储氢材料的研究进展

储氢材料的研究进展
储氢材料的研究进展

Vol 137No 112

?8?化 工 新 型 材 料

N EW CH EMICAL MA TERIAL S 第37卷第12期2009年12月

基金项目:宁夏大学科学研究基金项目(ZR200818),宁夏自然科学基金资助项目(NZ0918)作者简介:邓安强(1982-),男,助教,硕士研究生,从事工程材料教学和科研工作。联系人:樊静波(1957-),男,教授。

储氢材料的研究进展

邓安强1 樊静波13 赵瑞红2 夏广军1 钱克农1

(11宁夏大学机械工程学院,银川750021;21吉虎系统科技有限公司银川分公司,银川750000)

摘 要 氢能源以其可再生性和良好的环保效应成为未来最具发展潜力的能源载体,氢能被公认为人类未来的理想能源,而氢的储存是发展氢能技术的难点之一。本文综述了目前主要的储氢材料,如合金储氢、配位氢化物储氢、碳质材料储氢、有机液体氢化物储氢,并对未来的储氢材料发展进行了展望。

关键词 储氢材料,综述,研究进展

Progress in the research of hydrogen storage materials

Deng Anqiang 1 Fan Jingbo 1 Zhao Ruihong 2 Xia Guangjun 1 Qian Kenong 1(1.Mechanical Engineering College of Ningxia U niversity ,Y inchuan 750021;2.Gecko System Technology Co.,Lt d Y inchuan Branch Company ,Y inchuan 750000)Abstract With renewable and good environmental protection effects ,hydrogen energy is the most development po 2

tential energy carrier and is recognized as the ideal energy for human in the f uture.However ,hydrogen storage is one of the difficulties of developing hydrogen energy technology.Recent progress in this field such as metal hydrides ,complex hy 2drides ,carbon adsorbents hydrides ,organic liquid hydrides ,and so on were reviewed ,and it pointed out the development of hydrogen storage material in the f uture.

K ey w ords hydrogen storage material ,review ,progess

氢能作为理想的清洁能源之一,已经受到世界各国的普遍关注。氢能体系主要包括氢的制取、储存、应用三个环节,而氢的储存是关键,也是目前氢能应用的技术瓶颈。国际能源协会(International Energy Agency ,IEA )对储氢材料的期望目标是在低于100℃的条件下,放氢量(质量分数)达到

5%;美国能源部(DO E )提出要实现氢能源实用化的目标是,

至2010年达到室温及安全压力下重量储氢率615%(质量分数),体积储氢率45g/L ;2015年重量储氢率910%(质量分数),体积储氢率81g/L 。我国也高度重视储氢技术的发展。在“863”高新技术发展规划和“973”计划中,都将储氢材料作为重点研究项目。

目前,氢的储存技术主要有两种,第一种是传统的储氢方法,包括高压气态储氢和低温液态储氢。高压气态储氢,即将

H 2压缩后存储在高压容器中,这种储氢方式的缺点是钢瓶储

存H 2的容积比较小,储氢量小,而且还有爆炸的危险;低温液态储氢,即将H 2液化后存储在绝热容器中,这种方式的缺点是液体储存箱非常庞大,隔热要求比较高,并且容易渗漏。第二种是新型储氢材料储氢,包括储氢合金储氢、配位氢化物储氢、碳质材料储氢、有机液体氢化物储氢、多孔材料储氢等。本文对目前主要新型储氢材料的研究进展进行了综述,并对未来的储氢材料进行了展望。

1 储氢合金

储氢合金在一定温度和压力下,能可逆地吸收、储存和释放H 2。由于其储氢量大、污染少、制备工艺相对成熟,所以得到了广泛的应用。目前,储氢合金研究比较深入的主要有以下5种。

111 镁系

镁系储氢合金作为最有潜力的金属氢化物储氢材料,近年来成为储氢合金领域研究的热点。据不完全统计,国内外研究相关镁系储氢合金多达1000多种,几乎包括了元素周期表中所有稳定金属元素和一些放射性元素与镁组成的储氢材料。目前,研究的镁系合金从成分上看,主要有镁基储氢合金、镁基复合储氢材料。

镁基储氢材料典型的代表是Mg 2Ni ,该系列合金电化学储氢目前研究的比较多,主要问题是合金电极的电化学循环稳定性差。国内外学者主要从合金电极的制备工艺、元素合金化和替代、热处理、表面处理、与其它材料复合等方法来解决电化学循环稳定性,已经取得了一定的进展。熊伟[1]等用低温球磨的制备方法制备了Mg 28mol %LaNi 015储氢材料,该制备方法的材料活化性能好,不需活化,平台性能好,动力学性能也得到一定改善。陈玉安[2]研究了Zr 替代Ni 后Mg 2Ni 合金的电化学性能变化,研究发现,Mg 2-x Zr x Ni 合金比

第12期邓安强等:储氢材料的研究进展

Mg2Ni合金更趋于非晶化,晶粒度变小,比表面积增大,活性点增加,从而有利于氢的吸收。

镁基复合储氢材料是近年来镁系储氢合金一个新的发展方向,复合储氢材料可发挥各自材料的优点并相互作用,优化合金的电极性能。和镁系储氢合金复合的材料主要有碳质储氢材料(石墨、碳纳米管、碳纳米纤维等)、金属元素(如Ni、Pd 等)、化合物(CoB、FeB等)。纳米晶和非晶Mg2Ni基合金,电极循环衰退较快,与石墨复合后[324],合金表面的石墨层可有效减少电极衰退率,并能有效提高Mg2Ni型材料的放电容量。通过球磨制取MgNi2CoB和MgNi2FeB复合材料[526],两种混合物均含有非晶结构,MgNi2CoB粒子分布比较均匀,而FeB 分布在MgNi表面,经50次电化学充放电循环后,MgNi2CoB 和MgNi2FeB的放电容量分别比MgNi高29165%和60199%,CoB和FeB改善了MgNi合金的腐蚀行为,同时对合金电极的电化学催化活性也有一定的改善。

112 稀土系

1969年荷兰菲利浦公司发现典型的稀土储氢合金La2 Ni5,该合金具有吸氢快、易活化、平衡压力适中等优点,从而引发了人们对稀土系储氢材料的研究热潮。通过元素合金化、化学处理、非化学计量比、不同的制备及热处理工艺等方法,LaNi5型稀土储氢合金已经作为商用的Ni2M H电池的负极材料,2008年北京奥运会上混合动力汽车用的就是该系列合金粉,目前该系列储氢合金正向大容量、高寿命、耐低温、大电流等方向发展。

目前,稀土2镁2镍基储氢合金已成为国内外稀土系储氢材料研究的热点课题,它是在稀土系储氢合金的基础上加入Mg 元素的合金体系。该体系合金的储氢量、电化学放电容量、电化学动力学性能比商用的AB5型合金都要高,但是电化学循环稳定性还不够理想。国内外学者对该体系电化学容量衰减机理和如何提高电化学稳定性两方面作了大量的研究工作。对于提高电化学稳定性,主要方法有改善合金制备工艺、退火热处理、磁化处理、制成单型相结构、制成复合相结构合金、重要元素(如Mg)的成分确定、表面处理、元素合金化等。笔者[7]在国内较早的制备出了含有Pr5Co19、Ce5Co19、LaNi5复合相结构的La4-x Pr x MgNi19(x=0~210)合金,该系列合金具有较好的电化学循环稳定性,但是距离商用Ni2M H电池还有较大的差距。对于电化学容量衰减机理,一般认为是合金电极在循环过程中粉化和腐蚀造成的。Filinchuk Y E[8]等研究了该系列Ce2Ni72type合金的氢化物结构,他认为,H原子主要占据在CeNi2结构单元中,而CeNi5结构单元无H原子,这就说明造成合金膨胀粉化主要发生在CeNi2结构单元。因此,为了提高合金电极的电化学循环稳定,可增加该体系合金中CaCu5结构单元数。

113 钛系

TiFe合金是钛系储氢合金的代表,理论储氢密度为1186%(wt),室温下平衡氢压为013MPa,具有CsCl型结构。该合金放氢温度低、价格适中,但是不易活化,易受杂质气体的影响,滞后现象严重。目前该体系合金研究的重点主要是通过元素合金化、表面处理等手段来提高其储氢性能。

