巧用圆锥曲线极坐标方程解题

巧用圆锥曲线极坐标方程解题
巧用圆锥曲线极坐标方程解题

圆锥曲线解题技巧

圆锥曲线:概念、方法、题型、及技巧总结 1.圆锥曲线的定义: (1)定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如 (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A . 421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF (2)方程8=表示的曲线是_____ 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>)?{ cos sin x a y b ??==(参数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程22Ax By C +=表示椭圆的充要条件是什么? 如(1)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为____ (2)若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是 ___ (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程22Ax By C +=表示双曲线的充要条件是什么? 如(1)双曲线的离心率等于2 5,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______ (2)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2= e 的双曲线C 过点)10,4(-P ,则C 的方程为_______ (3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2,y 2分母的大小决定,焦点在分母大的坐标轴上。

简单曲线的极坐标方程

极坐标方程 简单曲线的极坐标方程 【教学目标】 1.熟练掌握简单曲线的极坐标方程的求法,提高应用极坐标系的概念和极坐标和直角坐标的互化解决问题的能力. 2.自主学习,合作交流,探究并归纳总结简单曲线的极坐标方程的求法. 3.激情投入,高效学习,体验探究、归纳、总结的过程,增强应用数学的能力. 【教学重难点】 简单曲线的极坐标方程的求法 【教学过程】 一、复习、预习自学: 基础知识梳理问题导引 1.极坐标系的概念(P9) 如图,在平面内取一个定点O,叫做极点;自极点O引一条射线Ox,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及正方向(通常取逆时针方向),这样就建立了一个极坐标系 设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径记为;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为.有序实数对叫做点M 的极坐标记为. 2.极坐标和直角坐标的互化(P11) (1)极坐标化为直角坐标 , (2)直角坐标化为极坐标 , 3.曲线和方程(平面直角坐标系中(P12)) 曲线C上的点的坐标都是方程的解; 以方程的解为坐标的点都在曲线C上. (1)极坐标系和以前所学的平面直角坐标系有什么区别和联系? (2)那些只是是我们应该掌握的? (3)极坐标系中如何用方程表示曲线? 【复习、预习自测】 1.极坐标化为直角坐标:________,________ 2. 直角坐标化为极坐标: ________,________ 二、合作探究 探究点一:圆的极坐标方程(P12-13)

如图,半径为a的圆的圆心坐标为C(a0)(a>0).你能用一个等式表示圆上任意一点的极坐标满 足的条件吗? 探究点1图拓展1图 小结(P13):一般的,在极坐标系中,如果满足下列两个条件,那么方程叫做曲线C的极 坐标方程: (1) (2) 拓展1(P13):已知圆O的半径为r,建立怎样的极坐标系,可以使圆的极坐标方程更简单?并将所得结果与直角坐标方程进行比较. 探究点二:直线的极坐标方程(P13) 如图,直线l经过极点,从极轴到直线l的角是,求直线l的极坐标方程. 探究点2图拓展2图拓展3图 拓展2(P14):求过点A(a0)(a>0)且垂直于极轴的直线l的极坐标方程. 拓展3(P14):设P点的极坐标为直线l过点P且与极轴所成的角为,求直线l的极坐标方程. 【课堂小结】 1.知识方面_____________________________________________________________________ 2.数学思想方面_________________________________________________________________ 探究点三:圆锥曲线的极坐标方程 已知椭圆C的焦距为2c,长轴长为2a,离心率为e(0

简单曲线的极坐标方程优秀教学设计

简单曲线的极坐标方程 内容和内容解析 本节课是普通高中新课程标准实验教科书《数学》(选修4-4)中第一讲《坐标系》第三节“简单曲线的极坐标方程”的第一课时。解析几何是数学一个重要的分支,它沟通了数学中数与形、代数与几何等最基本对象之间的联系。牛顿在他的老师沃利斯的影响下,多次运用坐标系,按曲线的方程来描述曲线,而且提出了建立新的坐标系的创建。牛顿坐标系就是现在的极坐标系。极坐标系的创立为数学研究做出了巨大的贡献。简单曲线的极坐标方程这一节是本讲的重点内容,是选修4-4的重点,也是高考选考内容中的考察内容之一。极坐标方程在实际生活中有着较广的应用,同时也是学生锻炼提高数学能力的良好题材,它蕴含了许多重要的数学思想方法,如:数形结合思想、转化与化归思想等。因此,教学时应重视体现数学的思想方法及价值。 目标和目标解析 1.知识与技能目标: 理解曲线极坐标方程的概念;了解与曲线直角坐标方程的异同;掌握求曲线极坐标方程的步骤;能在极坐标系中给出简单图形(如过极点或圆心在极点的圆)的方程,通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形时选择适当坐标系的意义。掌握圆的直角坐标方程和极坐标方程的互化,能根据圆的极坐标方程画出其对应的图形并进行有关计算 2.过程与方法目标: 通过对预习作业中问题的探究体会类比、从已知推测未知、从特殊到一般的数学思想方法;通过对简单曲线的极坐标方程的求解和其几何意义的探讨,培养观察、分析、比较和归纳的能力;通过不同坐标系的选择感受转化与化归的思想方法;通过极坐标方程与其几何图形的对应,体会数形结合的思想方法

