二维、三维和特殊图形的常用函数; 2、 熟悉并掌握图像输入、输出及其常用处理的函数。 二、 实验内容 1 绘制函数的网格图和等高线图。42 2cos cos y x ye x z +-= 其中x 的21个值均匀分布在[-5,5]范围,y 的31个值均匀分布在[0,10],要求将产生的网格图和等高线图画在同一个图形窗口上。 2 绘制三维曲面图,使用纯铜色调色图阵进行着色,并进行插值着色 处理。?????===s z t s y t s x sin sin cos cos cos 230,20ππ≤≤≤≤t s 3 已知 ???????>++≤+=0),1ln(210,22x x x x e x y π 在-5<=x<=5区间绘制函数曲线。 4 已知y1=x2,y2=cos(2x),y3=y1*y2,其中x 为取值-2π~2π的等差数列(每次增加0.02π),完成下列操作: a) 在同一坐标系下用不同的颜色和线型绘制三条曲线,给三条曲线添加图例; b) 以子图形式,分别用条形图、阶梯图、杆图绘制三条曲线,并分别给三个图形添加标题“y1=x^2”,“y2=cos(2x)”和“y3=

y1*y2”。 5 在xy 平面内选择区域[][],,-?-8888 ,绘制函数 z =的三 种三维曲面图。 6 在[0,4pi]画sin(x),cos(x)(在同一个图象中); 其中cos(x)图象用红色小圆圈画.并在函数图上标注 “y=sin(x)”, “y=cos(x)” ,x 轴,y 轴,标题为“正弦余弦函数图象”. 7 分别用线框图和曲面图表现函数z=cos(x)sin(y)/y ,其中x 的取值为 [-1.5pi,1.5pi],y=x ,要求:要有标题、坐标轴标签 8 有一组测量数据满足-at e =y ,t 的变化范围为0~10,用不同的线型和标记点画出a=0.1、a=0.2和a=0.5三种情况下的曲线,并加入标题和图列框(用代码形式生成) 9 2 2y x xe z --=,当x 和y 的取值范围均为-2到2时,用建立子窗口 的方法在同一个图形窗口中绘制出三维线图、网线图、表面图和带渲染效果的表面图 10 x= [66 49 71 56 38],绘制饼图,并将第五个切块分离出来。 11 用sphere 函数产生球表面坐标,绘制不通明网线图、透明网线图、表面图和带剪孔的表面图。 12 以自己的个人画像或照片(JPG)为对象,读入该图像并了解图像的信息,同时利用所学函数对其进行灰度、二值、旋转及缩放等处理,并以PNG 形式输出。

MATLAB仿真实验全部

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些 2、 如何判断系统稳定性 3、 系统的动态性能指标有哪些 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

Matlab实验五分支结构程序设计答案

实验五分支结构程序设计 实验内容 (1)从键盘输入一个数,将它反向输出,例如输入693,输出为396 >> clear >> format long g s=input('s=') n=fix(log10(s)); A=0; for i=1:n a=fix(s/10^n); x=fix(mod(s,10^i)/10.^(i-1)); A=A+x*10^(n+1-i); end A+a s=693 s = 693 ans = 396 (2)输入一个百分制成绩,要求输出成绩等级A,B,C,D,E其中90-100位A,80-89为B,70-79为C,60-69为D,60以下为E 1)分别用if语句和switch语句实现 2)输入百分制成绩后要判断成绩的合理性,对不合理的成绩应输出出错信息 If语句 >> a=input('输入成绩') if a>=90&a<=100 disp('A 成绩合理'); elseif a>=80&a<90 disp('B 成绩合理'); elseif a>=70&a<80 disp('C 成绩合理');