114 锆系

锆系以ZrMn2为代表。该合金具有吸放氢量大,在碱性电解中可形成致密氧化膜,从而有效阻止电极的进一步氧化;但存在初期活化困难,放电平台不明显等缺点。目前,该系列合金研究的重点主要也是元素合金化,如用Zr来替代Ti,用Fe、Co、Ni等代替Mn。

115 V基固溶体储氢合金

钒与氢反应可生成V H及V H2两种类型氢化物,V H2的理论储氢密度为318%,V H由于平衡压太低(10-9MPa),室温时V H放氢不能实现,而V H2要向V H转化,因此实际室温储氢密度只有119%,但钒系固溶体的储氢密度仍高于现有稀土系和钛系储氢合金。目前,日本先进产业研究院(NIAIST)的Akiba E和Iba H等是国际上最活跃的V基固溶体储氢性能的研究小组。钒系固溶体合金具有储氢密度较大、平衡压适中等优点,但其氢化物的分解压受合金化元素的影响很大,且合金熔点高、价格昂贵、制备相对比较困难、对环境不太友好,所以不适合大规模应用。

2 配位氢化物储氢材料

配位氢化物储氢材料是现有储氢材料中体积和质量储氢密度最高的储氢材料。它们一般是由碱金属(如:Li,Na, K)或碱土金属(如:Mg,Ca)与第ⅢA元素(如:B,Al)或非金属元素形成,如:目前该体系研究得最为充分的NaAl H4,Al与4个H形成的是共价键,与Na形成的是离子键。表1[9]列出了目前研究较多的配位氢化物的理论储氢量。

表1 配位氢化物及其理论储氢量

配位

氢化物

H2%

(理论)

配位

氢化物

H2%

(理论) Li H13Mg(B H4)214.9

KAl H4 5.8Ca(Al H4)27.9

LiAl H410.6NaAl H47.4

LiB H418.5NaB H410.6

Al(B H4)316.9Ti(B H4)313.1

LiAl H2(B H4)215.3Zr(B H4)38.9

Mg(Al H4)29.3Li2N H10.4

该类储氢材料的缺点主要有:(1)配位氢化物主要采用有机液相反应和反应机械合金化来合成,合成的产物一般纯度不高,最高只能达到90%~95%;(2)放氢动力学和可逆吸放氢性能差;(3)配位氢化物放氢一般是两步或者多步进行,每步放氢条件不一样,因此,实际储氢量和理论值有较大差别。解决这些缺点的办法一般是加入合适的催化剂。如Bog2 danovic研究表明[10],对于配位氢化物NaAl H4,添加纳米级的Ti后使吸氢时间大大缩短,同时材料的储氢量在25次吸放氢循环后仍保持在4.5%(初始值为5.2%)。

3 碳质材料储氢

碳质吸附储氢是近年来出现的利用吸附理论的物理储氢方法。主要有超级活性炭、碳纤维和碳纳米管(CN T)等3种。

?

9

?

311 活性炭

活性炭储氢是典型的超临界气体吸附,是利用超高比表面积的活性炭作吸附剂的储氢技术。最早关于H2在高比表面活性炭上吸附的报道是在1967年(Kidnay A和Hiza M)[11]。他们研究了在低温环境下吸附剂(由椰子壳制作的焦炭)的吸附特性,并获得了76K、90atm的吸附等温线。此外,该文还报道了在76K、25atm时出现的最大过剩吸附量值可达到2012g/kg,相当于210%的重量密度。Carpetis C和Pesch2 ka W[12]是首先提出H2在低温条件下在活性炭中吸附储存的两位学者。他们在文献中第一次提出可以考虑将低温吸附剂运用到大型H2储存中,并提出H2在活性炭中吸附储存的体积密度能够达到液氢的体积密度。

超级活性炭储氢具有经济、储氢量高、解吸快、循环使用寿命长和易实现规模化生产等优点,但相关过程中所需温度低,今后研究的重点是提高其储氢温度。

3.2 碳纤维

碳纳米纤维表面是分子级细孔,而内部是直径大约10nm 的中空管,比表面积大,可以合成石墨层面垂直于纤维轴向或者与轴向成一定角度的鱼骨状特殊结构的纳米碳纤维,H2可以在这些纳米碳纤维中凝聚,因此具有超级贮氢能力[13]。

石墨纳米纤维由含碳化合物经所选金属颗粒催化分解产生。Chambers A[14]等用鲱鱼骨状的纳米碳纤维在12MPa、25℃下竟然得到的最大储氢质量分数为67%,但令人遗憾的是,至今无人能重复此结果。因此,该体系储氢能力极不稳定。

螺旋形碳纤维是20世纪90年代初日本的Motojimas[15]等以镍作催化剂,采用催化热解乙炔方法制备而得,并能很好地重复。螺旋碳纤维的质量储氢容量可达119%[16],距离车载氢能力源储氢量还有一定差距。

313 碳纳米管

尽管人们对碳纳米管储氢的研究已取得了一些进展,但至今仍不能完全了解纳米孔中发生的特殊物理化学变化过程,也无法准确测得纳米管的密度,其吸附实际模型和理想模型还有很大差距,而且碳纳米管气体储氢和电化学储氢机理条件和过程都不大一样[17],今后应在储氢机理、复合掺杂改性和显微结构控制等方面进行深入研究[18]。

4 有机液体氢化物储氢

有机液体氢化物储氢技术是20世纪80年代国外开发的一种储氢技术,其原理是[19]借助不饱和液体有机物与氢的一对可逆反应,即加氢反应和脱氢反应实现的。加氢反应实现氢的储存(化学键合),脱氢反应实现氢的释放,不饱和有机液体化合物做氢载体,可循环使用。从目前研究来看,烯烃、炔烃和芳烃等不饱和有机物均可作为储氢材料,但从储氢过程的储氢量、储氢剂和物理性质以及能耗等方面考虑,以芳烃特别是单环芳烃为佳。研究表明[20],综合来看,只有苯、甲苯的加氢脱氢过程可逆且储氢量大,是比较理想的有机储氢材料。

5 结论与展望

在目前研究的各种储氢材料中,都存在一些问题。储氢合金主要应用在镍氢电池上,但是,总体来看储氢合金储氢量较低;配位氢化物的纯度很难保证,多步吸放氢使实际储氢量和理论储氢量有较大差异;碳质储氢材料吸放氢稳定性不好,不同温度的吸放氢动力学性能不佳以及储氢机理和模型还有待进一步研究。有机液体储氢材料脱氢效率比较低。今后,储氢材料的发展应该重点关注以下几个方面:

(1)材料制备和合成工艺。采用各种最适合自己体系的制备方法制备出综合性能优异的储氢材料。如稀土2镁2镍储氢中,制备单向性比较好、实际合金成分和设计成分一致的合金对该系列合金储氢性能至关重要;制备出具有纳米级的金属有机骨架类聚合物可有效的提高该体系材料常温下的吸氢量。

(2)合理催化剂的使用。如在配位氢化物中,合理催化剂的选择是实现该体系储氢材料的可逆吸放氢的关键技术;在镁基储氢合金中,添加合理的催化剂可有效地改善该体系合金的吸放氢动力学性能;适当的催化剂也可以提高有机液体氢化物脱氢的效率。

(3)复合储氢材料。可以利用各种储氢材料的特点制备出复合储氢材料,如碳纳米管、石墨与镁基储氢合金的复合,可以充分利用碳质储氢材料的物理吸附和储氢合金的化学吸附不同的优点,来改善储氢性能。

参考文献

[1] 熊伟,李平,谢东辉,等.[J].稀有金属材料与工程,2009,2:

3652367.

[2] 陈玉安,苗鹤,丁培道.[J].材料导报,2004,18(12):29233.

[3] J urczyk M.[J].Mater Sci,2004,39:527125274.

[4] Han S,Lee H,G oo N,et a1.[J].Alloys Comp,2002,330:8412

845.

[5] Feng Y,Jiao L F,Yuan H T,et a1.[J].Alloys Comp,2007,

440;3042308.

[6] Zhao M,Feng Y,Jiao L F,et a1.[J].Hydrogen Energy,

2007,32(16):391523920.

[7] 邓安强,罗永春,阎汝煦,等.[J].稀有金属材料与工程,2008,

37(6):103721041.

[8] Filinchuk Y E,Yvona K.[J].Alloys Comp,2007,4462447:325.

[9] 郑雪萍,李平,安富强.[J].功能材料,2007,38:159421596.

[10] Bogdanovic B,Felderhoff M,Kaskel S,et al.[J].Advanced

Mat.,2003,15(12):101221015.