3.情感、态度与价值观目标: 通过不同坐标系的选择与变换理解事物的多样性及其中必然的内在的联系性,可以多角度、多层次地分析问题.;通过练习体验小组探究合作学习,体会团结协作精神;通过阿基米德螺线,四叶玫瑰线,双曲螺线,心脏线,双纽线,星形线,三叶玫瑰线的绘制感受数学与生活的联系,欣赏和感受数学中的美,渗透数学文化,激发学习兴趣 教学重点:圆的极坐标方程的求法 教学问题诊断分析 高二学生,知识经验正逐步成熟,形成了适合自己的一套学习方法,有较强的演绎推理能力和数形结合的能力,具有较好自主探究的能力,能在教师的引导下独立、合作地解决一些问题,学生之前已经学习了极坐标系,现在基本会极坐标和直角坐标的互化,也会求曲线轨迹方程的步骤,具备了数形结合思想。在圆的极坐标方程推导中,要用到三角函数知识,关键是利用直角三角形边角关系建立起坐标变量间的关系,如何合理作图构造恰当的三角形是关键,因此在这部分内容的研究中,鼓励学生小组讨论, 尽多的给学生动手的机会,让学生在实践中体验作图的关键,另外,特殊点极坐标的选择和检验也是理解难点。本节课需要学生小组合作探究学习,因此之前的学习小组分配很关键,小组间的配合也有影响课堂进度,教师分组时引起注意。 教学难点:对不同位置的圆的极坐标方程的理解 教学支持条件分析 课堂上需要学生小组讨论,合作学习。配合班级管理把班上同学分成六个学习小组,围桌而坐,组建原则是:“组间同质、组内异质”, 根据学习能力、兴趣倾向、交往技能、守纪情况、性别比例及座位的安排等合理搭配 根据本节内容的特点,教学过程中可充分发挥信息技术的作用: 利用多媒体播放短片引起兴趣,利用动态作图优势为学生的数学探究与数学思维提供支持;利用实物投影仪,直接投影学生小组讨论的解题思路、解题过程,学生上台分析时也可直接投影自己的答题过程不用板书节约时间

高中数学圆锥曲线解题技巧方法总结[1]-完整

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方程8=表示的曲线是_____(答:双曲线的左支) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 若R y x ∈,,且62322=+y x ,则y x +的最大值是____,2 2 y x +的最小值是___) (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方 程22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P , 则C 的方程为_______(答:226x y -=) (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 如已知方程1212 2=-+-m y m x 表示焦点在y 轴上的椭圆,则m 的取值范围是__(答: )2 3 ,1()1,(Y --∞) (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学 薛德斌 一、圆锥曲线的极坐标方程 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 二、圆锥曲线的焦半径公式 设F 为椭圆的左焦点(双曲线的右焦点、抛物线的焦点),P 为椭圆(双曲线的右支、抛物线)上任一点,则 ∵PQ e PF =,∴)cos (p PF e PF +=θ,其中FH p =,=θ〈x 轴,FP 〉 ∴焦半径θ cos 1e ep PF -=. 当P 在双曲线的左支上时,θcos 1e ep PF +- =. 推论:若圆锥曲线的弦MN 经过焦点F ,则有 ep NF MF 211=+.