elseif a>=60&a<70 disp('D 成绩合理'); elseif a<60 disp('E 成绩合理'); else disp('成绩错误') end 输入成绩98 a = 98 A 成绩合理 >> a=input('输入成绩') if a>=90&a<=100 disp('A 成绩合理'); elseif a>=80&a<90 disp('B 成绩合理'); elseif a>=70&a<80 disp('C 成绩合理'); elseif a>=60&a<70 disp('D 成绩合理'); elseif a<60 disp('E 成绩合理'); else disp('成绩错误') end 输入成绩148 a = 148 成绩错误 switch语句 >> a=input('输入成绩') switch a; case num2cell(0:59) disp('E 成绩合理'); case num2cell(60:69) disp('D 成绩合理'); case num2cell(70:79) disp('C 成绩合理'); case num2cell(80:89) disp('B 成绩合理'); case num2cell(90:100) disp('A 成绩合理'); otherwise disp('成绩错误'); end

matlab上机实验指导书

MATLAB应用基础实验指导书

第一章 MATLAB及其工作环境介绍 (1) 1.1 MATLAB简介 (1) 1.2 MATLAB的工作环境介绍 (1) 1.3 MATLAB的基本管理命令 (4) 第二章 MATLAB的数值计算功能 (5) 2.1 变量与赋值语句 (5) 2.2 MATLAB矩阵 (5) 2.3 MATLAB表达式 (10) 2.4 MATLAB常用数学函数 (11) 2.5 矩阵的基本运算 (12) 2.6 数组运算 (16) 2.7 多项式及其运算 (17) 第三章 MATLAB程序设计入门 (19) 3.1 M文件 (19) 3.2 数据的输入输出 (21) 3.3 全局变量和局部变量 (23) 3.4 程序流程控制 (23) 第四章 MATLAB的符号运算功能 (28) 4.1 建立符号对象 (28) 4.2 符号算术运算 (29) 4.3 符号微积分运算 (32) 4.4 符号函数的可视化 (34) 第五章 MATLAB的可视化功能 (37) 5.1 二维图形 (37) 5.2绘制三维图形 (42) 5.3 特殊坐标图形 (44) 5.4 图形句柄 (45)

第一章 MATLAB及其工作环境介绍 1.1 MATLAB简介 MATLAB是matrix和laboratory前三个字母的缩写,意思是实验室矩阵。MATLAB 语言是一种广泛应用于工程计算及数值分析领域的新型高级语言,自1984年由美国MathWorks公司推向市场以来,经过十多年的发展与完善,MATLAB已发展成为由MATLAB语言、MATLAB工作环境、MATLAB图象处理系统、MATLAB数学函数库和MATLAB 应用程序接口五大部分组成的集数值计算、图形处理、程序开发为一体的功能强大的体系。MATLAB由“主包”和三十多个扩展功能和应用学科性的工具箱组成。 MATLAB具有以下基本功能: ●数值计算功能 ●符号计算功能 ●图形处理及可视化功能 ●可视化建模及动态仿真功能 MATLAB语言是以矩阵计算为基础的程序设计语言,语法规则简单易学。其指令格式与数学表达式非常相近,用MATLAB编写程序犹如在便笺上列写公式和求解,因而被称为“便笺式”的编程语言。另外,MATLAB还具有功能丰富和完备的数学函数库及工具箱,大量繁杂的数学运算和分析可通过调用MATLAB函数直接求解,大大提高效率,其程序编译和执行速度远远超过了传统的C和FORTRAN语言,因而用MATLAB 编写程序,往往可以达到事半功倍的效果。在图形处理方面,MATLAB可以给数据以二维、三维乃至四维的直观表现,并在图形色彩、视角、品性等方面具有较强的渲染和控制能力,使技术人员对大量原始数据的分析变得轻松和得心应手。 MATLAB的上述特点,使它深受工程技术人员及科技专家的欢迎,并成为应用学科计算机辅助分析、设计、仿真、教学等领域不可缺少的基础软件。目前MATLAB已成为国际上公认的最优秀的科技应用软件。 1.2 MATLAB的工作环境介绍 一、MATLAB的工作环境

