数学悖论推理题定稿版

数学悖论推理题定稿版
数学悖论推理题定稿版

数学悖论推理题精编

W O R D版

IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

数学悖论推理题

1=2史上最经典的“证明”

设a = b,则a·b = a^2,等号两边同时减去b^2就有a·b - b^2 = a^2 - b^2。注意,这个等式的左边可以提出一个b,右边是一个平方差,于是有b·(a - b) = (a + b)(a - b)。约掉(a - b)有b = a + b。然而a = b,因此b = b + b,也即b = 2b。约掉b,得1 = 2。

这可能是有史以来最经典的谬证了。Ted Chiang在他的短篇科幻小说Division by Zero 中写到:

引用

There is a well-known “proof” that demonstrates that one equals two. It begins with some definitions: “Let a = 1; let b = 1.” It ends with the conclusion “a = 2a,” that is, one equals two. Hidden inconspicuously in the middle is a division by zero, and at that point the proof has stepped off the brink, making all rules null and void. Permitting division by zero allows one to prove not only that one and two are equal, but that any two numbers at all—real or imaginary, rational or irrational—are equal.

这个证明的问题所在想必大家都已经很清楚了:等号两边是不能同时除以a - b的,因为我们假设了a = b,也就是说a - b是等于0的。

无穷级数的力量(1)

小学时,这个问题困扰了我很久:下面这个式子等于多少?

1 + (-1) + 1 + (-1) + 1 + (-1) + …

一方面:

1 + (-1) + 1 + (-1) + 1 + (-1) + …

= [1 + (-1)] + [1 + (-1)] + [1 + (-1)] + …

= 0 + 0 + 0 + …

= 0

另一方面:

1 + (-1) + 1 + (-1) + 1 + (-1) + …

= 1 + [(-1) + 1] + [(-1) + 1] + [(-1) + …

= 1 + 0 + 0 + 0 + …

= 1

这岂不是说明0 = 1吗?

后来我又知道了,这个式子还可以等于1/2。不妨设S = 1 + (-1) + 1 + (-1) + …,于是有S = 1 - S,解得S = 1/2。

学习了微积分之后,我终于明白了,这个无穷级数是发散的,它没有一个所谓的“和”。无穷个数相加的结果是多少,这个是需要定义的。

无穷级数的力量(2)

同样的戏法可以变出更多不可思议的东西。例如,令

x = 1 + 2 + 4 + 8 + 16 + …

则有:

2x = 2 + 4 + 8 + 16 + …

于是:

2x - x = x = (2 + 4 + 8 + 16 + …) - (1 + 2 + 4 + 8 + 16 + …) = -1

也就是说:

1 +

2 + 4 + 8 + 16 + … = -1

平方根的阴谋(1)

定理:所有数都相等。

证明:取任意两个数a和b,令t = a + b。于是,

a +

b = t

(a + b)(a - b) = t(a - b)

a^2 - b^2 = t·a - t·b

a^2 - t·a = b^2 - t·b

a^2 - t·a + (t^2)/4 = b^2 - t·b + (t^2)/4

(a - t/2)^2 = (b - t/2)^2

a - t/2 =

b - t/2

a = b

怎么回事儿?

问题出在倒数第二行。

永远记住,x^2 = y^2并不能推出x = y,只能推出x = ±y。

平方根的阴谋(2)

1 = √1 = √(-1)(-1) = √-1·√-1 = -1

嗯?

只有x、y都是正数时,√x·y = √x·√y才是成立的。

-1?的平方根有两个,i和-i。√(-1)(-1)展开后应该写作i·(-i),它正好等于1。

复数才是王道

考虑方程

x^2 + x + 1 = 0

移项有

x^2 = - x - 1

等式两边同时除以x,有

x = - 1 - 1/x

把上式代入原式中,有

x^2 + (-1 - 1/x) + 1 = 0

x^2 - 1/x = 0

x^3 = 1

也就是说x = 1。

把x = 1代回原式,得到1^2 + 1 + 1 = 0。也就是说,3 = 0,嘿嘿!

其实,x = 1并不是方程x^2 + x + 1 = 0的解。在实数范围内,方程x^2 + x + 1 = 0是没有解的,但在复数范围内有两个解。

另一方面,x = 1只是x^3 = 1的其中一个解。x^3 = 1其实一共有三个解,只不过另外两个解是复数范围内的。考虑方程x^3 - 1 = (x - 1)(x^2 + x + 1) = 0,容易看出x^3 = 1的两个复数解正好就是x^2 + x + 1?的两个解。因此,x^2 + x + 1 = 0与x^3 = 1同时成立并无矛盾。

注意,一旦引入复数后,这个谬论才有了一个完整而漂亮的解释。或许这也说明了引入复数概念的必要性吧。

颇具喜剧色彩的错误

众所周知,

1 +

2 +

3 + … + n = n(n+1) / 2

让我们用n - 1去替换n,可得

1 +

2 +

3 + … + (n-1) = (n-1)n / 2

等式两边同时加1,得:

1 +

2 +

3 + … + n = (n-1)n / 2 + 1

也就是

n(n+1) / 2 = (n-1)n / 2 + 1

展开后有

n^2 / 2 + n / 2 = n^2 / 2 - n / 2 + 1

可以看到n = 1是这个方程的唯一解。

也就是说1 + 2 + 3 + … + n = n(n+1) / 2仅在n = 1时才成立!

这个推理过程中出现了一个非常隐蔽而搞笑的错误。等式两边同时加1后,等式左边得到的应该是

1 +

2 +

3 + … + (n-2) + (n-1) + 1

1块钱等于1分钱?

我要用数学的力量掏空你的钱包!请看:

1?元= 100分= (10分)^2 = (0.1?元)^2 = 0.01?元= 1分

用这个来骗小孩子们简直是屡试不爽,因为小学(甚至中学)教育忽视了一个很重要的思想:单位也是要参与运算的。事实上,“100分= (10分)^2”

是不成立的,“10分”

的平方应该是“100平方分”,正如“10米”

的平方是“100平方米”

一样。

数学归纳法的杯具(1)

下面这个“证明”是由数学家George Pólya给出的:任意给定n匹马,可以证明这n匹马的颜色都相同。

对n施归纳:首先,当n = 1时命题显然成立。若命题对n = k成立,则考虑n = k + 1的情形:由于{#1, #2, …, #k}这k匹马的颜色相同,{#2, #3, …, #k+1 }这k匹马也相同,而这两组马是有重叠的,可知这k+1匹马的颜色也都相同了。

这个证明错在,从n = 1推不出n = 2,虽然当n更大的时候,这个归纳是正确的。这是数学归纳法出错的一个比较奇特的例子:基础情形和归纳推理都没啥问题,偏偏卡在归纳过程中的某一步上。

数学归纳法的杯具(2)

下面,我来给大家证明,所有正整数都相等。

为了证明这一点,只需要说明对于任意两个正整数a、b,都有a = b。

为了证明这一点,只需要说明对于所有正整数n,如果max(a, b) = n,那么a = b。

我们对n施归纳。当n = 1时,由于a、b都是正整数,因此a、b必须都等于1,所以说a = b。若当n = k时命题也成立,现在假设max(a, b) = k + 1。则max(a - 1, b - 1) = k,由归纳假设知a - 1 = b - 1,即a = b。