三、圆锥曲线的焦点弦长 若圆锥曲线的弦MN 经过焦点F , 1、椭圆中,c b c c a p 2 2=-=,θ θπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=. 2、双曲线中, 若M 、N 在双曲线同一支上,θ θπθ2222 cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=; 若M 、N 在双曲线不同支上,2 222 cos 2cos 1cos 1a c ab e ep e ep MN -=--+-=θθθ. 3、抛物线中,θ θπθ2sin 2)cos(1cos 1p p p MN =--+-=. 四、直角坐标系中的焦半径公式 设P (x,y )是圆锥曲线上的点, 1、若1F 、2F 分别是椭圆的左、右焦点,则ex a PF +=1,ex a PF -=2; 2、若1F 、2F 分别是双曲线的左、右焦点, 当点P 在双曲线右支上时,a ex PF +=1,a ex PF -=2; 当点P 在双曲线左支上时,ex a PF --=1,ex a PF -=2; 3、若F 是抛物线的焦点,2p x PF + =.

圆锥曲线的极坐标方程焦半径公式焦点弦公式

圆锥曲线的极坐标方程 极坐标处理二次曲线问题教案 知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 引论(1)若 1+cos ep e ρθ = 则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin ep e ρθ = 当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线

当 e >1时!方程表示极点在上焦点的双曲线 (3)1+sin ep e ρθ = 当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编 (1)二次曲线基本量之间的互求 例1.确定方程10 53cos ρθ = -表示曲线的离心率、焦距、长短轴长。 解法一:31025333 1cos 1cos 55 ρθθ? ==-- 31053 e P ∴==, 2332555851015103383c a c a a b a c c c ???===??????∴????????-===?????? 2225155( )()882 b ∴=-= 31554e ∴=方程表示椭圆的离心率,焦距,25 54 长轴长,短轴长 解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需 令0θ=,右顶点的极径,同理可得左顶点的的极径。根据左右顶点极径之和等于长轴长,便可以求出长轴。 点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义, 简洁而有力,充分体现了极坐标处理问题的优势。下面的弦长问

常见曲线的极坐标方程3

常见曲线的极坐标方程(3) 学习目标: 1、进一步体会求简单曲线的极坐标方程的基本方法; 2、了解圆锥曲线的方程; 3、通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面 图形时选择适当坐标系的意义。 活动过程: 活动一:知识回顾 1、若圆心的坐标为),(00θρM ,圆的半径为r ,则圆的极坐标方程为 ; 2、(1)当圆心位于)0,(r M 时,圆的极坐标方程是: ; (2)当圆心位于),(2π r M 时,圆的极坐标方程是: 。 3、圆锥曲线统一定义: 活动二:圆锥曲线的极坐标方程 探究:设定点F 到定直线l 的距离为p ,求到定点F 和定直线l 的距离之比为常数e 的点的 轨迹的极坐标方程。

活动三:圆锥曲线的极坐标方程的简单应用 例1:2003年10月15—17日,我国自主研制的神舟五号载人航天飞船成功发射并按预定方 案安全、准确的返回地球,它的运行轨道先是以地球中心为一个焦点的椭圆,椭圆的近地点(离地面最近的点)和远地点(离地面最远的点)距离地面分别为200km 和350km ,然后进入距地面约343km 的圆形轨道。若地球半径取6378km ,试写出神舟五号航天飞船运行的椭圆轨道的极坐标方程。 例2:求证:过抛物线的焦点的弦被焦点分成的两部分的倒数和为常数。 例3:已知抛物线的极坐标方程为θρcos 14-= ,求此抛物线的准线的极坐标方程。

活动四:课堂小结与自主检测 1、按些列条件写出椭圆的极坐标方程: (1)离心率为0.5,焦点到准线的距离为6; (2)长轴为10,短轴为8。 2、圆心在极轴上,半径为a 的圆经过极点,求此圆过极点的弦的三等分点的轨迹方程。 3、自极点O 作射线与直线4cos =θρ相交于点M ,在OM 上取一点P ,使得12=?OP OM ,求点P 的轨迹方程。

圆锥曲线的极坐标方程焦半径公式焦点弦公式

圆锥曲线的极坐标方程焦半径公式焦点弦公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

圆锥曲线的极坐标方程 极坐标处理二次曲线问题教案 知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹.? 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系.? 椭圆、双曲线、抛物线统一的极坐标方程为:θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0. 当0<e <1时,方程表示椭圆;? 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 引论(1)若 1+cos ep e ρθ = 则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线