MATLAB实现通信系统仿真实例

补充内容:模拟调制系统的MATLAB 仿真 1.抽样定理 为了用实验的手段对连续信号分析,需要先对信号进行抽样(时间上的离散化),把连续数据转变为离散数据分析。抽样(时间离散化)是模拟信号数字化的第一步。 Nyquist 抽样定律:要无失真地恢复出抽样前的信号,要求抽样频率要大于等于两倍基带信号带宽。 抽样定理建立了模拟信号和离散信号之间的关系,在Matlab 中对模拟信号的实验仿真都是通过先抽样,转变成离散信号,然后用该离散信号近似替代原来的模拟信号进行分析的。 【例1】用图形表示DSB 调制波形)4cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%%一般选取的抽样频率要远大于基带信号频率,即抽样时间间隔要尽可能短。 ts=1/fs; %%根据抽样时间间隔进行抽样,并计算出信号和包络 t=(0:ts:pi/2)';%抽样时间间隔要足够小,要满足抽样定理。 envelop=cos(2*pi*t);%%DSB 信号包络 y=cos(2*pi*t).*cos(4*pi*t);%已调信号 %画出已调信号包络线 plot(t,envelop,'r:','LineWidth',3); hold on plot(t,-envelop,'r:','LineWidth',3); %画出已调信号波形 plot(t,y,'b','LineWidth',3); axis([0,pi/2,-1,1])% hold off% xlabel('t'); %写出图例 【例2】用图形表示DSB 调制波形)6cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%抽样时间间隔要足够小,要满足抽样定理。 ts=1/fs; %%根据抽样时间间隔进行抽样

Matlab实验第一次实验答案

实验一Matlab使用方法和程序设计 一、实验目的 1、掌握Matlab软件使用的基本方法; 2、熟悉Matlab的数据表示、基本运算和程序控制语句 3、熟悉Matlab绘图命令及基本绘图控制 4、熟悉Matlab程序设计的基本方法 二、实验内容: 1、帮助命令 使用help命令,查找sqrt(开方)函数的使用方法; 解:sqrt Square root Syntax B = sqrt(X) Description B = sqrt(X) returns the square root of each element of the array X. For the elements of X that are negative or complex, sqrt(X) produces complex results. Remarks See sqrtm for the matrix square root. Examples sqrt((-2:2)') ans = 0 + 1.4142i 0 + 1.0000i

1.0000 1.4142 2、矩阵运算 (1)矩阵的乘法 已知A=[1 2;3 4]; B=[5 5;7 8]; 求A^2*B 解:A=[1 2;3 4 ]; B=[5 5;7 8 ]; A^2*B (2)矩阵除法 已知A=[1 2 3;4 5 6;7 8 9]; B=[1 0 0;0 2 0;0 0 3]; A\B,A/B 解:A=[1 2 3;4 5 6;7 8 9 ]; B=[1 0 0;0 2 0;0 0 3 ]; A\B,A/B (3)矩阵的转置及共轭转置

MATLAB上机实验(答案)

MATLAB工具软件实验(1) (1)生成一个4×4的随机矩阵,求该矩阵的特征值和特征向量。程序: A=rand(4) [L,D]=eig(A) 结果: A = 0.9501 0.8913 0.8214 0.9218 0.2311 0.7621 0.4447 0.7382 0.6068 0.4565 0.6154 0.1763 0.4860 0.0185 0.7919 0.4057 L = -0.7412 -0.2729 - 0.1338i -0.2729 + 0.1338i -0.5413 -0.3955 -0.2609 - 0.4421i -0.2609 + 0.4421i 0.5416 -0.4062 -0.0833 + 0.4672i -0.0833 - 0.4672i 0.4276 -0.3595 0.6472 0.6472 -0.4804 D = 2.3230 0 0 0 0 0.0914 + 0.4586i 0 0 0 0 0.0914 - 0.4586i 0 0 0 0 0.2275 (2)给出一系列的a值,采用函数 22 22 1 25 x y a a += - 画一组椭圆。 程序: a=0.5:0.5:4.5; % a的绝对值不能大于5 t=[0:pi/50:2*pi]'; % 用参数t表示椭圆方程 X=cos(t)*a; Y=sin(t)*sqrt(25-a.^2); plot(X,Y) 结果: (3)X=[9,2,-3,-6,7,-2,1,7,4,-6,8,4,0,-2], (a)写出计算其负元素个数的程序。程序: X=[9,2,-3,-6,7,-2,1,7,4,-6,8,4,0,-2]; L=X<0; A=sum(L) 结果: A =