[11] K idnay A J,Hiza M J.[J].Advance in Cryogenic Engineer2

ing,1967,12:7302740.

[12] Carpetis C,Peschka W.[J].Hydrogen Energy,1980,5(5):

5392554.

[13] 范月英,刘敏,廖彬,等.[J].材料研究学报,1999,13(3):2302

233.

[14] Chambers A,Park C,Baker R T K,et al.[J].Phys Chem B,

1998,102(22):425324256.

[15] Motojima S,Kawaguchi M,Nozaki K.[J].Carbon,1991,29

(3):3792385.

[16] 吴法宇,杜金红,刘辰光,等.[J].新型炭材料,2004,19(2):812

86.

(下转第48页)

1028cm -1吸收峰可以分别归属于成盐状态的磺酸基的不对称

吸收νSO ,asym 和对称吸收νSO ,sym ,这确定了磺化聚芳醚酮2分子结构中磺酸基团的存在

图1 聚芳醚酮1和磺化聚芳醚酮2的FTIR 谱比较图2中的两个1H 2NMR 图谱可以发现,相同的氢原子在两个谱中的共振峰的位置不同,这是由于所用溶剂的不同引起的。从聚芳醚酮1谱与磺化聚芳醚酮2比较可以看出,H1、H2、H3、H4的积分强度相等,没有发生变化,说明这些氢原子没有被取代,这就初步说明了磺酸基没有上到主链

芳环上。同时磺化聚芳醚酮2谱中H6(6)峰变弱说明H6发生了被取代,弱峰(5)、弱峰(7)为H6未被取代的苯环上的原

H5、H7峰。H6被取代的苯环上的H5、H7共振峰移向低场,

且裂分情况与H6被取代的情况相符,进一步证明了所合成的

磺化聚芳醚酮2分子中的磺酸基只上在处于侧链的芴环上。

图2 聚芳醚酮1和磺化聚芳醚酮2的1H 2NMR 谱比较

212 膜的性能表征

从表1可以看出,制得膜的吸水率为32.6%,远大于Na 2

fion 2112 [6];线性溶胀率为216%,远小于Nafion 2115 的10%(DuPont TM 公司网站资料);在100℃、100%相对湿度条件

下的电导率为01103S ?cm -1,与相同条件下测得的Nafion 2

117 膜的电导率01109S ?cm -1相当。

表1 磺化聚芳醚酮2的IEC,EW,SD 值

IEC/

(10-3mol ?g -1)EW

/(g ?mol -1)SD

x +y

吸水率/%线性溶胀率

/%电导率

/(S ?cm -1)1.756

569

1.291

32.6

2.6

0.103

3 结 论

通过先聚合后磺化的方法制得了磺酸基连在悬挂侧链上的磺化聚芳醚酮质子交换膜材料,对其浇铸膜的性能表征结果显示,当其磺化度为11291时,吸水率为3216、线性溶胀率为216,优于Nafion 膜;100℃、100%相对湿度条件下的电导率为01103S ?cm -1,与相同条件下测得的Nafion 2117 膜的电导率01109S ?cm -1相当,可以作为燃料电池用质子交换膜的候选材料。

参考文献

[1] Babir F ,G omez T.Efficiency and economics of proton exchange

membrane (PEM )fuel cells[J ].Int J Hydrogen Energy ,1996,21:8912901.

[2] Surampudi S ,Narayanan S R ,Vamos E ,et al.Advances in di 2

rect oxidation met hanol fuel cells[J ].J Power Sources ,1994,47:3772385.

[3] Kreuer K D.On t he development of proton conducting polymer

membranes for hydrogen and met hanol fuel cells[J ].J Membr Sci ,2001,185:29239.

[4] 王雷,朱光明,王拴紧,高春梅.质子交换膜用部分含氟磺化聚

芳醚的合成与性能研究[J ].化工新型材料,2007,5:48250.

[5] Shang X Y ,Wang S J ,Ge X C ,et al.Synt hesis and photolumi 2

nescent properties of poly (arylene et her )s containing oxadiazole and fluorene moieties [J ].Materials Chemistry and Physics ,2007,104:2152219.

[6] Miyatake K ,Zhou H ,Watanabe M.Proton conductive polyim 2

ide electrolytes containing fluorenyl groups :Synt hesis ,proper 2ties ,and branching effect [J ].Macromolecules ,2004,37:495624960.

收稿日期:2009203211修稿日期:2009210214

(上接第10页)

[17] 闫晓琦,郭雪芹,王达,等.[J ].实验室科学,2007,5:69270.[18] 李中秋,张文丽.[J ].化工新型材料,2005,33(10):38241.

[19] Taube M ,Rippin D ,Knecht W ,et al.[J ].Hydrogen Energy ,

1985,10(9):5952599.

[20] 吕康乐,国海光,黄隽.[J ].浙江化工,2003,(34):728.

收稿日期:2009205214修稿日期:2009207220

储氢材料的储氢原理与研究现状

储氢材料的储氢原理与研究现状 氢能,即氢气中所含有的能量。具有环境友好、资源丰富、热值高、燃烧性能好、潜在经济效益高等特点[2]。目前,能源危机和环境危机日益严重。许多国家都在加紧部署、实施氢能战略,如美国针对运输机械的“Freedom CAR”计划和针对规模制氢的“Future Gen”计划,日本的“New Sunshine”计划及“We-NET”系统,欧洲的“Framework”计划中关于氢能科技的投人也呈现指数上升趋势[3]。但是,氢能的使用至今未能商业化,主要的制约因素就是存储问题难以解决。因此,氢能的利用和研究成为是当今科学研究的热点之一。而寻找性能优越、安全性高、价格低廉、环保的储氢材料则成为氢能研究的关键。 目前,氢可以以高压气态液态、金属氢化物、有机氢化物和物理化学吸附等形式储存。高压气态液态[4]储氢发展的历史 较早,是比较传统而成熟的方法,无需任何材料做载体,只需耐压或绝热的容器就行,但是储氢效率很低,加压到15MPa时质量储氢密度不超过3 %。而且存在很大的安全隐患,成本也很高。 金属氢化物[5-7]储氢开始于1967年,Reilly等报道Mg2Cu能大量储存氢气,接着1970年菲利浦公司报道LaNi5在室温下能可逆吸储与释放氢气,到1984年Willims制出镍氢化物电池,掀起稀土基储氢材料的开发热潮[8-9]。金属氢化物储氢的原理是氢原子进入金属价键结构形成氢化物。有稀土镧镍、钛铁合金、镁系合金、钒、铌、锆等多元素系合金。具体有NaH-Al-Ti、 Li3N-LiNH2、MgB2-LiH、MgH2-Cr2O3及Ni(Cu,Rh)-Cr-FeO x等物质,

碳质储氢材料的研究进展

碳质储氢材料的研究进展 摘要 碳质材料由于具备质量轻、吸氢量大等优良特性,近年来引起了学者们的广泛关注。综述了碳质储氢材料的研究进展,介绍了碳质材料的储氢机理,并就近年来研究的热点探讨了影响碳质材料储氢的各种因素。最后,对碳质储氢材料的发展前景进行了展望。 关键词:碳质材料储氢储氢材料进展 Abstract Carbonaceous materials have been arousing increased research attention recently ,due to numerousadvantages such as low density and high storage capacity .Research advances of carbonaceous materials for hydrogenstorage are reviewed ,and hydrogen storage mechanism of carbonaceous materials is introduced .Moreover,based onrecent research highlights ,influence factors on hydrogen storage capacity of carbonaceous materials are discusseck E ventually future development of the carbon materials for hydrogen storage is prospected Key wolds :Carbonaceous materials ,Hydrogen Storage , Hydrogen Storage Materials , Progress 、八、, 前言 能源和资源是人类赖以生存和发展的源泉。随着社会经济的发展,全球能源供应的日趋紧缺,环境污染的日益加剧,已有的能源和资源正在以越来越快的速度消耗。面对化石燃料能源枯竭的严重挑战,近年来世界各国纷纷把科技力量和资金转向新能源的开发。氢能作为一种可储可输的洁净的可再生能源,从长远上看,它的发展可能对能源结构产生重大改变。洁净无污染的氢能利用技术正在以惊人的速度发展,己引起工业界的热切关注。 氢的规模制备是氢能应用的基础,氢的规模储运是氢能应用的关键,氢燃料电池汽车是氢能应用的主要途径和最佳表现形式,三方面只有有机结合才能使氢能迅速走向实用化。但是,由于氢在常温常压下为气态,密度很小,仅为空气的1/14,故氢的储存就成了氢能系统的关键技术。