这个问题出在,a - 1或者b - 1有可能不是正整数了,因此不能套用归纳假设。

所有三角形都是等腰三角形

别以为谬证都是隐藏在数字和字母之中的。下面就是一个经典的几何谬论。

画一个任意三角形ABC。下面我将证明,AB = AC,从而说明所有三角形都是等腰三角

形。

令BC的中垂线与∠A?的角平分线交于点P。过P作AB、AC的垂线,垂足分别是E、F。由于AP是角平分线,因此P到两边的距离相等,即PE = PF。于是,由AAS可知△APE?≌

△APF?。由于DP是中垂线,因此P到B、C的距离相等,由SSS可知△BPD?≌△CPD?。另外,由于PE = PF,PB = PC,且∠BEP =?∠CFP = 90°?,由HL可知△BEP?≌△CFP?。

现在,由第一对全等三角形知AE = AF,由最后一对全等三角形知BE = CF,因此AE + BE = AF + CF,即AB = AC。

这个证明过程其实字字据理,并无破绽。证明的问题出在一个你完全没有意识到的地方——这个图形就是错的!事实上,BC的中垂线与∠A?的角平分线不可能交于三角形的内部。我们可以证明,P点总是落在△ABC?的外接圆上。如图,P是BC的中垂线与外接圆的交点,显然P就是弧BC的中点,即弧BP =弧PC。因此,∠BAP =?∠CAP?,换句话说P恰

好就在∠A?的角平分线上。

P?在△ABC?外的话,会对我们的证明产生什么影响呢?你会发现,垂足的位置发生了本质上的变化—— F?跑到AC外面去了!也就是说,结论AE + BE = AF + CF并不错,只是AF + CF并不等于AC?罢了。

一个可怕的逻辑错误

下面这个勾股定理的“证明”曾经发表在1896年的The American Mathematical Monthly杂志上:

假设勾股定理是正确的,于是我们可以得到

AB^2 = AC^2 + BC^2

BC^2 = CD^2 + BD^2

AC^2 = AD^2 + CD^2

把后两式代入第一个式子,有

AB^2 = AD^2 + 2·CD^2 + BD^2

但CD^2 = AD·BD,因此

AB^2 = AD^2 + 2·AD·BD + BD^2

AB^2 = (AD + BD)^2

AB = AD + BD

而这显然成立。因此,我们的假设也是成立的。

这个证明是错误的。假设结论正确,推出一个矛盾,确实能说明这个假设是错误的(这就是反证法);但假设结论正确,推出它与条件吻合,这却并不能说明假设真的就是正确的。错误的假设也有可能推出正确的结果来。最经典的例子就是,不妨假设1 = 2,由等式的对称性可知2 = 1,等量加等量有1+2 = 2+1?,即3 = 3。但3 = 3是对的并不能表明1 = 2是对的。

如此反证

下面这个有趣的故事来源于Lewis Carroll的一篇题为A Logical Paradox的小论文。Joe?去理发店理发。理发店有A、B、C三位师傅,但他们并不总是待在理发店里。Joe最喜欢C?的手艺,他希望此时C在理发店里。他远远地看见理发店还开着,说明里面至少有一位师傅。另外,A是一个胆小鬼,没有B陪着的话A从不离开理发店。

Joe?推出了这么一个结论:C必然在理发店内。让我们来看看他的推理过程。

反证,假设C不在理发店。这样的话,如果A也不在理发店,那么B就必须在店里了,因为店里至少有一个人;然而,如果A不在理发店,B也理应不在理发店,因为没有B陪着的话A是不会离开理发店的。因此,由“C不在理发店”

同时推出了“若A不在则B一定在”

和“若A不在则B也一定不在”

两个矛盾的结论。这说明,“C不在理发店”

的假设是错误的。

从已有的条件看,C当然有可能不在理发店。但是,为什么Joe竟然证出了C一定在理发店呢?因为他的证明是错的。其实,“若A不在则B一定在”

和“若A不在则B也一定不在”

并不矛盾——如果事实上A在理发店,那么这两个条件判断句都是真的。“若A不在则B 一定在”

真正的否定形式应该是“A不在并且B也不在”。

自然语言的表达能力

我曾在《另类搞笑:自我指涉例句不完全收集》一文中写过:

引用

定理:所有的数都可以用20个以内的汉字表达(比如25852016738884976640000可以表达为“二十三的阶乘”,100000000000000000000000可以表达为“一后面二十三个零”)

证明:反证,假设存在不能用20个以内的汉字表达的数,则必有一个最小的不能用20个以内的汉字表达的数,而这个数已经用“最小的不能用20个以内的汉字表达的数”表达出来了,矛盾。

当然,这个定理明显是错的,因为20个汉字的组合是有限的,而数是无限多的。这个证明错在哪儿了呢?我也没办法一针见血地道出个所以然来,大家一起来讨论吧。

有趣的是,我们有一个与之相关的(正确的)定理:存在一个实数,它不能用有限个汉字来表达。这是因为,有限长的汉字字符串是可数的,而实数是不可数的。更有趣的是,这个定理的证明必然是非构造性的。

两边同时取导数(1)

取一个正整数N。则有

N^2 = N + N + N + … + N?(N个N)

两边同时取导数,有

2N = 1 + 1 + 1 + … + 1 = N

两边同时除以N,得

2 = 1

数学威武!

这个推理是有问题的(废话)。随着N的增加,等式右边的N的个数却没变,因此N^2的增长率比等式右边更大。

两边同时取导数(2)

令x = 1,两边同时取导数,1 = 0。哈哈!

问题出在哪儿?这里有意略去答案不写,呵呵。

链式法则也出错?

下面这个例子告诉我们,数学符号混淆不得,分清每个数学符号的意义有多重要。

定义f(x, y) := (x + y)^2,然后令x = u - v,令y = u + v。我们有:

f/x = f/y = 2(x + y)

x/v = -1

y/v = +1

根据链式法则,有

f/v = (f/x)·(x/v) + (f/y)·(y/v)

= 2(x + y)·(-1) + 2(x + y)·(1)

= 0

但是,f(u, v) = (u + v)^2,因此f/v = 2(u + v) = 2y?。这岂不是说明y = 0了么?但是,条件里并没有什么地方规定y = 0呀这怎么回事

问题出在,整个推理过程把两个不同的函数都用f来表示了。事实上,一个函数是f(x, y) := (x + y)^2,另一个函数是F(u, v) = f(u - v, u + v) = (2u)^2。链式法则求的并不是f/v?,而是F/v?。

不定积分的困惑

我们尝试用分部积分法求解∫ (1/x) dx。

令u = 1/x,dv = dx

du = -1/x^2 dx?,v = x

于是∫ (1/x) dx = (1/x)x - ∫ x(-1/x^2) dx = 1 + ∫ (1/x) dx

怎么回事?