河南城建学院MATLAB上机实验答案

一熟悉Matlab工作环境 1、熟悉Matlab的5个基本窗口 思考题: (1)变量如何声明,变量名须遵守什么规则、是否区分大小写。 答:变量一般不需事先对变量的数据类型进行声明,系统会依据变量被赋值的类型自动进行类型识别,也就是说变量可以直接赋值而不用提前声明。变量名要遵守以下几条规则:?变量名必须以字母开头,只能由字母、数字或下划线组成。 ?变量名区分大小写。 ?变量名不能超过63个字符。 ?关键字不能作为变量名。 ?最好不要用特殊常量作为变量名。 (2)试说明分号、逗号、冒号的用法。 分号:分隔不想显示计算结果的各语句;矩阵行与行的分隔符。 逗号:分隔欲显示计算结果的各语句;变量分隔符;矩阵一行中各元素间的分隔符。 冒号:用于生成一维数值数组;表示一维数组的全部元素或多维数组某一维的全部元素。 (3)linspace()称为“线性等分”函数,说明它的用法。 LINSPACE Linearly spaced vector. 线性等分函数 LINSPACE(X1, X2) generates a row vector of 100 linearly equally spaced points between X1 and X2. 以X1为首元素,X2为末元素平均生成100个元素的行向量。 LINSPACE(X1, X2, N) generates N points between X1 and X2. For N < 2, LINSPACE returns X2. 以X1为首元素,X2为末元素平均生成n个元素的行向量。如果n<2,返回X2。 Class support for inputs X1,X2: float: double, single 数据类型:单精度、双精度浮点型。 (4)说明函数ones()、zeros()、eye()的用法。 ones()生成全1矩阵。 zeros()生成全0矩阵。 eye()生成单位矩阵。 2、Matlab的数值显示格式

增量调制MATLAB仿真实验

增量调制MATLAB仿真实验

增量调制(DM)实验 一、实验目的 (1)进一步掌握MATLAB的应用。 (2)进一步掌握计算机仿真方法。 (3)学会用MATLAB软件进行增量调制(DM)仿真实验。 二、实验原理 增量调制是由PCM发展而来的模拟信号数字化的一种编码方式,它是PCM的一种特例。增量调制编码基本原理是指用一位编码,这一位码不是表示信号抽样值的大小,而是表示抽样幅度的增量特性,即采用一位二进制数码“1”或“0”来表示信号在抽样时刻的值相对于前一个抽样时刻的值是增大还是减小,增大则输出“1”码,减小则输出“0”码。输出的“1”,“0”只是表示信号相对于前一个时刻的增减,不表示信号的绝对值。 增量调制最主要的特点就是它所产生的二进制代码表示模拟信号前后两个抽样值的差别(增加、还是减少)而不是代表抽样值本身的大小,因此把它称为增量调制。在增量调制系统的发端调制后的二进制代码1和0只表示信号这一个抽样时刻相对于前一个抽样时刻是增加(用1码)还是减少(用0码)。收端译码器每收到一个1码,译码器的输出相对于前一个时刻的值上升一个量化阶,而收到一个0码,译码器的输出相对于前一个时刻的值下降一个量化阶。 增量调制(DM)是DPCM的一种简化形式。在增量调制方式下,采用1比特量化器,即用1位二进制码传输样值的增量信息,预测器是