储氢材料综述

储氢材料研究现状与发展趋势 xxx 摘要:氢能作为一种新型的能量密度高的绿色能源,正引起世界各国的重视。储存技术是氢能利用的关键。储氢材料是当今研究的重点课题之一,也是氢的储存和输送过程中的重要载体。本文综述了目前已采用或正在研究的储氢材料,如金属储氢(镁基储氢、Fe-Ti基储氢、金属配位氢化物、钒基固溶体型储氢)、碳基储氢、有机液体储氢等材料,比较了各种储氢材料的优缺点,并指出其发展趋势。 关键字:储氢材料,储氢性能,金属储氢,碳基储氢,有机液体储氢。 1.引言 氢原料来源广泛、无污染且能量转换效率高,是解决未来清洁能源需求问题的首选新能源之一。氢是宇宙中含量最丰富的元素之一。氢气燃烧后只产生水和热,是一种理想的清洁能源。氢能利用技术,如氢燃料电池和氢内燃机,可以提供稳定、高效、无污染的动力,在电动汽车等领域有着广泛的应用前景。由于氢能技术在解决人类面临的能源与环境两大方面的重大作用,国内外对氢能技术都有大量资金投入,以加快氢能技术的研发和应用。 氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,正引起人们的广泛关注。氢能的开发和利用受到美、日、德、中、加等国家的高度重视,以期在21世纪中叶进入氢能经济(hydrogeneconomy)时代。氢能的利用需要解决三个问题:氢的制取、储运和应用,而氢能的储运则是氢能利用的瓶颈。氢在正常情况下以气态形式存在、密度最小、且易燃、易爆、易扩散,这给储存和运输带来很大困难。当氢作为一种燃料时,必须具有分散性和间歇性使用的特点,因此必须解决储存和运输问题。储氢和输氢技术要求能量密度大(包含质量储氢密度和体积储氢密度)、能耗少、安全性高。当氢作为车载燃料使用(如燃料电池动力汽车)时,应符合车载状况的要求。对于车用氢气存储系统,国际能源署(IEA)提出的目标是质量储氢密度大于5wt%,体积储氢密度大于50kgH2/m3,并且放氢温度低于423K,循环寿命超过1000次;而美国能源部(DOE)提出的目标是到2010年质量储氢密度不低于6wt%,体积储氢密度大于45kgH2/m3;到2015年上述指标分别达9wt%和81kgH2/m3;到2010年车用储氢系统的实际储氢能力大于3.1kg(相当于小汽车行使500km所需的燃料)。图1给出了目前所采用和正在研究的储氢材料的储氢能力对比。

稀土_镁_镍系储氢电极材料的研究进展

稀土-镁-镍系储氢电极材料的研究进展 Ξ 闫慧忠,孔繁清,韩 莉,熊 玮,孙晓华 (包头稀土研究院,内蒙古 包头 014010) 摘 要:介绍了国内外对各种多元及多相稀土-镁-镍系储氢电极材料的研究进展,主要包括材料的组成、制备方法、组织结构以及吸放氢动力学行为和电化学性能方面的研究。 关键词:稀土-镁-镍系;贮氢合金;复合贮氢材料;储氢电极材料 中图分类号:O 614133;T G 139+17 文献标识码:A 文章编号:100420277(2005)0120060207 贮氢合金是20世纪60年代末发现的一类具有高储氢密度的功能材料,从组成上大致可分为四类:稀土系如L aN i 5;镁系如M g 2N i 、M gN i 、L a 2M g 17;钛系如T i N i 、T iFe ;锆系如ZrN i 2。L aN i 5型贮氢合金已实现了产业化,主要用于制作M H N i 电池的负极材料,其理论容量为370mA ?h ?g -1,实际开发的最大容量为320mA ? h ?g -1。由于容量限制,M H N i 电池的应用范围及市场竞争力受到挑战。镁及某些镁基贮氢合金如M g 2N i 、M gN i 、L a 2M g 17等, 由于其储氢量大、重量轻、资源丰富、价格便宜,在开发新型高容量储氢电极材料的过程中引起了广泛的关注,成为该领域的研究热点[1],纯镁及几种镁基贮氢合金与L aN i 5的理论电化学容量如图1所示。 图1 几种贮氢合金理论电化学容量的比较 F ig 11 Co m par ison of idea l electroche m istry capac ities of hydrogen storage a lloys 镁基贮氢合金作为电极材料应用时存在的主要问题是动力学性能较差以及充放电循环中容量衰减快。通过添加改性元素(多元合金体系)、改进制备工艺、表面处理、热处理、机械球磨改性等措施,可在一定程度上解决这些问题。此外,大量的研究表明,通过适当的制备工艺与动力学性能良好的贮氢合金如L aN i 5复合,可明显改善镁基储氢材料的动力学性能,由此获得一类新型稀土-镁-镍系高容量复合储氢电极材料。 1 稀土-镁-镍系多元合金体系 111 三元体系 对三元系合金L a 2M gN i 9,L a 5M g 2N i 23,L a 3M gN i 14储氢特性的研究结果表明,L a 5M g 2N i 23合金负极的放电容量高达410mA ?h ?g -1,比AB 5型合金大113倍。这些三元系合金主要是由超点阵结构中叠层的AB 5和AB 2结构亚单位构成[2]。 速凝M g 2N i 2R E (R E =Y 或富Ce ,富L a 的混合稀土金属M m )合金淬火后呈非晶态或纳米晶 非晶态,即平均尺寸3nm 的纳米晶置于大量非晶相中,M g 76N i 19Y 5和M g 78N i 18Y 4合金与M g 75N i 20M m 5比较,M m 比Y 对储氢容量产生更有利的影响,这些合金的结晶化经过亚稳态的面心立方M g 6N i 相转变成纳米晶材料[3]。T anaka 等[4]测定了速凝法制备的非晶态和纳米晶结构的晶态M g 2N i 2R E (R E = 第26卷第1期2005年2月 稀 土Ch inese R are Earth s V o l .26,N o.1 Feb ruary 2005 Ξ收稿日期:2004204208 基金项目:国家自然科学基金资助项目(20363001);内蒙古自然科学基金资助项目(200308020215) 作者简介:闫慧忠(19622),男,内蒙古乌拉特前旗人,在读博士,高级工程师,研究方向为储氢材料的制备和研究。