不怎么回事。这个等式是成立的。别忘了,不定积分的最后结果要加上一个常数C。

记得学高数时,求一积分,两哥们儿做出来的答案差别很大,而且试了很久也没能把其中一个答案变形成另外一个。后来终于恍然大悟:他们的答案是有可能不相同的,可以差一个常数嘛!

貌似漏掉了什么

很多Goldbach猜想、孪生素数猜想的“证明”都栽在了下面这个有时候很不容易注意到漏洞。

让我们来证明一个看上去有些不可思议的结论:π^e是一个有理数。首先注意到,对任意有理数r,logπr?都是无理数,否则令s = logπr,我们就有π^s = r,这与π是超越数矛盾。

现在,假设π^e是无理数,也就是说对任意有理数r,π^e都不等于r。这也就是说,对任意一个r?,logππ^e都不等于logπr。由前面的结论,logππ^e就不等于任意一个无理数。但logππ^e是等于e的,这与e的无理性矛盾了。因此,我们的假设是错的——π^e?是一个有理数。

对于有理数r,logπr确实是无理数;但遍历所有的有理数r,并不能让logπr遍历所有的无理数,而e正好就等于某个漏掉的无理数。

不过,也不要想当然地认为,π^e当然是一个无理数。目前为止,π^e是否有理还是一个谜。

一年级数学思维推理题(最新整理)

每个图形代表一个数,你能算出这个数是多少吗? (1 7=2 ○+(2=3 =()○=()=()() (34=8 ○(4=0 =()○=()=()=() (5)5+○=7 +○=10 (6)○10—=8 ○=()=()○=( ) =( ) =( ) □+□+○+○=10□=( ) ○=( ) (8)5+○=9 ○=10 (9)○—=5 8— ○=()○=( ) =( ) (9+□=9○ □=( ) ○=(() (10+○=10○+ ○=(() □□+□+□=3 ()□=( )

“” “” At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!

世界十大驳论的最终解答

(一)电车难题(The Trolley Problem) 引用: 一、“电车难题”是伦理学领域最为知名的思想实验之一,其内容大致是:一个疯子把五个无辜的人绑在电车轨道上。一辆失控的电车朝他们驶来,并且片刻后就要碾压到他们。幸运的是,你可以拉一个拉杆,让电车开到另一条轨道上。但是还有一个问题,那个疯子在那另一条轨道上也绑了一个人。考虑以上状况,你应该拉拉杆吗? 解读: 电车难题最早是由哲学家Philippa Foot提出的,用来批判伦理哲学中的主要理论,特别是功利主义。功利主义提出的观点是,大部分道德决策都是根据“为最多的人提供最大的利益”的原则做出的。从一个功利主义者的观点来看,明显的选择应该是拉拉杆,拯救五个人只杀死一个人。但是功利主义的批判者认为,一旦拉了拉杆,你就成为一个不道德行为的同谋——你要为另一条轨道上单独的一个人的死负部分责任。然而,其他人认为,你身处这种状况下就要求你要有所作为,你的不作为将会是同等的不道德。总之,不存在完全的道德行为,这就是重点所在。许多哲学家都用电车难题作为例子来表示现实生活中的状况经常强迫一个人违背他自己的道德准则,并且还存在着没有完全道德做法的情况。 引用完毕。 Das曰: 人,应当为自己的行为负责,这里的“行为”是什么意思?人为自己的行为负责的理论依据是什么? 承认人具有自由意识——这是法律和道德合理化的基础。不承认自由意识存在,也就否认了一切法律和道德的合理性。如果一个人杀人放火是由于童年的遭遇、社会的影响、政府的不公正待遇等外界客观因素所决定的——罪犯本身的原因不是决定性因素——我们就没有权利依据任何法律对这个人进行惩罚。他杀人放火是由于其他原因,是他本身不可改变的,惩罚这个人显然是不合理的,惩罚他也于事无补、毫无用处。 人具有自由意识,可以做出自由选择,并且他应当对自己的选择负责任——这是一切法律和道德合理化的最根本基础。 那么,我们现在可以解释“行为”是什么意思:行为,是人在所有可能性中做出的一个唯一的选择。 今天早晨你可以选择吃包子,也可以选择吃油条。结果你吃了包子,这是你的行为、你选择的结果。问题是吃包子或者吃油条,这并不是“所有可能性”,你也可以选择什么也不吃,选择饿肚子减肥。作为一个理性人,你应当预见到饿肚子减肥可能造成身体伤害,你选择了饿肚子减肥这种行为,就应当为这种行为负责。 行为并不是行动,你什么也不干也是一种选择,因而也是一种行为。 我们将这个思想实验稍作修改,就可以看到什么也不干确实是一种实实在在的行为:加入电车的前方帮着5个人,你拉动一下拉杆就能使将电车驶向岔道——而岔道上什么也没有,不会造成任何危害。这时候你动不动拉杆呢?如果你不拉,你什么也不干,眼睁睁看着五个人被轧死,这显然是不道德行为——你本来有选择的余地,轧死五个人并不是唯一可能的结果,你只要举手之劳就能挽救五个人的生命,但是你选择了什么也不干,你就应当

小学数学《推理问题》 练习题(含答案)

小学数学《推理问题》练习题(含答案) 知识要点 我们在解数学题时,常常要根据题目中给出的已知条件和要求的问题,分析数量关系,再列式解答出来。而也有一类题,它们的已知条件没有给出具体的数据,只凭一些文字语言的叙述或一些情节的分析就要求得出结论,这也就是我们常说的一类数学问题——逻辑推理问题。 解决这类问题,基本上不需要数学计算,但需要有严密的逻辑推理能力。要能抓住题中的关键,找出解决问题的突破口,从而进行合乎逻辑的推理,作出正确的判断,使问题得以解决。 解题指导1 【例1】有五个人进行汽车竞速赛,他们没有比成平局,而是先后到达的。威尔不是第一个,约翰不是第一也不是最后一个,琼在威尔后面到达,詹姆不是第二个,瓦尔特在詹姆后到达。五个到达的顺序怎样? 【思路点拨】 。 詹姆不是第二个,瓦尔特在詹姆后到达。所以只能詹姆第一名,瓦尔特就是第二名, 约翰第三,威尔第四,琼第五。 答:詹姆第一,瓦尔特第二,约翰第三,威尔第四,琼第五。 总结:用“列表方法”把复杂问题加以条理化是解决“逻辑推理问题”的有效方法。 【变式题1】有张、李、王、刘四位老师分别教数学、语文、美术、英语。张老师可以教语文、美术;李老师可以教数学、英语;王老师可以教数学、语文、美术;刘老师只能教美术。为了使每人都能胜任工作,那么教数学的是哪位老师? 解题指导2 2.在推理问题中,常常遇到判断说假话真话的问题,这时我们常用假设的方法,淘汰掉不成立的说法,从而判断出正确的结论。 【例2】我国有“三山五岳”之说,其中五岳是指:东岳泰山,南岳衡山,西岳华山,北岳恒山和中岳嵩山。一位老师拿出这五座山的图片,并在图片上标出数字,他让五位学生来辨别,每人说出两个,学生的回答如下: 甲:2是泰山,3是华山;