一个单位延迟器,延迟一个采样时间间隔。预测滤波器的分子系数向量是[0,1],分母系数为1。当前样值与预测器输出的前一样值相比较,如果其差值大于零,则发1码,如果小于零则发0码。 三、实验内容 增量调制系统框图如图一所示,其中量化器是一个零值比较器,根据输入的电平极性,输出为 δ,预测器是一个单位延迟器,其输出为前一个采样时刻的解码样值,编码器也是一个零值比较器,若其输入为负值,则编码输出为0,否则输出为1。解码器将输入1,0符号转换为 δ,然后与预测值相加后得出解码样值输出,同时也作为预测器的输入 输入样值 e n e n =δsgn(e n ) 传输 n ) n n-1+δsgn(e n ) x n + - + + 预测输出 + n-1 + 预测输出 解码样值输出 x n-1 预测输入x n =x n-1+δsgn(e n ) 图一 增量调制原理框图 设输入信号为: x(t)=sin2π50t+0.5sin 2π150t 增量调制的采样间隔为1ms,量化阶距δ=0.4,单位延迟器初始值为0。建立仿真模型并求出前20个采样点使客商的编码输出序列以 解码 编码 二电平量化 单位延迟 单位 延迟

MATLAB上机实验练习题答案

数学建模 MATLAB上机实验练习题 1、给出一个系数矩阵A[234;541;132],U=[123],求出线性方程组的一个精确解。 2、给出两组数据x=[00.30.81.11.62.3]’y=[0.820.720.630.600.550.50]’,我们可以简单的 认为这组数据在一条衰减的指数函数曲线上,y=C1+C2e-t通过曲线拟合求出这条衰减曲线的表达式,并且在图形窗口画出这条曲线,已知的点用*表示。 3、解线性方程 4、通过测量得到一组数据: 5、已知一组测量值 6、从某一个过程中通过测量得到: 分别采用多项式和指数函数进行曲线拟合。 7、将一个窗口分成四个子窗口,分别用四种方法做出多峰函数的表面图(原始数据法,临近 插值法,双线性插值法,二重三次方插值法) 8、在同一窗口使用函数作图的方法绘出正弦、余弦、双曲正弦、双曲余弦。分别使用不同的 颜色,线形和标识符。 9、下面的矩阵X表示三种产品五年内的销售额,用函数pie显示每种产品在五年内的销售额

占总销售额的比例,并分离第三种产品的切片。 X=19.322.151.6 34.270.382.4 61.482.990.8 50.554.959.1 29.436.347.0 10、对应时间矢量t,测得一组矢量y t00.30.8 1.1 1.6 2.3 y0.50.82 1.14 1.25 1.35 1.40 采用一个带有线性参数的指数函数进行拟合,y=a0+a1e-t+a2te-t,利用回归方法求出拟合函数,并画出拟合曲线,已知点用圆点表示。 11、请创建如图所示的结构数组(9分) 姓名编号指标 江明顺071023身高:176,体重:82 于越忠060134身高:168,体重:74 邓拓050839身高:182,体重:77 12、创建如图所示的元胞数组。(9分) 13、某钢材厂从1990年到2010年的产量如下表所示,请利用三次样条插值的方法计算1999年该钢材厂的产量,并画出曲线,已知数据用‘*’表示。要求写出达到题目要求的MATLAB 操作过程,不要求计算结果。 年份19901992199419961998200020022004200620082010 产量(万吨)75.99591.972105.711123.203131.669150.697179.323203.212226.505249.633256.344 14、在一次化学动力学实验中,在某温度下乙醇溶液中,两种化合物反应的产物浓度与反应时间关系的原始数据如下,请对这组数据进行三次多项式拟合,并画出拟合曲线,已知数据如下。 time=[2.55.07.510.013.017.020.030.040.050.060.070.0] res=[0.290.560.771.051.361.522.002.272.813.053.253.56]

高频电子线路Matlab仿真实验

高频电子线路Matlab 仿真实验要求 1. 仿真题目 (1) 线性频谱搬移电路仿真 根据线性频谱搬移原理,仿真普通调幅波。 基本要求:载波频率为8kHz ,调制信号频率为400Hz ,调幅度为0.3;画出调制信号、载波信号、已调信号波形,以及对应的频谱图。 扩展要求1:根据你的学号更改相应参数和代码完成仿真上述仿真;载波频率改为学号的后5位,调制信号改为学号后3位,调幅度设为最后1位/10。(学号中为0的全部替换为1,例如学号2010101014,则载波为11114Hz ,调制信号频率为114,调幅度为0.4)。 扩展要求2:根据扩展要求1的条件,仿真设计相应滤波器,并获取DSB-SC 和SSB 的信号和频谱。 (2) 调频信号仿真 根据调频原理,仿真调频波。 基本要求:载波频率为30KHz ,调制信号为1KHz ,调频灵敏度32310f k π=??,仿真调制信号,瞬时角频率,瞬时相位偏移的波形。 扩展要求:调制信号改为1KHz 的方波,其它条件不变,完成上述仿真。 2. 说明 (1) 仿真的基本要求每位同学都要完成,并且记入实验基本成绩。 (2) 扩展要求可以选择完成。