金属储氢材料研究进展_范士锋

Chemical Propellants & Polymeric Materials 2010年第8卷第2期 · 15 · 金属储氢材料研究进展 范士锋 (海军驻西安地区军事代表局,陕西西安 710065) 摘 要:综述了金属储氢原理、目前国内外金属储氢材料的研究现状及应用研究进展,对镁系、稀土系、Laves相系、钛系及金属配位氢化物等几个系列金属储氢材料当前的研究热点和存在问题进行了详细介绍,并对未来金属储氢材料在民品和军工方面的应用研究方向和发展趋势进行了展望。 关键词:金属储氢材料;研究进展;发展趋势 中图分类号: TG139.7 文献标识码: A 文章编号: 1672-2191(2010)02-0015-05 收稿日期:2009-09-09 作者简介:范士锋(1978-),男,工程师,从事战略导弹总体与固体火箭发动机研究。电子信箱:jizhenli@126.com 作为燃料,氢具有最高的质量热值(其热值1.25×106kJ/kg,为汽油的3倍、焦炭的4.5倍), 是理想的高能清洁燃料之一[1-2]。目前,尽管高压(低于17MPa)气态储氢、低温(低于20K)液态储氢等技术手段使得氢在一些常规燃料和航天推进等领域得以应用,但高压气态氢体积热值小以及低温液态氢液化过程耗能高、使用条件苛刻等问题严重限制了氢作为火炸药能量供给组分的应用。利用吸氢材料与氢气反应生成固溶体和氢化物的固体储氢方式,能有效克服上述储存方式的不足,而且储氢体积密度大、安全度高、使用和运输便利。因此,今后储氢研究的重点将是新型高性能储氢材料的研发,目前研究较为广泛的主要是金属储氢材料[3]。 储氢材料按氢的结合方式可分为化学键合储氢(如储氢合金、配位氢化物、氨基化合物、有机液体碳氢化合物等)和物理吸附储氢(碳纳米管、多孔碳基材料、金属有机框架材料、纳米储氢材料、多孔聚合物等)。从上述储氢材料的性能(燃烧热、材料密度、储氢密度、反应活性)等衡量标准分析,高热值的金属储氢材料(包括金属氢化物或合金储氢材料)是火炸药燃料组分的发展重点。 文中主要针对当前金属储氢材料的研究热点和存在问题,对相关金属储氢材料的国内外研究进展进行较为详细的综述,以期为此类高性能材料在火炸药中的应用提供研究思路。 1 金属储氢原理及储氢研究现状 传统的氢气存储方式中,气态储氢方式简单 方便,是目前储存压力低于17MPa的常用方法,但存在着体积密度小、运输和使用过程中易燃易爆等缺点;液态储氢方法的体积密度(70kg/m3)较高,但氢气的液化需要冷却到20K的超低温下才能实现,此过程需消耗的能量约占所储存氢能的25% ̄45%,且液态氢使用条件苛刻,对储罐绝热性能要求高,目前只限于航天领域。金属储氢材料是目前研究较为广泛、成熟的新型高性能大规模储氢材料之一,其储氢密度高、安全性好、适于大规模氢气储运,最重要的特性是能够可逆地吸、放大量氢气。氢一旦与储氢合金接触,即在其表面分解为H原子,H原子扩散进入合金内部直至与合金发生反应而生成金属氢化物,氢即以原子态储存在金属结晶点内(四面体与八面体间隙位置)。在一定温度和氢压强条件下,上述吸、放氢反应式如下式所示: 其中,吸氢过程放热,放氢过程吸热,上述吸、放氢反应过程热力学和动力学与温度、氢压力密切相关,特别是放氢压力与反应温度呈指数变化关系[4]。 储氢材料性能的衡量标准主要用以下2个产量表示:体积储氢密度和质量储氢密度。其中,体积储氢密度为系统单位体积内储存氢气的质量(kg/m3),质量储氢密度为系统储存氢气的质量与系统质量的比值(质量分数)。考虑储氢材料在火炸药中的应用,系统燃烧热(与储存介质的热值和储氢质量分数的大小密切相关)、系统密度(与储存介质的密度和结构相关)和反应活性( 与氧化

储氢材料的发展现状、应用与制备综述

储氢材料的发展现状、应用与制备 摘要:能源危机和开发新能源一直是人类发展进程中相互依赖和相互促进的两个重要因素。为了保护环境,开发新能源,可以利用太阳能、地热、风能及海水等。其中,氢能是人类未来的理想能源,它是一种高能量密度、清洁的能源,是最有吸引力的能源形式之一,具有热值高、资源丰富、干净、无毒、无污染等特性。而氢的贮存和运输一直是个技术难题,由于制造液氢的设备费用很高,液化时又要消耗大量的能量,氢气和空气混合还会有爆炸的危险,因此能否利用氢气作为能源的关键是能否解决氢气的贮存和运输技术。本文简要讲述了储氢材料的发展现状、主要应用与制备技术。 关键词:储氢材料、性质、应用、发展、制备 1引言 当前,人类面临着能源危机,作为主要能源的石油、煤炭和天然气由于长期的过量开采已濒临枯竭。为了开发新能源,人们利用太阳能、地热、风能及海水的温差等,试图将它们转化为二次能源。氢由于其优异的特性受到高度重视,首先氢由储量丰富的水做原料,资源不受限制;第二氢燃烧的生成物是水,环境污染极少,不破坏自然循环;第三,氢由于很高的能量密度;此外,氢可以储存、输送,用途十分广泛。本文主要简述了储氢材料的基本性质、发展现状以及制备工艺。 2储氢材料的基本性质 储氢材料是一种能在晶体的空隙中大量贮存氢原子的合金材料,具有可逆吸放氢的性质。大多数金属合金(M)在一定的温度和压力条件下,与氢生成金属 →MHx+ΔH(生成热)。 氢化物(MHx):M+XH 2 2.1储氢材料应具备的基本条件 作为储存能量的材料,储氢材料应具备以下条件: (1)易活化,氢的吸储量大; (2)用于储氢时,氢化物的生成热小;用于蓄热时生成热要尽量大; (3)在室温附近时,氢化物的离解压为203-304kPa,具有稳定的合适的平衡分解压; (4)氢的吸储或释放速度快,氢吸收和分解过程中的平衡压(滞后)小; 、水分等的耐中毒能力强; (5)对不纯物如氧、氮、CO、CO 2 (6)当氢反复吸储和释放时,微粉化少,性能不会劣化; (7)金属氢化物的有效热导率大,储氢材料价廉; (8)吸收和释放氢的速度快,氢扩散速度大,可逆性好。 2.2影响储氢材料吸储能力的因素

纳米储氢材料的研究进展

纳米储氢材料的研究进展* 刘战伟? (桂林电子科技大学信息材料科学与工程系,广西 桂林 541004) 摘 要:储氢材料的纳米化为新型储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料 的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 关键词:纳米;储氢材料;储氢性能 中图分类号:TB383 文献标识码:A文章编号:1003-7551(2009)01-0033-04 1 引言 当今世界,随着传统能源石油、煤炭日渐枯竭,且石油、煤炭燃烧产物二氧化碳和二氧化硫又分别产生温室效应和酸雨危害,使人类面临能源、资源和环境危机的严峻挑战,寻找新的能源已成为人们的普遍共识。氢作为一种洁净能源,已受到人们的充分重视[1]。近年来,在镍氢二次燃料电池等氢能的应用方面不断取得进展。20世纪60年代末,研究者发现Mg2Ni、LaNi5、FeTi等金属间化合物具有可逆储放氢气的特性,并且储氢密度大,可与液氢和固氢效果相比拟[2,3]。此后随着对于金属氢化物作为能量储存以及能量转换材料进一步深入地研究,到目前为止,已开发的贮氢合金主要有AB、AB5、AB2、A2B和镁基五大类型[4],储氢合金主要由可与氢形成稳定氢化物的放热型金属A(La、Ti、Zr、Mg、V等)和难与氢形成氢化物但具有氢催化活性的金属B(Ni、Fe、Co、Mn等)按一定比例组成。传统的AB、AB2和A2B型储氢合金储氢量不超过2wt%,这对储氢合金的某些应用领域(如燃料电池)是远远不够的。国际能源协会(IEA)要求储氢量至少为5wt%,并且放氢温度低于423K,循环寿命超过1000次。而传统镁基储氢量高,但有放氢温度高和吸放氢动力学慢的缺点。如何获得容量大,充放氢速度快,放氢温度低的新型储氢材料,成为储氢材料与储氢技术研究和开发中至关重要的内容和亟待解决的问题。 纳米材料是指一类粒度在1~100nm之间的超细材料,是介于单个原子、分子与宏观物体之间的原子集合体,是一种典型的介观体系。由于纳米材料的比表面能高,存在大量的表面缺陷,高度的不饱和悬键,较高的化学反应活性以及自身的小尺寸效应、表面效应、量子尺寸效应等,从而使其具有常规尺寸材料所不具备光学、磁、电、热等特性,成为继互联网和基因研究之后科学领域的又一研究热点,引发了世界各国科学工作者在相关理论研究及应用开发的广泛兴趣。纳米尺度的贮氢合金呈现出许多新的热力学和动力学特征,其活化性能明显提高[5,6],具有更高的氢扩散系统[7,8],并具有优良的吸放氢动力学性能[7,9,10]。储氢材料的纳米化为新兴的储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 2 纳米储氢材料储氢性能提高机理 一般认为,储氢合金纳米化提高储氢特性主要表现在以下几个方面原因:(1)量子尺寸效应和宏观量子隧道效应:对于纳米尺寸的金属颗粒,连续的能带分裂为分立的能级,并且能级间的平均间距增大,使得氢原子容易获得解离所需的能量,表现为贮氢合金活化能降低和活化温度降低;(2)纳米材料的表面效应:纳米颗粒具有巨大的比表面积,电子的输送将受到微粒表面的散射,颗粒之间的界面形成电子散射的高势垒,界面电荷的积累产生界面极化,而元素的电负性差越大,合金的生成焓越负,合金氢化物越稳定,金属氢化物能够大量生成。单位体积吸纳的氢的质量明显大于宏观颗粒。(3)比表面积和催化特性:纳米贮氢合金比表面积大,表面能高,氢原子有效吸附面积显著增多,氢扩散阻力下降,而且氢解反应在合金纳米晶的催化作用下反应速率增加,纳米晶具有高比例的表面活性原子, 有利于反应物在其表面吸附,有效降低了电极表面氢原子的吸附活化能,因而具有高的电催化性能。另外,由于纳米晶粒相当细小,导致晶界和晶格缺陷增加,而晶 * 基金项目:广西研究生教育创新计划资助项目(2008105950805M438) ? 通讯作者:liuzhanwei@https://www.360docs.net/doc/bc4005178.html, 收稿日期:2009-01-13 33