悖论及其对数学发展的影响

悖论及其对数学发展的影响 【开场白:一个传说】一个讼师招收徒弟时约定,徒弟学成后第一场官司如果打赢,则交给师傅一两银子,如果打输,就可以不交银子。后来,弟子满师后却无所事事,迟迟不参与打官司。老讼师得不到银子,非常生气,告到县衙里,和这位弟子打官司。这位弟子却不慌不忙地说:“这场官司如果我打赢了当然不给您银子,如果打输了按照约定也不交给您银子,反正我横竖不交银子。”一句话把老讼师给气死了。 类似的: 1)我正在说谎?!! 2)鸡与鸡蛋何为先? 一、悖论的定义 “悖论”(英语:Paradox,俄语:Πарадокс)的字面意思是荒谬的理论,然而其内涵远没有这么简单,它是在一定理论系统前提下的看起来没有问题的矛盾。 关于悖论,目前并没有非常权威性1 的定义,以下的解释,在一定程度上是合理的。 通常认为,一个论断,如果不论是肯定还是否定它,都会导出一个与原始判断相反的结论,而要推翻它却又很难给出正当的根据时,这种论断称为悖论;或者,如果一个命题及其否定命题均可以用逻辑上等效的推理加以证明,而其推导又无法明确提出错误时,这种自相矛盾的命题叫做悖论。这种“定义”,比单纯从字面理解有所细化,也比较容易理解,但仍不够准确。 下述说法是A.A.富兰克尔给出的:如果某种理论的公理及其推理规则看上去是合理的,但在这个理论中却推出了两个互相矛盾的命题,或者证明了这样一个复合命题,它表现为两个矛盾命题的等价式,我们称这个理论包含了一个悖论。这里强调了悖论是依赖于一定的理论体系的,但是,只是说,某个理论体系包含了悖论,而没有言明什么是悖论。 悖论不同于通常的诡辩或谬论。诡辩、谬论可以通过已有的理论、逻辑论述其错误的原因,是与现有理论相悖的;而悖论虽感其不妥,但从它所在的理论体系中,不能阐明其错误的原因,是与现有理论相容的。悖论是(在当时)解释不了的矛盾。 悖论蕴涵真理,但常被人们描绘为倒置的真理; 悖论富有魅力,既让您乐在其中,又使您焦躁不安,欲罢不能; 数学历史中出现的悖论,为数学的发展提供了契机。 二、悖论的起源 起源之一:芝诺悖论(公元前五世纪) 芝诺(Zenon Eleates,约公元前490年——约公元前429年)出生于意大利南部的埃利亚(Elea)城,是古希腊埃利亚学派的主要代表人物之一。他是古希腊著名哲学家巴门尼德(Parmennides)的学生。他否定现实世界的运动,信奉巴门尼德关于世界上真实的东西只能是“唯一不动的存在”的信条。在他那个时代,人们对时间和空间的看法有两种截然不同的观点。一种观点认为,空间和时间无限可分,运动是连续而又平顺的;另一种观点则认为,时间和空间是由一小段一小段不可分的部分组成,运动是间断且跳跃的。芝诺悖论是针对上述二观点而提出的。他关于运动的四个悖论,被认为是悖论的起源之一。其中前两个悖论是针对那种连续的时空观而提出的,后两个悖论则是针对间断时空观提出的。 (1) 一物体要从A点到达B D点;而要到达D点,又必先抵达其1/8处之E点。如此下去,永无止境,因此,运动不可能存在。

《四次数学危机与世界十大经典数学悖论》

《“四次”数学危机与世界十大经典数学悖论》 “四次”数学危机 第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。 最后,这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。 我认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的,都无法用来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。 第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,微积分的雏形早在古希腊时期就形成了,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到2100年后,牛顿和莱布尼兹开辟了新的天地——微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾.焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢? 直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。 而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。 第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。 我从很早以前就读过“理发师悖论”,就是一位理发师给不给自己理发的人理发。那

最新类比推理题库及标准答案

类比推理题库及标准答案 (类比推理部分) 1、作家:读者 A.售货员:顾客 B.主持人:广告 C.官员:腐败 D.经理:秘书 【解答】此题属于专业人员与其面对的对象之间的类比推理题,故正确答案为A。 2、水果:苹果 A.香梨:黄梨 B.树木:树枝 C.经济适用房:奔驰 D.山:高山 【解答】该题题干中水果与苹果两个词之间是一般和特殊的关系,所以答案为选项D。选项B的两个词之间的关系是整体与部分的关系。 3、努力:成功 A.原告:被告 B.耕耘:收获 C.城市:福利 D.扩招:失业 【解答】努力与成功两个词具有因果关系,即只有努力才能成功或者说努力是成功必不可少的原因之一,故正确答案为B。 4、书籍:纸张 A.毛笔:宣纸 B.橡皮:文具盒 C.菜肴:萝卜 D.飞机:宇宙飞船 【解答】此题属于物品与制作材料的推理关系,故正确答案为C。 5、馒头:食物 A.食品:巧克力 B.头:身体 C.手:食指 D.钢铁:金属 【解答】此题属于特殊与一般的推理关系,故正确答案为D。 6、稻谷:大米 A.核桃:桃酥 B.棉花:棉子 C.西瓜:瓜子 D.枪:子弹 【解答】因为稻谷是大米的惟一来源,而棉花是棉子的惟一来源,故正确答案为B。 7、轮船:海洋 A.河流:芦苇 B.海洋:鲸鱼 C.海鸥:天空 D.飞机:海洋 【解答】此题属于物体与其运动空间的类比推理题,故正确答案为C。 8、芙蕖:荷花 A.兔子:嫦娥 B.窑洞:官邸 C.伽蓝:寺庙 D.映山红:蒲公英 【解答】因为芙蕖是荷花的书面别称,而伽蓝是寺庙的书面别称,故正确答案为C。 9、绿豆:豌豆 A.家具:灯具 B.猴子:树木 C.鲨鱼:鲸鱼 D.香瓜:西瓜 【解答】选项C中的鲸鱼其实不是鱼,而是哺乳动物,故正确答案为D。 10、汽车:运输 A.捕鱼:鱼网 B.编织:鱼网 C.鱼网:编织 D.鱼网:捕鱼 【解答】此题属于工具与作用的类比推理题,故正确答案为D。 11、医生:患者 A.工人:机器 B.啄木鸟:病树 C.警察:罪犯 D.法官:律师 答案:B 12、紫竹:植物学家 A.金属:铸工 B.铁锤:石头 C.动物:植物 D.蝴蝶:昆虫学家 答案:D 13、老师:学生 A.教师:职工 B.编辑:读者 C.师傅:学徒 D.演员:经济人 答案:C 14、书法:艺术 A.抢劫:犯罪 B.鲁迅:周树人 C.历史:世界史 D.权力:金钱 答案:A