1.0 >> ma = 0.3; >> omega_c = 2 * pi * 8000; >> omega = 2 * pi * 400; >> t = 0 : 5 / 400 / 1000 : 5 / 400; >> u_cm = 1; >> fc = cos(omega_c * t); >> fa = cos(omega * t); >> u_am = u_cm * (1 + fa).* fc; >> U_c =fft(fc,1024); >> U_o =fft(fa,1024); >> U_am =fft(u_am, 1024); >> figure(1); >> subplot(321);plot(t, fa, 'k');title('调制信号');grid;axis([0 2/400 -1.5 1.5]); >> subplot(323);plot(t, fc, 'k');title('高频载波');grid;axis([0 2/400 -1.5 1.5]); >> subplot(325);plot(t, u_am, 'k');title('已调信号');grid;axis([0 2/400 -3 3]); >> fs = 5000; >> w1 = (0:511)/512*(fs/2)/1000; >> subplot(322);plot(w1, abs([U_am(1:512)']),'k');title('调制信号频谱');grid;axis([0 0.7 0 500]); >> subplot(324);plot(w1, abs([U_c(1:512)']),'k');title('高频载波频谱');grid;axis([0 0.7 0 500]); >> subplot(326);plot(w1, abs([U_am(1:512)']),'k');title('已调信号频谱');grid;axis([0 0.7 0 500]); 1.1 >> ma = 0.8; >> omega_c = 2 * pi * 11138; >> omega = 2 * pi * 138; >> t = 0 : 5 / 400 / 1000 : 5 / 400; >> u_cm = 1; >> fc = cos(omega_c * t);

Matlab上机实验答案 (1)

Matlab上机实验答案 实验一MATLAB运算基础 1. 先求下列表达式的值,然后显示MATLAB工作空间的使用情况并保存全部变量。 >> z1=2*sin(85*pi/200)/(1+exp(2)) z1 = 0.2375 >> x=[2 1+2i;-0.45 5]; >> z2=1/2*log(x+sqrt(1+x^2)) z2 = 0.7120 - 0.0253i 0.8968 + 0.3658i 0.2209 + 0.9343i 1.2041 - 0.0044i 2.9,,2.9, 3.0

>> a=-3.0:0.1:3.0; >> z3=(exp(0.3.*a)-exp(-0.3.*a))./2.*sin(a+0.3)+log((0.3+a)./2) (>> z33=(exp(0.3*a)-exp(-0.3*a))/2.*sin(a+0.3)+log((0.3+a)/2)可以验证z3==z33,是否都为1) z3 = Columns 1 through 5 0.7388 + 3.2020i 0.7696 + 3.2020i 0.7871 + 3.2020i 0.7920 + 3.2020i 0.7822 + 3.2020i Columns 6 through 10 0.7602 + 3.2020i 0.7254 + 3.2020i 0.6784 + 3.2020i 0.6206 + 3.2020i 0.5496 + 3.2020i Columns 11 through 20 0.4688 + 3.2020i 0.3780 + 3.2020i 0.2775 + 3.2020i 0.2080 + 3.2020i 0.0497 + 3.2020i