(完整版)镁基储氢材料发展进展

Mg基储氢材料的进展 一、课题国内外现状 氢能作为一种资源丰富,能量高,干净无污染的二次能源已经引起了人们的极大兴趣[1],随着“氢经济”(以氢为能源而驱动的政治和经济)时代即将来临,氢能成为新世纪的重要二次能源已为科学界所广泛认同。 氢能的发展涉及到很多方面,如氢能技术、工程、生产、运输、储存、经济及利用等,其中储存问题是制约整个氢能系统应用的关键步骤,在已经探明的储存方法中,金属氢化物储氢具有储氢体积密度大、安全性好的优势,比较容易操作,运行成本较低,因此,金属氢化物技术的开发与研究近年来在世界各国掀起极大的热潮。其中,由于Mg密度小(1.74 g/cm3)、储氢能力高(理论上可达到7.6 wt.%)、价格低、储量丰富而使之成为一种很有前途的储氢合金材料。在众多储氢合金中,Mg基储氢合金因其储氢量大且资源丰富,价格低廉,成为最具潜力的储氢材料[2]。 然而,镁及其合金作为储氢材料也存在吸放氢速度慢、温度高及反应动力学性能差等缺点,因而严重阻碍了其实用化的进程。研究表明,将Mg基合金与具有催化活性的添加剂(过渡金属、过渡金属化合物、AB5型储氢合金等)混合球磨制备Mg基合金复合材料是提高Mg基合金吸/放氢性能的有效途径之一。针对上述Mg基储氢复合材料的研究,科研工作人员围绕以下几个方面展开工作: (1) 镁与单质金属复合 在球磨过程中添加其它单质金属元素,特别是过渡金属元素对镁的吸放氢性能有明显的改善作用。用于镁基材料复合的单质金属元素主要包括Pd、Fe、Ni、V、Ti、Co、Mo等。 Milanese等[3]研究了Al、Cu、Fe、Mn、Mo、Sn、Ti、Zn、Zr对镁吸放氢性能的影响,发现A1、Cu、Zn有助于镁的吸放氢,只有Cu能降低MgH2的稳定性,从而使其放氢温度降至270 ℃。Kwon等[4]球磨Mgl0%Ni5%Fe5%Ti混合材料,复合后其在300 ℃、1.2 MPa H2条件下吸收氢,吸氢时间分别为5 min和1 h,吸氢量分别为5.31%(质量分数,下同)和5.51%。初始吸氢速率从200 ℃升到300 ℃时增长较快,但在350 ℃时开始下降,放氢速率从200 ℃升到350 ℃时速度快速增长。他们认为添加的Ni、Fe和Ti元素能够产生活性点,并降低颗粒粒度,从而减少氢原子的扩散距离,形成新的高活性表面。同时,Ni、Fe、Ti也起到活性基点的作用,并能在球磨过程中创造缺陷,这些缺陷可以起到活性基点的作用,产生裂缝并能降低颗粒粒度。Varin等[5]在镁中添加0.5%~2.0%的纳米镍粉进行球磨储氢,结果表明,球磨70 h后,MgH2的粒径只有11~12 nm,当镍的添加量增加到2%时,储氢速率明显加快,球磨15 h,储氢密度就可达到6.0%以上;与MgH2相比,放

储氢材料的研究与发展前景

目录 1.前言 (3) 2.储氢材料 (4) 2.1金属储氢材料 (4) 2.1.1镁基储氢材料 (5) 2.1.2钛基(Fe-Ti)储氢材料 (8) 2.1.3稀土系合金储氢材料 (9) 2.1.4锆系合金储氢材料 (10) 2.1.5金属配位氢化物 (11) 2.2碳质储氢材料 (11) 2.3液态有机储氢材料 (12) 3.储氢方式 (14) 3.1气态储存 (14) 3.2液化储存 (14) 3.3固态储存 (15) 4.氢能前景 (15) 参考文献 (17)

储氢材料的研究与发展前景 摘要:氢能作为一种新型的能量密度高的绿色能源, 正引起世界各国的重视。储存技术是氢能利用的关键。储氢材料是当今研究的重点课题之一, 也是氢的储存和输送过程中的重要载体。本文综述了目前已采用或正在研究的储氢材料, 如镁基储氢材料钛碳基储氢材料、稀土储氢材料、碳质储氢等材料的研究进展、发展前景和方向。 关键字:储氢材料,储氢性能,储氢方式,发展前景 1.前言 当今世界, 化石燃料储量正在迅速减少, 现存储量不能满足日益增长的需求。目前世界能源的80%来源于化石燃料, 但化石燃料的使用产生了大量有害物质, 对环境造成巨大影响。因此, 加速能源系统向可再生能源转换以适应当前和未来世界能源需求, 是迫切需要解决问题。 氢原料来源广泛、无污染且能量转换效率高,是解决未来清洁能源需求问题的首选新能源之一。氢是宇宙中含量最丰富的元素之一。氢气燃烧后只产生水和热,是一种理想的清洁能源。氢能利用技术,如氢燃料电池和氢内燃机,可以提供稳定、高效、无污染的动力,在电动汽车等领域有着广泛的应用前景。由于氢能技术在解决人类面临的能源与环境两大方面的重大作用,国内外对氢能技术都有大量资金投入,以加快氢能技术的研发和应用。 氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,正引起人们的广泛关注。氢能的开发和利用受到美、日、德、中、加等国家的高度重视,以期在21世纪中叶进入氢能经济(hydrogeneconomy)时代。氢能的利用需要解决三个问题:氢的制取、储运和应用,而氢能的储运则是氢能利用的瓶颈。氢在正常情况下以气态形式存在、密度最小、且易燃、易爆、易扩散,这给储存和运输带来很大困难。当氢作为一种燃料时,必须具有分散性和间歇性使用的特点,因此必须解决储存和运输问题。储氢和输氢技术要求能量密度大(包含质量储氢密度和体积储氢密度)、能耗少、安全性高。当氢作为车载燃料使用(如燃料电池动力汽车)时,应符合车载状况的要求。对于车用氢气存储系统,国际能源署(IEA)