世界十大著名悖论

世界十大著名悖论。 来自: 哔。黑猫警嫂。(Dream maker, heart breaker.) 2011-11-30 18:34:34 十个著名悖论的最终解答 (一)电车难题(The Trolley Problem) 引用: 一、“电车难题”是伦理学领域最为知名的思想实验之一,其内容大致是:一个疯子把五个无辜的人绑在电车轨道上。一辆失控的电车朝他们驶来,并且片刻后就要碾压到他们。幸运的是,你可以拉一个拉杆,让电车开到另一条轨道上。但是还有一个问题,那个疯子在那另一条轨道上也绑了一个人。考虑以上状况,你应该拉拉杆吗? 解读: 电车难题最早是由哲学家Philippa Foot提出的,用来批判伦理哲学中的主要理论,特别是功利主义。功利主义提出的观点是,大部分道德决策都是根据“为最多的人提供最大的利益”的原则做出的。从一个功利主义者的观点来看,明显的选择应该是拉拉杆,拯救五个人只杀死一个人。但是功利主义的批判者认为,一旦拉了拉杆,你就成为一个不道德行为的同谋——你要为另一条轨道上单独的一个人的死负部分责任。然而,其他人认为,你身处这种状况下就要求你要有所作为,你的不作为将会是同等的不道德。总之,不存在完全的道德行为,这就是重点所在。许多哲学家都用电车难题作为例子来表示现实生活中的状况经常强迫一个人违背他自己的道德准则,并且还存在着没有完全道德做法的情况。 引用完毕。 Das曰: 人,应当为自己的行为负责,这里的“行为”是什么意思?人为自己的行为负责的理论依据是什么? 承认人具有自由意识——这是法律和道德合理化的基础。不承认自由意识存在,也就否认了一切法律和道德的合理性。如果一个人杀人放火是由于童年的遭遇、社会的影响、政府的不公正待遇等外界客观因素所决定的——罪犯本身的原因不是决定性因素——我们就没有权利依据任何法律对这个人进行惩罚。他杀人放火是由于其他原因,是他本身不可改变的,惩罚这个人显然是不合理的,惩罚他也于事无补、毫无用处。 人具有自由意识,可以做出自由选择,并且他应当对自己的选择负责任——这是一切法律和道德合理化的最根本基础。 那么,我们现在可以解释“行为”是什么意思:行为,是人在所有可能性中做出的一个唯一的选择。 今天早晨你可以选择吃包子,也可以选择吃油条。结果你吃了包子,这是你的行为、你选择的结果。问题是吃包子或者吃油条,这并不是“所有可能性”,你也可以选择什么也不吃,选择饿肚子减肥。作为一个理性人,你应当预见到饿肚子减肥可能造成身体伤害,你选择了饿肚子减肥这种行为,就应

数学悖论与三大危机

数学悖论 默认分类2010-05-20 10:20:02 阅读20 评论0 字号:大中小订阅 数学的基础是什么? 1. 定义 2. 公理 3. 逻辑 首先说公理的陈述,这就是一个很麻烦的事情。在你的公理中一定会有很多名词,比如点,线,等等,因此似乎需要先定义这些最基本的名词。但当你尝试作这样的定义的时候,你会发现你还是无从下手,无论你怎么定义它们,你都会引入其它未定义的名词。其实在逻辑上,对最基本的名词的定义就是不可能的事情。我们采用的办法就是使用未经定义的最基本的名词来陈述公理,在公理中同时也就给出了这些对象的 属性。 再说逻辑,比如最基本,最有名的三段论。 大前提:人都会死。 小前提:亚里士多德是人。 结论:亚里士多德会死。 粗看,我们得到这个结论一点问题都没有。但你仔细想想,是什么原因我们可以使用这样的推导?我们采用这样的方法进行推导就一定不会出现问题吗?能否证明这样的推导过程就一定是正确的?其实这是一个没有办法证明的问题。但我们的实践经验告诉我们这样的推导是不会有问题的,是正确的。因此我们也同样采用公理的方法确定下来三段论的逻辑推导方法是正确的。在逻辑上,这样的例子还有很多。 由此,可以看出,数学的基础就是公理。数学只是公理集之上的推导和演绎。推导和演绎的基础仍然是公 理。 “……古往今来,为数众多的悖论为逻辑思想的发展提供了食粮。”——N·布尔巴基 一、悖论的历史与悖论的定义 悖论的历史源远流长,它的起源可以一直追溯到古希腊和我国先秦时代。“悖论”一词源于希腊文,意为“无路可走”,转义是“四处碰壁,无法解决问题”。 在古希腊时代,克里特岛的哲学家伊壁门尼德斯(约公元前6世纪)发现的“撒谎者悖论”可以算作人们最早发现的悖论。公元前4世纪的欧布里德将其修改为“强化了的撒谎者悖论”。在此基础上,人们构造了一个与之等价的“永恒的撒谎者悖论”。埃利亚学派的代表人物芝诺(约490B.C.—430B.C.)提出的有关运动的四个悖论(二分法悖论、阿基里斯追龟悖论、飞矢不动悖论与运动场悖论)尤为著名,至今仍 余波未息。 在中国古代哲学中也有许多悖论思想,如战国时期逻辑学家惠施(约370B.C.—318B.C.)的“日方中方睨,物方生方死”、“一尺之棰,日取其半,万世不竭”;《韩非子》中记载的有关矛与盾的悖论思想等,这些悖论式的命题,表面上看起来很荒谬,实际上却潜伏着某些辨证的思想内容。 在近代,著名的悖论有伽利略悖论、贝克莱悖论、康德的二律背反、集合论悖论等。在现代,则有光速悖论、双生子佯谬、EPR悖论、整体性悖论等。这些悖论从逻辑上看来都是一些思维矛盾,从认识论上 看则是客观矛盾在思维上的反映。 尽管悖论的历史如此悠久,但直到本世纪初,人们才真正开始专门研究悖论的本质。在此之前,悖论只能引起人们的惊恐与不安;此后,人们才逐渐认识到悖论也有其积极作用。特别是本世纪60、70年代以 来,出现了研究悖论的热潮。

小学数学《推理问题》练习题(含答案)

小学数学《推理问题》练习题(含答案) 解题指导1 【例1】有五个人进行汽车竞速赛,他们没有比成平局,而是先后到达的。威尔不是第一个,约翰不是第一也不是最后一个,琼在威尔后面到达,詹姆不是第二个,瓦尔特在詹姆后到达。五个到达的顺序怎样? 【思路点拨】 。 詹姆不是第二个,瓦尔特在詹姆后到达。所以只能詹姆第一名,瓦尔特就是第二名, 约翰第三,威尔第四,琼第五。 答:詹姆第一,瓦尔特第二,约翰第三,威尔第四,琼第五。 总结:用“列表方法”把复杂问题加以条理化是解决“逻辑推理问题”的有效方法。 【变式题1】有张、李、王、刘四位老师分别教数学、语文、美术、英语。张老师可以教语文、美术;李老师可以教数学、英语;王老师可以教数学、语文、美术;刘老师只能教美术。为了使每人都能胜任工作,那么教数学的是哪位老师? 解题指导2 2.在推理问题中,常常遇到判断说假话真话的问题,这时我们常用假设的方法,淘汰掉不成立的说法,从而判断出正确的结论。 【例2】我国有“三山五岳”之说,其中五岳是指:东岳泰山,南岳衡山,西岳华山,北岳恒山和中岳嵩山。一位老师拿出这五座山的图片,并在图片上标出数字,他让五位学生来辨别,每人说出两个,学生的回答如下: 甲:2是泰山,3是华山; 乙:4是衡山,2是嵩山; 丙:1是衡山,5是恒山; 丁:4是恒山,3是嵩山; 戊:2是华山,5是泰山。 老师发现五个学生都只说对了一半,那么正确的说法应该是什么呢? 【思路点拨】采用假设法解决,因为每人说两句话,总有一句是对的,先假设甲第一句话对,第二句话则是错的,则乙说的2是嵩山是错误的,可推出4是衡山是正确的,由此可推出丙说1号是衡山是错的,那么5是恒山是正确的,由此推出丁说4是恒山是错误的,那么3是嵩山是正确的。因为5是恒山,所以5是泰山是错误的,2号是泰山,所以2号不是