(2 )若1-sin ep e ρθ = 当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线 当 e >1时!方程表示极点在上焦点的双曲线 (3)1+sin ep e ρθ = 当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编 (1)二次曲线基本量之间的互求 例1.确定方程10 53cos ρθ = -表示曲线的离心率、焦距、长短轴长。 解法一:31025333 1cos 1cos 55 ρθθ? ==-- 解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需令0θ=, 右顶点的极径,同理可得左顶点的的极径。根据左右顶点极径之和等于长轴长,便可以求出长轴。 点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义,简洁而有 力,充分体现了极坐标处理问题的优势。下面的弦长问题的解决使极坐标处理的优势显的淋漓尽致。 (2)圆锥曲线弦长问题 若圆锥曲线的弦MN 经过焦点F ,

4常见曲线的极坐标方程

第4课时:常见曲线极坐标方程 教学目标 (1)了解曲线的极坐标方程的求法, (2)了解简单图形(过极点的直线、过极点的圆、圆心在极点的圆)的极坐标方程。 教学重难点:曲线的极坐标方程的求法 教学过程: 一、新课讲解 1、直线的极坐标方程 若直线l 经过点00(,)M ρθ,且极轴到此直线的角为α,则直线l 的极坐标方程为00sin()sin()ρθαρθα-=- 2、圆心是A (0ρ,0θ),半径r 的圆的极坐标方程为2220002cos()-0r ρρρθθρ--+= 二、例题选讲: 例1、按下列条件写出直线的极坐标方程: (1)经过极点,且倾斜角是π6的直线; (2)经过点 A(2, π4 ),且垂直于极轴的直线; (3)经过点 B(3, - π3),且平行于极轴的直线; (4)经过点C(4,0),且倾斜角是3π4 的直线. 例2、按下列条件写出圆的极坐标方程. (1)以(2,0)为圆心,2为半径的圆; (2)以(4,π2 )为圆心,4为半径的圆;

(3)以(5,π)为圆心,且过极点的圆; (4)以(2,π4 )为圆心,1为半径的圆。 例3、在圆心的极坐标为点A (4,0),半径为4的圆中,求过极点的O 的弦的中点的轨迹方 程。 例4. 已知曲线:C 3cos 2sin x y θθ =??=?,直线:l (cos 2sin )12ρθθ-=. ⑴.将直线l 的极坐标方程化为直角坐标方程; ⑵.设点P 在曲线C 上,求P 点到直线l 距离的最小值. 例5在极坐标系中,已知圆C 的圆心)6, 3(πC ,半径1=r ,Q 点在圆C 上运动. (1)求圆C 的极坐标方程; (2)若P 在直线OQ 上运动,且3:2:=QP OQ ,求动点P 的轨迹方程. 课堂反馈: 1.两圆θρcos 2=和θρsin 4=的圆心距是 . 2.极坐标方程cos()4π ρθ=-所表示的曲线是 . 3.极坐标方程分别是θρcos =和θρsin =的两个圆的圆心距是 . 4、 直线αθ=和直线1)sin(=-αθρ的位置关系是 . 三、课堂小结:

圆锥曲线解题方法技巧归纳(整理)

圆锥曲线解题方法技巧归纳 一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五种:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离002 2 Ax By C d A B ++= + ③夹角公式:21 21 tan 1k k k k α-=+ ④两直线距离公式 (3)弦长公式 直线y kx b =+与圆锥曲线两交点1122(,),(,)A x y B x y 间的距离: 2121AB k x x =+-221212(1)[()4]k x x x x =++-或122 1 1AB y y k =+ - (若A 点为交点,另一点不在圆锥曲线上,上式仍然成立。) (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式(三种形式) 标准方程: 22 1(0,0)x y m n m n m n +=>>≠且 距离式方程:2 2 2 2 ()()2x c y x c y a +++-+= 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程: 22 1(0)x y m n m n +=?< 参数方程: 距离式方程:2 2 2 2 |()()|2x c y x c y a ++--+=

(3)、三种圆锥曲线的通径 22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义 (5)、焦点三角形面积公式:122 tan 2 F PF P b θ ?=在椭圆上时,S 122cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为, 可简记为“左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形 二、方法储备 1、点差法(中点弦问题) 设 ()11,y x A 、()22,y x B , 的弦AB 中点则有 两式相减得 ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k = 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果 有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判 别式0?≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、