氢气储存方法的现状及发展

2018年第2期 作者简介:于忠华(1990-),男,辽宁大连人,主要从事对于气体的存放、监测,做系统的统计工作。 时代农机 TIMES AGRICULTURAL MACHINERY 第45卷第2期Vol.45No.2 2018年2月Feb.2018 氢气储存方法的现状及发展 于忠华1,云建2 (1.,116600; 2.(),116600) 摘要:氢能是当前一项重要新能源,如何有效存储氢是一个非常重要环节。为此文章将对几种常用的氢气储存方法及其现状进行分析,并探讨其发展趋势,以供广大同行参考与交流。 关键词:氢气;储存;方法;现状;发展 1氢气储存方法的现状 (1)压缩储氢。当前,一种较为常见的氢气储存方法就是加压压缩储氢,一般来说都是使用质量较大的钢瓶作为容器。但是因为其氢气密度较低,所以储氢效率不高,将压力增加到15MPa 时,质量储氢密度在3%以下。而对于移动用途来说,将氢气压力提高来增加其携氢量则容易致使氢脆情况出现或是氢分子在容器壁逸出。所以近几年对该种存储方法进行研究,一方面是优化容器材料,让使用的容器耐压更高,且自重更轻,并能够降低氢分子透过容器壁的几率,切实防止氢脆情况出现。当前主要使用的是外面包覆浸有树脂,锻压铝合金为内胆的碳纤维作为储氢容器。另一方面研究在于将部分吸氢物质添加至容器内,用以将储氢密度有效提升,一旦压力减小,便能够自动释放氢出来。 (2)液化储氢。在一般压力情况下,液氢熔点在-253℃,而在-253℃和正常压力情况下气态氢能够液化成液态氢,而液态氢密度是气态氢的845倍,且每kg 液氢热量是汽油的3倍,所以液态储氢非常适合用在储存空间较为有限的场所,例如汽车发动机、航天飞机用的火箭发动机等运输工具当中。但是液化储氢需要使用到超低温用的特殊容器,如若所使用的容器绝热与装料达不到相应要求则容易致使大量蒸发损失。所以当前研究重点在于研究高度绝热的储氢容器。 (3)空心玻璃微球储氢。结合实践来看,空心玻璃微球具有一个特点,即高温状态(300~400℃)呈现出多孔性而常温状态则是非渗透性。而空心玻璃微球的这个特点在当前技术水平下可以用于储存氢气。首先,空气玻璃微球放到10~200MPa 的高压状态中,然后利用设备将氢气加热到200~300℃压进玻璃微球里面,最后待压力和温度降低下来氢气扩散性便因此降低了,这样空心玻璃微球中便完成了氢气储存。通过对相关实验研究可知,空心玻璃微球在一定条件下(比如62MPa 或370℃等情况),微球之中储氢含量可达95%左右。而要想使用氢气的时候只需使用加热储器即可。相较于别的储氢方法,空心玻璃微球具有使用较低成本、稳定性强以及储氢能力高等优点,使其成为了当前氢气储存行业一个重点研究方向。 (4)金属氢化物储氢。氢几乎能够和元素周期表上的惰性气体外的其他元素发生反应生产氢化物,而部分金属间化合物、合金、过渡金属等因为其特殊的晶格结构等因素,在特定 条件下,氢原子能够进到金属晶格的四面体或八面体间隙中生成金属氢化物。在1×106Pa 压力下,金属氰化物有着储氢能力在100kg/m 3以上不过因为金属具有较大密度,从而使得氢的质量在2%~7%左右。除此之外,因为氢不可逆损伤,所以在使用金属储氢方式是常常会出现氢沉淀、高温氢腐蚀、氢化物致使的脆性、氢化物析出而导致的弹性畸变、氢致马氏相变等大大缩短了储氢金属的使用寿命。当前,该项技术正朝着研发更便宜、更轻的金属材料、缩短金属氢化物对氢的充放市场、降低因为充放氢频率过快而损害到储存系统、有效结合压缩储氢与金属氢化物以更好的提高氢气存储数量与效率等方向发展。 2氢气储存的发展探究 总得来说,作为氢能利用的一项关键技术,氢气储存的成本、效率以及含量等等都直接决定着氢能是否得到更好地利用。虽然从实际情况来看,现阶段氢气存储在技术、材料等方面距离氢能实用化还有很长的道路要走。但在科学技术不断发展进步的背景之下,氢气储存领域也取得了不小的进步。以氢气储存方式来说,在现实中氢气储存行业上有着多种方式。①压缩的方式相比于液化具有众多优点,比如效率高、成本低以及带来环境污染低等等;②液化储氢方式虽然成本相比于压缩成本要高的多,但其能量密度却很高,所以它被应用在航空以及军事领域当中;③金属氢化物方式缺点在于成本较高、质量大,但其优点则是储氢密度是当前所有方式最大的,高达100kg/m 3;④碳质吸附方式。该方式是氢气储存领域最新的技术,虽然其仍处在初期研究时期,但碳质吸附方式所具有储氢机理、条件简单以及含量高等诸多优点是使成为了氢气储存行业中的一个重点研究及发展方向。另外,氢气储存今后一个重点发展方向在于实现更高的安全性,为此当前在存储介质材料、安全标准等方面都有着很大的研究。 3结语 总而言之,在能源极为紧缺的今天,氢气作为一种来源广泛、储量丰富、具有较高能量密度的绿色能源正逐步受到社会的关注。在常温常压装填下,氢是以气态形式存在,密度是空气的1/14,所以如何有效储氢是一个关键问题。文章对当前我国氢气储存方法的现状及发展进行分析与探讨,希望能起到 抛砖引玉作用。 参考文献 [1]张超,鲁雪生,顾安忠.天然气和氢气吸附储存吸附热研究现状[J ]. 太阳能学报,2004,25(2):249-253. 95

纳米储氢材料研究

纳米储氢技术 摘要:氢能是未来最有发展前景的绿色能源之一,致力于发展以氢作为能源载体的清洁可再生能源技术已成为全球的共识,然而氢的安全高效存储一直是制约氢利用的瓶颈。因此,探寻新型的具有高容量储氢性能和良好吸放氢动力学性能的储氢材料是目前国际上高度关注的研究课题。正在研究的储氢技术主要包括高压储氢、金属氢化物材料、配位氢化物材料、化学氢化物材料、金属有机框架材料等,但目前它们均无法完全满足储氢量高、吸放氢速度较快、吸放氢温度适中、循环性能较好、安全和价格经济等储氢材料的要求。因此,研究者的方向转向了具有多孔和高比表面积的纳米储氢材料。研究者发现,将氢原子在吸放氢的过程中所需要运动的活动范围限制到纳米级,储氢材料能够体现出良好的动力学性能。此外,理论计算结果表明,当颗粒尺寸减少到纳米级时,金属氢化物会因为表面能的急剧增加,使其热力学性能大大改善。因此,制备纳米级的储氢材料是提高材料吸放氢性能的重要途径。例如,碳基纳米结构以其具有轻质量和大比表面积的特点受到关注;使用金属原子对纳米结构的表面进行修饰,包括过渡金属元素、碱金属元素或碱土金属元素等都可以显著的提高纳米结构的化学活性,从而提高储氢量。 关键词:多孔、低维纳米材料、碳纳米管、硼纳米管、金属原子修饰

目录 纳米储氢技术 (1) 1.研究背景 (3) 1.1燃料电池汽车的发展概况 (3) 2.研究现状 (3) 2.2.1高压储氢技术 (5) 2.2.2液化储氢技术 (8) 2.2.3金属氢化物储氢技术 (8) 2.2.4有机液体储氢材料 (9) 3纳米储氢技术 (10) 3.1碳复合纳米材料 (11) 3.1.1碳纳米管或纤维 (11) 3.1.2Ti掺杂碳纳米管 (12) 3.2镁基储氢材料的纳米改性 (15) 3.2.1复合材料储氢性能及温度对储氢性能的影响 (17) 3.3硼基纳米材料储氢 (19) 3.3.1硼化锂低维结构 (19) 3.3.2硼氮纳米结构储氢 (20) 3.3.3金属硼烷结构储氢 (22) 4总结与展望 (22)

储氢材料

目录 前言 (2) 1.储氢材料分类 (3) 1.1储氢合金 (3) 1.1.1稀土系储氢合金 (3) 1.1.2镁系储氢合金 (3) 1.1.3钛系储氢合金 (3) 1.2络合物储氢材料 (4) 1.3纳米材料 (4) 1.4玻璃微球储氢 (4) 2.储氢材料的制备方法 (5) 2.2机械合金化法 (5) 2.3氢化燃烧合成法 (5) 2.4化学合成法 (6) 2.5烧结法 (6) 3.储氢材料的应用 (6) 3.1 氢气的“固态化”储存与运输 (6) 3.2氢气的超纯净化 (7) 3.3 氢气的压缩 (7) 3.4 空调制冷与热泵 (7) 3.6 真空技术 (7) 3.7 氢化物-镍电池 (8) 4.结语与展望 (8) 参考文献 (9)

前言 随着石油资源的日渐匮乏和生态环境的不断恶化,氢能被公认为人类未来的理想能源。这是因为:a.氢燃烧释能后的产物是水,是清洁能源;b.氢可通过太阳能、风能等自然能分解水而再生,是可再生能源;c.氢能具有较高的热值,燃烧1 kg氢气可产生1.25×106kJ 的热量,相当于3kg汽油或4.5 kg 焦炭完全燃烧所产生的热量;d.氢资源丰富,氢可以通过分解水制得。另外,在化工与炼油等领域副产大量氢气,尚未充分利用。可以预见,未来世界将从以碳为基础的能源经济形态转变为以氢为基础的能源经济形态(简称“氢经济”)。 氢能的开发和利用涉及氢气的制备、储存、运输和应用4大关键技术。本文讨论氢气的储存技术。[1]其中能量的储存和转换一直是能量有效利用的关键所在。传统的储氢手段主要是用钢瓶来储存氢气,其缺点是效率低,同时需要钢瓶具有耐高压、防泄漏的特性,比较苛刻。储氢材料由于其具有很高的氢气存储密度而受到人类的瞩目因此成为材料科学中研究的重点功能材料之一。储氢材料就作为一种极其重要的功能材料,在二次能源领域内具有不可替代的作用,特别是在燃料电池、可充电电池研究中,具有举足轻重的地位。储氢材料的研究直接关系着电动汽车的应用,也同样对潜艇、航天器等领域有着重要的影响。近几十年来世界各国都投入了巨大的人力、物力、财力对储氢材料进行研究,力图抢占这一基础材料研究的制高点。[2]