十大著名的哲学假设

世界上最著名的十大思想实验 思想实验,哲学家或科学家们常常用它来论证一些容易让人感到迷惑的理念或假说,主要用于哲学或理论物理学等较为抽象的学科,因为这类实验往往难以在现实世界中开展。这些实验看似简单,其间却蕴含着很多“剪不断、理还乱”的哲理。它们就像是一顿丰盛的精神盛宴,等待餐客前来饕餮。然而,这类盛宴往往菜式复杂,并非人人都能“饱餐一顿”。因此,我们列出世界上最有名的十大思想实验,并在哲学、科学或伦理方面对这些实验进行了阐释: 10. 电车难题(The Trolley Problem)

“电车难题”是十分有名的伦理学思想实验,其内容如下:一个疯子将5名无辜的人绑在一条手推车轨道上,而一辆失控的电车正向他们冲去。幸运的是,你可以拉动操纵杆将电车转至另一轨道。然而,该名疯子在那条轨道上也绑了一个人。此时此刻,这根操纵杆,你拉,还是不拉? 深度解析: 这道“电车难题”由哲学家菲利帕·富特(Philippa Foot)提出,目的在于批判伦理学的主要理论,特别是其中的功利主义(utilitarianism)。此类理论认为,“将大多数人的利益最大化”才是最道德的。根据功利主义哲学,牺牲1个人可以挽救5个人,则毫无疑问应该拉动操纵杆。但这样做的问题在于,拉了操纵杆,你就成为杀死“1个人”的同谋,那么很明显你做了一件不道德的事,因为你对此人之死负有部分责任。同时,还有人认为,但凡遇到这种情况,你就必须有所作为,不作为同样会被视为不道德。简而言之,不管你做不做、怎样做,都无法让自己在道德的世界里无懈可击,而这正是问题之关键。很多哲学家都以“电车难题”来说明:在现实世界中,人们通常会让自己的道德标准不断妥协,因为真实而完满的道德,并不存在于这个世上。 9. 奶牛在田野(The Cow in the Field)

《数学广角──推理》同步试题(附解析)

《数学广角──推理》同步试题 一、填空 1.下面三个小朋友分别有13张、20张和15张画片。 小丽有()张画片。 考查目的:考查学生简单的推理能力。 答案:13。 解析:根据小明的“我的画片不是最少的”可以推理小明可能是15张或是20张;又由小东说“我比小明多”可以推理小东是最多的,是20张。那么小丽就是最少的13张。 2.小红、小丽、小明三人分别拿着《故事书》《漫画书》和《科技书》。小红说:我拿的不是《漫画书》,小明说:我拿的是《故事书》,小丽拿的是()。 考查目的:考查学生简单的推理能力。 答案:《漫画书》。 解析:根据小红的“我拿的不是《漫画书》”可以推理,小红拿的可能是《故事书》或《科技书》;又由小明说“我拿的是《故事书》”可以推理,小红拿的是《科技书》,那么小丽拿的就是《漫画书》。 3.

考查目的:学生根据方格中行与列的数据进行推理,从而解决问题,培养他们的逻辑思维和推理能力。 答案: 解析:先从A入手填,A所在的行和列已经出现了4、2、3,所以A是1。进而确定A 所在的列的空方格应填4。B所在的行和列已有4、1、2,所以B是3。 二、连线 1.

考查目的:学生体验推理过程,掌握用连线法进行推理。 答案: 解析:先由“第1台电脑最便宜”,确定第1台电脑是3498元;再由“第2台电脑不是最贵的”的条件,推断第3台电脑最贵,是6900元;因此第2台电脑是5412元。当然还有不同的推断方法,只要合理即可。 2.根据下面的条件,把小朋友和他们各自对应的玻璃球数量连起来。 (1)小明的玻璃球比小东多。(2)小丽的玻璃球比小明少。(3)小东的玻璃球比小丽多。

几个有趣的悖论的数学辨析

几个有趣的悖论的数学辨析 数学悖论是数学发展过程中的一个重要的存在形态, 它是数学体系中出现的一种尖锐的矛盾, 对于这一矛盾的处理与研究, 丰富了数学的容, 促进了数学的发展。作为一名数学教师, 学习有关这方面的知识, 并进行研究, 既能提高自己的专业水平, 又能使授课容生动有趣; 作为学生了解这方面的容,不但能扩大知识面, 而且能提高学习兴趣 1 芝诺悖论 在西方的数学史上有一个非常有名的数学悖论——芝诺悖论。芝诺是公元五世纪古希腊埃利亚学派的代表人物。芝诺本人既不是一位科学家, 更不是一位数学家, 芝诺的老师是埃利亚学派的创始人巴门尼德。巴门尼德是个一神论者, 他认为世界的本原是“不生不灭、完整、唯一和不动的”。但世界显然是丰富多彩、复杂纷繁的,怎么会是“唯一” 的呢?一个完全不动的世界怎么可能呢? 于是引起同时代人的反驳。芝诺为了捍为他老师的学说, 提出了一些论述。其中最有名的有四个, 历史上称为芝诺悖论。作为巴门尼德的继承人, 他力图证明, 如果承认“ 多” 和“ 运动” , 就会招致更加荒谬的结果。限于篇幅, 在此只辑录其二。 二分法: 你不能在有限的时间穿过无穷的点。在你穿过一定的距离的全部之前, 你必须穿过这个距离的一半。这样做下去就会陷入无止境, 所以在任何一定的空间中都有无穷个点, 你不能在有限的时间中一个接一个地接触无穷个点。