Matlab 编程方法及仿真实验

《现代机械工程基础实验》之机械工程控制基础综合实验报告 姓名 学号 班级 山东建筑大学机电工程学院 2012.06.04~06

第一部分 Matlab 编程方法及仿真实验 实验1. 三维曲面的绘制(略) 实验2. 系统零极点绘制例:求部分分式展开式和)(t g 一个线性定常系统的传递函数是 1 5422 3)(2 3 ++++= s s s s s G (1) 使用MATLAB 建立传递函数,并确定它的极点和零点,写出)(s G 的部分分式展开式并绘制 系统的脉冲响应。 实验结果:零点-0.6667 极点-0.8796 + 1.1414i -0.8796 - 1.1414i -0.2408 实验3. 系统的阶跃响应 例. )(s G 的阶跃响应 对例2中由(1)式给出的传递函数)(s G ,增加一个0=s 处的极点,使用impulse 命令绘制其拉普拉斯反变换式曲线,得到阶跃响应图。将该响应与对)(s G 使用step 命令所得到的响应比较,确定系统的DC 增益。利用初值定理和终值定理来校验结果。 实验结果:DC 增益= 2

实验4. 双输入反馈系统单位阶跃响应 考虑一个如图1所示的反馈系统,它既有参考输入也有干扰输入,其中对象和传感器的传递函数是 )12)(15.0(4)(++=s s s G p ,105.01 )(+=s s H 控制器是一个增益为80,有一个在3-=s 处的零点,极点/零点比15=α超前控制器。推导 两个独立的MATLAB 模型,其中一个模型的输入为)(s R ,另一个输入为)(s D 。使用这些模型确定闭环零点和极点,并在同一坐标系内绘制它们的阶跃响应。 D (s ) 图1 具有参考和干扰输入的反馈系统方框图 实验结果: 参考输入的CL 极点:-49.3658 -7.3336 + 7.9786i -7.3336 - 7.9786i -3.4670 参考输入的DC 增益:320 干扰输入的CL 零点:-45 干扰输入的CL 极点:-49.3658 -7.3336 + 7.9786i -7.3336 - 7.9786i -3.4670 干扰输入的DC 增益:4 -20

matlab实验内容答案

实验报告说明: matlab 课程实验需撰写8个实验报告,每个实验报告内容写每次实验内容中标号呈黑体大号字显示的题目。 第一次实验内容: 实验一 MATLAB 运算基础 一、实验目的 1.熟悉启动和退出MA TLAB 的方法。 2.熟悉MA TLAB 命令窗口的组成。 3.掌握建立矩阵的方法。 4.掌握MA TLAB 各种表达式的书写规则以及常用函数的使用。 二、实验内容 1.先求下列表达式的值,然后显示MA TLAB 工作空间的使用情况并保存全部变量。 (1)2 2sin 8511z e ?= + (2 )12ln(2 z x =+ ,其中2120.45 5i +? ? =? ?-?? (3)0.30.33sin(0.3), 3.0, 2.9, 2.8,,2.8,2.9,3.02 a a e e z a a --= +=--- 提示:利用冒号表达式生成a 向量,求各点的函数值时用点乘运算。 (4)2 2 2 01 41 1221 23 t t z t t t t t ?≤

12344347873657A -????=??????,131203327B -???? =????-?? 求下列表达式的值: (1)A+6=B 和A-B+I(其中I 为单位矩阵)。 (2)A*B 和A.*B 。 (3)A^3和A^.3 。 (4)A/B 和B\A 。 (5)[A ,B]和[A([1,3],;);B^2] 。 3.设有矩阵A 和B 12345678910111213141516171819202122232425A ????????=????????, 30 161769 23497041311B ?? ?? -?? ??=-?? ????? ? (1) 求它们的乘积C 。 (2) 将矩阵C 的右下角3×2子矩阵赋给D (3) 查看MA TLAB 工作空间使用情况。 4.完成下列操作: (1)求[100,999]之间能被21整除的数的个数。 提示:先利用冒号表达式,再利用find 和length 函数。 (2)建立一个字符串向量,删除其中的大写字母。 提示:利用find 函数和空矩阵。 第二次实验内容: 实验三 选择结构程序设计 一、实验目的 1. 掌握建立和执行M 文件的方法。 2. 掌握利用if 语句实现选择结构的方法。 3. 掌握利用switch 语句实现多分支选择结构的方法。 4. 掌握try 语句的使用。 二 、实验内容

相关文档
最新文档