储氢材料研究现状和发展前景

储氢材料研究现状和发展前景摘要:氢能作为一种新型的能量密度高的绿色能源, 正引起世界各国的 重视。储存技术是氢能利用的关键。储氢材料是当今研究的重点课题之一, 也是 氢的储存和输送过程中的重要载体。本文综述了目前已采用或正在研究的储氢材 料, 如镁基储氢材料、碳基储氢材料、纳米储氢材料、稀土储氢材料、氨硼烷基 储氢材料的研究进展、发展前景和方向。 关键词:储氢材料、研究现状、发展前景、研究方向 Research and development prospects of the hydrogen storage materials Abstract: As a new type of green energy with high energy density, hydrogen has at tracted extensive attentionon research and applicat ions al l over the world. Consequently, hydrogen storage materials, which are important carriers in hydrogen storage and transport , are one of the hot research topics nowadays.This article reviews the hydrogen storage materials ,such as magnesium based hydrogen storage materials, carbon-based hydrogen storage materials, nanotechnology, hydrogen storage materials, rare earth hydrogen storage materials, ammonia boron alkyl hydrogen storage materials. we review the development prospects and direction. Keywords: hydrogen storage materials; Research; Prospects for development; Research Orientation 引言 当今世界, 化石燃料储量正在迅速减少, 现存储量不能满足日益增长的需求。目前世界能源的80%来源于化石燃料, 但化石燃料的使用产生了大量有害物质, 对环境造成巨大影响。因此, 加速能源系统向可再生能源转换以适应当前和未来世界能源需求, 是迫切需要解决问题。 氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体, 正引起人们的广泛关注。氢能的开发和利用受到美、日、德、中、加等国家的高度重视, 以期在21 世纪中叶进入氢能经济时代。氢能的利用需要解决三个问题:

储氢合金的制备技术及发展与现状综述

储氢合金的制备技术及发展与现状 摘要:氢能是人类未来的理想能源。一是因它具有较高的热值;如燃烧1kg的氢气可产生1.2 5x106kJ的热量,相当于3kg汽油或4.5kg焦碳完全燃烧所产生的热量。再是氢资源丰富;我们知道,地球表面接近3/4是被水覆盖的,水中含氢量达到11.1%(虽然目前工业上主要是分解一些简单的有机物如甲烷来制得氢,但以后有可能通过分解水来制得氢)。而其最大的优点是燃烧后的产物是水,不会产生环境污染的问题。储氢材料(hydrogen storage material)是能可逆地吸收和释放氢气的材料。就储氢材料的发展方向而言,大致可分为碳系列储氢材料和金属合金系列储氢材料。本文主要讲述储氢合金材料的制备(如Mg-RE-Ni系储氢合金)、现状及发展。 关键词:储氢合金材料制备技术现状发展 1、储氢合金分类 迄今为止,人们对许多金属和合金的储氢性质进行了系统研究,现已开发出稀土系、钛系、锆系和镁系等几大类。典型的储氢合金一般由A、B两类元素组成,其中,A是容易形成稳定氢化物的金属,如Ti、Zr、Ca、Mg、V、Nb、稀土等,他们控制着储氢合金的储氢量,与氢的反应为放热反应;B是难于形成氢化物的金属,如Ni、Fe、Co、Mn、Cu、Al、Cr等,他们控制着储氢合金吸放氢的可逆性,起调节生成热与金属氢化物分解压力的作用,氢溶于这些金属时为吸热反应。A、B两类元素按照不同的原子比组合起来,就构成了集中典型的储氢合金,如:AB5型稀土系、AB2型Laves相系、AB型钛系和A2B型镁系等 2、储氢合金的制备 储氢合金的制备方法对其性能有着重要的影响,各种类型的合金也有不同的制取方法,其中包括感应熔炼法、电弧熔炼法、粉末烧结法、机械合金化法、置换扩散法和燃烧合成法等。一下简单介绍几种制备方法 2.1、感应熔炼法 2.1.1感应电炉的熔炼工作原理 通过高频电流流经水冷铜线圈后,由于电磁感应使金属炉料内产生感应电流,感应电流在炉料中流动并产生热量,从而使金属炉料被加热和熔化。加热过程:交变电流产生交变磁场交变磁场产生感应电流交变磁

储氢材料的发展历史和研究进展

文献综述 储氢材料的发展历史和研究进展 摘要作为一种清洁的新型能源,氢能对当今社会的重要性不言而喻,而氢能的有效利用成为了当前的研究重点,氢能应用的关键是氢的有效储存。综述了目前所采用或正在研究的主要储氢材料,包括金属氢化物储氢、碳质储氢材料,分析了它们的优缺点,同时指出其相关发展趋势 关键词储氢材料,传统储氢材料,金属储氢材料,碳质储氢材料 1 引言 进入了新的世纪,随之而来的还有许许多多的问题,其中最重要的问题之一是新能源问题!当今世界上应用最广的还是石油等化石能源,但这些化石能源也在不断减少,而且这些能源的利用率低,污染严重!因为这些能源利用而产生的污染问题也在日益加重!如:温室效应!氢能就在这样的背景下应运而生!氢能的原料——氢气在地球上的储量很大,而且氢气的使用具有可循环性!这些显著的优点使得当今世界中对氢能利用的呼声越涨越高!氢气是一种清洁的燃料,氢气燃烧后可以产生水,而它也可以用水制得!而水是地球上随处可见的!氢气的燃烧不会产生任何的温室气体,可以大大缓解当前严重的“温室效应”现象!氢能的使用便成为了以后世界中最具发展性的能源之一!而氢能的使用的条件是储存和运输!有关储氢材料的研究便就此展开!研究一种性能好的储氢材料成为了一个亟待解决的问题![1] 2传统储氢方式 传统的储氢方式分为气态储氢和低温储氢两种方式,它们各有千秋,有都有各自的弊端,下面就详细介绍它们的优缺点。 2.1气态储氢方式 气态储氢方式的成本低,在常温下就可以进行,但需要加大压强,使气体压缩,且储存的气体能量较小,它还需要能承受住足够压力的容器,这边对能储存这种压力下的氢气的容器要求十分之高。而且这种储氢方式的容器承压能力不够强的话,还会存在氢气易泄漏,易爆炸的危险。这种储氢方式的发展在于研究一种能承受住足够压力的材料,且不容易裂开的材料! 2.2低温液态储氢 低温液态储氢方式是将氢气进行压缩并置于低温的环境下使其可以成为液态,并放入绝热性能高的容器中。它的优点是:储存量大。适用于空间小的领域中,如:航天领域中的火

金属储氢材料与材料设计研究进展

金属储氢材料与材料设 计研究进展 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

金属储氢材料与材料设计研究进展 黄维军,材料科学与 摘要 基于储氢材料在氢能利用中的重要作用,通过从材料结构角度,对当前晶态储氢合金、非晶储氢合金、纳米储氢合金三大类金属储氢材料的研究现状和存在问题进行总结和分析,探讨了合金相图和现代材料设计方法在金属储氢材料研究中的作用和地位。当前研究工作表明,非平衡态结构调控是获得高性能储氢合金的有效途径.基于原子尺度的材料计算与设计,对新型金属储氢合金的研究和储氢机理探讨具有重要作用。 关键词:储氢合金;非晶态;合金相图;材料设计;第一性原理

Recent progress on metal hydrides and the application of model material design Huang Wei- Abstract Hydrogen storage materials paly important roles in the application of hydrogen energy, In View of micro-structure, recent development of three type metal-based materials(crystalline, amorphous alloy, nano-sized alloy) was discussed extensively in the paper, as well as related study of phase diagram and material design methods based on first-principle calculations. many reports supported that metal-based alloys with amorphous/nano structure show different hydrogen storage properties from that with crystal structure, material design and calculation in atom-size will benefit the development of new metal-based alloys and the understanding of the mechanism of hydrogen storage in alloys. Key words: hydrogen storage alloy; amorphous structure; phase diagram; material design; first-principle calculations

相关文档
最新文档