阿喀琉斯追不上大乌龟: 阿喀琉斯是古希腊《荷马史诗》中一个跑得最快的大英雄, 他怎么会跑不过大乌龟呢? 假定他的速度是乌 龟的10倍, 阿喀琉斯与乌龟赛跑的路程是1千米, 让乌龟先跑1 10 千 米, 然后让阿喀琉斯去追。于是问题来了。当阿喀琉斯追到1 10 千 米的地方, 乌龟又向前跑了 1 100千米, 当阿喀琉斯又追到 1 100 千米时, 乌龟又向前跑了 1 10000千米, … …, 这样一来, 一直追下 去, 阿喀琉斯会追上大乌龟吗? 之所以说这两个论证是悖论, 是因为我们知道, 无论是谁, 不管身高身低, 只要一迈步, 都可以在有限的时间越过无穷多个点; 无论是谁, 都不会相信大英雄阿喀琉斯竟会跑不过大乌龟。然而在当时的人们的知识围, 却找不出芝诺的论证错在什么地方。 1 . 1 芝诺悖论的数学意义 芝诺的“二分法” 和“ 阿喀琉斯追不上大乌龟”的论证, 本意是要用结论的荒谬性来否定其前提关于时空的可无限分割的观点, 该两个论证与另外两个论证(“ 飞箭” 与“ 运动场” ) 组合得出了时空既是不可无限分割, 又是可以无限分割的矛盾结论。“ 芝诺悖论” 促进了以严格的思维规律为研究对象的逻辑学和以严格的求证思想为基础的数学的发展。芝诺论证问题的方法是我们今天数学中仍在使用的反证法。可以说, 这是对反证法的最早的运用。大家知道, 当一个数学命题无法直接证明时, 我们就求助于反证法。

数学悖论、数学危机及其对数学的推动作用

数学悖论、数学危机及其对数学的推动作用 数学悖论、数学危机及其对数学的推动作用 悖论是让数学家无法回避的问题。悖论出现使得数学体系出现不可靠性和失真理性,这就逼迫数学家投入最大的热情去解决它。而在解决悖论的过程中,各种理论应运而生了,因而悖论在推动数学发展中的巨大作用。现在我作如下简单阐述:毕达哥拉斯学派认为“万物皆数”,而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”.毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。这却在当时的数学界掀起了一场巨大风暴。这一伟大发现不但对毕达哥拉斯学派的致命打击,也对于当时所有古希腊人的观念这都是一个极大的冲击。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”. 二百年后,欧多克索斯提出的新比例理论暂时消除悖论。一直到18世纪,当数学家证明了圆周率是无理数时,拥护无理数存在的人才多起来。到十九世纪下半叶,现在意义上的实数理论建

立起来后,无理数本质被彻底搞清,无理数在数学中合法地位的确立,一方面使人类对数的认识从有理数拓展到实数,另一方面也真正彻底、圆满地解决了第一次数学危机。 伴随着人们科学理论与实践认识的提高,十七世纪微积分诞生,但是微积分理论是不严格的。理论都建立在无穷小分析之上,作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。 数学史上把贝克莱的问题称之为“贝克莱悖论”.笼统地说,贝克莱悖论可以表述为“无穷小量究竟是否为0”的问题:就无穷小量在当时实际应用而言,它必须既是0,又不是0.但从形式逻辑而言,这无疑是一个矛盾。这一问题的提出在当时的数学界引起了一定的混乱,由此导致了第二次数学危机的产生。 十八世纪开始微积分理论获得了空前丰富。然而,与此同时十八世纪粗糙的,不严密的工作也导致谬误越来越多的局面。当时数学中出现的混乱局面了。尤其到十九世纪初,傅立叶理论直接导致了数学逻辑基础问题的彻底暴露。这样把分析重新建立在逻辑基础之上就成为数学家们迫在眉睫的任务。到十九世纪,批判、系统化和严密论证的必要时期降临了。 使分析基础严密化的工作由法国著名数学家柯西迈出了第一大步。柯西于1821年开始给出了分析学一系列基本概念的严格定义。后来,德国数学家魏尔斯特拉斯给出更为完善的我们目前所

战略管理十大悖论(doc5)

战略管理十大悖论 一、理论VS创造性 战略思维的本质应该是什么?无论是战略实践者还是战略理论研究人员对这一问题都存在着截然不同的认识。有人认为,战略思维是一种最为复杂的分析推理方式,它表现出建立在严谨推理基础上的理性;而另一些人则认为战略思维从本质上来讲就是打破正统的信条和思维模式,进行富有创造性和非常规的思维。因此对战略思维的不同认识便产生了理性与创造性之间的悖论。 基于理性的战略思维的认知模式是分析性的,其推理过程依赖于正式和固定的规则,表现出了计算的性质,同时强调严谨和一致性,对于现实的假设是客观和可认知的,战略决策完全基于计划,因此从这些方面来看,战略可以被认为是一门科学。 而与此相对应,基于创造性的战略思维的认知模式是直觉性的,其推理过程依赖于非正式和可变的规则,表现出了想象的性质,它强调的是非正统和洞察力,对于现实的假设则是主观和可创造性的,战略决策完全基于判断,因此在这里,战略变成了一门艺术。 二、深思熟虑VS随机应变 第一个悖论体现了表现在个体上的战略思维过程,而第二个悖论则反映了组织中的战略是如何形成的,以及形成过程的本质是什么。一方面,有人认为组织是以一种深思熟虑的方式来制定战略,即首先制定明晰的、综合全面的计划,然后再逐一实施而也有人认为现实中的大部分战略是在一段时间中实时出现的,它们之间呈现出一种不连续变化,甚至更有人极端地提出组织中事实上存在着“战略缺失”。 视战略形成的过程为深思熟虑的一派认为,战略是刻意设计的,而战略的形成是计算出来的,因此形成的过程是规范化和结构化的,其步骤是先思考后行动,因此他们视战略为一系列决策,强调资源的最优配置和协调,对未来的发展视为可预测的,因此对于未来的工作是积极投入,做好准备,战略实施则强调程序化和组织的效率。 与此相对应,视战略形成过程为随机应变的一派认为,战略是逐渐形成的,而战略的形成是发现出来的,形成的过程则是非结构化和分散的,其步骤是思考和行动结合在一起,他们视战略为一系列行动,强调不断的试验和首创行动,对未来的发展视为不可知和难以预测的,因此对于未来的工作是保持战略的柔性而非积极投人,战略实施则强调学习和组织的发展。 三、突变VS渐变 随着科技的迅速发展、竞争程度的不断加剧以及消费者偏好等的快速变化,企业所处的环境日益呈现出动态化的特征,因此企业的战略也不得不进行动态调整和更新,战略更新的方式便成了一个重要的研究内容。战略更新应该在企业现有的状态上逐渐演变还是进行脱胎换骨的突变?战略更新应该是逐渐的、连续的还是大幅度的、不连续的?对于战略更新的形式和性质存在着不同的看法和观点。 一部分战略学者认为,企业中的战略更新应该以一种突变的方式推进,通过采取激进的、快速的和全面的措施来实施战略更新;而另一部分战略学者认为,战略更新应该通过渐变的方式加以实施,更多地强调持续性的学习和连续性的改善,因此采用的是一种持续变化的方式。由此产生了战略更新的突变和渐变之间的悖论。 采用非连续变化视角的观点视战略更新为破坏性的创新和转折,因此战略更新过程就是

中小学数学智力竞赛数学逻辑推理题

全国中小学逻辑思维题(数学部分)[精选·附答案] 【1】假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。 问题是如何只用这2个水壶从池塘里取得3升的水。 解: 记5升的水壶为A,6升的水壶为B。 装满B,将B中水倒入A至A满,然后倒掉A,将B中剩余水倒入A中,则此时A 中有水1升; 装满B,将B中水倒入A至A满,然后倒掉A,将B中剩余水倒入A中,则此时A 中有水2升; 装满B,将B中水倒入A至A满,然后倒掉A,将B中剩余水倒入A中,则此时A 中有水3升。 【2】周雯的妈妈是豫林水泥厂的化验员。一天,周雯来到化验室做作业。做完后想出去玩。 "等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。你能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来吗?" 爱动脑筋的周雯,是学校里有名的"小机灵",她只想了一会儿就做到了。请你想想看,"小机灵"是怎样做的? 解: 将第2个玻璃杯中的水倒入第5个玻璃杯中,再将第二个玻璃杯放回。 【3】三个小伙子同时爱上了一个姑娘,为了决定他们谁能娶这个姑娘,他们决定用手枪进行一次决斗。小李的命中率是30%,小黄比他好些,命中率是50%,最出色的枪手是小林,他从不失误,命中率是100%。由于这个显而易见的事实,为公平起见,他们决定按这样的顺序:小李先开枪,小黄第二,小林最后。然后这样循环,直到他们只剩下一个人。那么这三个人中谁活下来的机会最大呢?他们

都应该采取什么样的策略? 解: 小李第一次肯定会对小林开枪。否则的话,如果小李一枪将小黄毙命,则自己也一定会被小林打死;如果小李没有将小黄打死 【4】一间囚房里关押着两个犯人。每天监狱都会为这间囚房提供一罐汤,让这两个犯人自己来分。起初,这两个人经常会发生争执,因为他们总是有人认为对方的汤比自己的多。后来他们找到了一个两全其美的办法:一个人分汤,让另一个人先选。于是争端就这么解决了。可是,现在这间囚房里又加进来一个新犯人,现在是三个人来分汤。必须寻找一个新的方法来维持他们之间的和平。该怎么办呢? 按:心理问题,不是逻辑问题。 解: ①一个人分汤,第二个人从中选一碗,第三个人从剩下的两碗中选一碗 ②没人要的那碗给分汤的人(因为这碗另两个人都不想要,所以给他别人没有意见) ③把这两碗并作一碗,这样就又回归到了两个人分汤的方法上。 附:按此方法,也可解决多人分汤的问题。 【5】在一张长方形的桌面上放了n个一样大小的圆形硬币。这些硬币中可能有一些不完全在桌面内,也可能有一些彼此重叠;当再多放一个硬币而它的圆心在桌面内时,新放的硬币便必定与原先某些硬币重叠。请证明整个桌面可以用4n个硬币完全覆盖。 解: 假想把这n个硬币的半径增大一倍(变成2r),则此时假想的硬币会完全覆盖桌面! 否则,在没有覆盖的地方放一枚硬币,则这枚硬币不与任何硬币重叠,即与原题矛盾!

世界十个著名悖论的最终解答

世界十个著名悖论的最终解答 (一)电车难题(The Trolley Problem) 引用: 一、“电车难题”是伦理学领域最为知名的思想实验之一,其内容大致是:一个疯子把五个无辜的人绑在电车轨道上。一辆失控的电车朝他们驶来,并且片刻后就要碾压到他们。幸运的是,你可以拉一个拉杆,让电车开到另一条轨道上。但是还有一个问题,那个疯子在那另一条轨道上也绑了一个人。考虑以上状况,你应该拉拉杆吗? 解读: 电车难题最早是由哲学家Philippa Foot提出的,用来批判伦理哲学中的主要理论,特别是功利主义。功利主义提出的观点是,大部分道德决策都是根据“为最多的人提供最大的利益”的原则做出的。从一个功利主义者的观点来看,明显的选择应该是拉拉杆,拯救五个人只杀死一个人。但是功利主义的批判者认为,一旦拉了拉杆,你就成为一个不道德行为的同谋——你要为另一条轨道上单独的一个人的死负部分责任。然而,其他人认为,你身处这种状况下就要求你要有所作为,你的不作为将会是同等的不道德。总之,不存在完全的道德行为,这就是重点所在。许多哲学家都用电车难题作为例子来表示现实生活中的状况经常强迫一个人违背他自己的道德准则,并且还存在着没有完全道德做法的情况。 引用完毕。 Das曰: 人,应当为自己的行为负责,这里的“行为”是什么意思?人为自己的行为负责的理论依据是什么? 承认人具有自由意识——这是法律和道德合理化的基础。不承认自由意识存在,也就否认了一切法律和道德的合理性。如果一个人杀人放火是由于童年的遭遇、社会的影响、政府的不公正待遇等外界客观因素所决定的——罪犯本身的原因不是决定性因素——我们就没有权利依据任何法律对这个人进行惩罚。他杀人放火是由于其他原因,是他本身不可改变的,惩罚这个人显然是不合理的,惩罚他也于事无补、毫无用处。 人具有自由意识,可以做出自由选择,并且他应当对自己的选择负责任——这是一切法律和道德合理化的最根本基础。 那么,我们现在可以解释“行为”是什么意思:行为,是人在所有可能性中做出的一个唯一的选择。 今天早晨你可以选择吃包子,也可以选择吃油条。结果你吃了包子,这是你的行为、你选择的结果。问题是吃包子或者吃油条,这并不是“所有可能性”,你也可以选择什么也不吃,选择饿肚子减肥。作为一个理性人,你应当预见到饿肚子减肥可能造成身体伤害,你选择了饿肚子减肥这种行为,就应当为这种行为负责。 行为并不是行动,你什么也不干也是一种选择,因而也是一种行为。 我们将这个思想实验稍作修改,就可以看到什么也不干确实是一种实实在在的行为: 加入电车的前方帮着5个人,你拉动一下拉杆就能使将电车驶向岔道——而岔道上什么也没有,不会造成任何危害。这时候你动不动拉杆呢?如果你不拉,你什么也不干,眼睁睁看着五个人被轧死,这显然是不道德行为——你本来有选择的余地,轧死五个人并不是唯一可能的结果,你只要举手之劳就能挽救五个人的生命,但是你选择了什么也不干,你就应当为你的行为负责任,即使法律不去惩罚你,你的行为最

希帕索斯悖论与第一次数学危机

希帕索斯悖论与第一次数学危机希帕索斯悖论的提出与勾股定理的发现密切相关。因此,我们从勾股定理谈起。勾股定理是欧氏几何中最著名的定理之一。天文学家开普勒曾称其为欧氏几何两颗璀璨的明珠之一。它在数学与人类的实践活动中有着极其广泛的应用,同时也是人类最早认识到的平面几何定理之一。在我国,最早的一部天文数学著作《周髀算经》中就已有了关于这一定理的初步认识。不过,在我国对于勾股定理的证明却是较迟的事情。一直到三国时期的赵爽才用面积割补给出它的第一种证明。 在国外,最早给出这一定理证明的是古希腊的毕达哥拉斯。因而国外一般称之为“毕达哥拉斯定理”。并且据说毕达哥拉斯在完成这一定理证明后欣喜若狂,而杀牛百只以示庆贺。因此这一定理还又获得了一个带神秘色彩的称号:“百牛定理”。 毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学 信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个

成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。 课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课

相关文档
最新文档