圆锥曲线的极坐标方程

圆锥曲线的极坐标方程 圆锥曲线的统一定义:一动点P 到一定点O 的距离与到一定直线L 的距离之比为一定值常数e ,则点P 的轨迹为圆锥曲线。 今以一定点O 为极点,使极轴垂直于定点的直线L ,交点为H ,L PD ⊥.设p HO =,又 设),(θρP 为轨迹上任意一点,即θρcos +=HO DP ,从而 θ ρρ cos += = p DP OP e ,即θρcos 1e ep -= 椭圆(双曲线)的焦参数c b p 2 =(极和极线的距离) 椭圆、双曲线、抛物线的统一的极坐标方程为:θ ρcos 1e ep -= (如右图) 其中02 >=c b p 是定点F 到定直线的距离, 当10<e 时,方程表示双曲线,若0>ρ,方程只表示双曲线右支,若允许0<ρ,方程就表示整个双曲线;(几何画板演示实例,展示交点弦长表示的统一特征)。当1=e 时,方程表示开口向右的抛物线。 引论:(1)若θρcos 1e ep += 当10<e 时,方程表示极点在左焦点 的双曲线,若0>ρ,方程只表示双曲线左支,若允许0<ρ,方程就表示整个双曲线;(几何画板演示实例,展示交点弦长表示的统一特征)。当1=e 时,方程表示开口向左的抛物线。 (2)若θρsin 1e ep -= 10<e 时,方程表示极点在上焦点上的双曲 线,当1=e 时,方程表示开口向上的抛物线。 (3)1sin ep e ρθ= + 当10<e 时,方程表示极点在下焦点的双曲线,当1=e 时,方程表示开口向下的抛物线。 整体对比: θ ρcos 1e ep -= θ ρcos 1e ep += θ ρsin 1e ep -= θ ρsin 1e ep +=

简单曲线的极坐标方程

第 周 第 课时教案 时间: 教学主题 简单曲线的极坐标方程 一、教学目标 1、掌握极坐标方程的意义,掌握直线的极坐标方程 2、能在极坐标中给出简单图形的极坐标方程,会求直线的极坐标方程及与直角坐标之间的互化 3、过观察、探索、发现的创造性过程,培养创新意识。 二、教学重点、极坐标方程的意义,理解直线的极坐标方程,直角坐标方程与极坐标方程 的互化 教学难点:极坐标方程的意义 ,直线的极坐标方程的掌握 三、教学方法 讲练结合 四、教学工具 无 五、教学流程设计 教学 环节 教师活动 学生活动 圆的极坐标方程 一、复习引入: 问题情境 1、直角坐标系建立可以描述点的位置极坐标也有同样作用? 2、直角坐标系的建立可以求曲线的方程 极坐标系的建立是否可以求曲线方程? 学生回顾 1、直角坐标系和极坐标系中怎样描述点的位置? 2、曲线的方程和方程的曲线(直角坐标系中)定义 3、求曲线方程的步骤 4、极坐标与直角坐标的互化关系式: 二、讲解新课: 1、引例.如图,在极坐标系下半径为a 的圆的圆心坐标为 (a ,0)(a >0),你能用一个等式表示圆上任意一点, 的极坐标(ρ,θ)满足的条件? 解:设M (ρ,θ)是圆上O 、A 以外的任意一点,连接AM , 则有:OM=OAcos θ,即:ρ=2acos θ ①, 2、提问:曲线上的点的坐标都满足这个方程吗? 可以验证点O(0,π/2)、A(2a ,0)满足①式. 等式①就是圆上任意一点的极坐标满足的条件. 反之,适合等式①的点都在这个圆上. 3、定义:一般地,如果一条曲线上任意一点都有一个极坐 标适合方程0),(=θρf 的点在曲线上,那么这个

简单曲线的极坐标方程教案

简单曲线的极坐标方程 【教学目标】 1.熟练掌握简单曲线的极坐标方程的求法,提高应用极坐标系的概念和极坐标和直角坐标的互化解决问题的能力. 2.自主学习,合作交流,探究并归纳总结简单曲线的极坐标方程的求法. 3.激情投入,高效学习,体验探究、归纳、总结的过程,增强应用数学的能力. 【教学重难点】 简单曲线的极坐标方程的求法 【教学过程】 一、复习、预习自学:

2.极坐标和直角坐标的互化(P11) (1)极坐标化为直角坐标 θ ρcos = x,θ ρsin = y (2)直角坐标化为极坐标 2 2 2y x+ = ρ,)0 ( tan≠ =x x y θ 3.曲线和方程(平面直角坐标系中(P12)) 曲线C上的点的坐标都是方程0 ) , (= y x f 的解; 以方程0 ) , (= y x f的解为坐标的点都在 曲线C上. (3)极坐标系中如何用方 程表示曲线 【复习、预习自测】 1.极坐标化为直角坐标:→ ) 4 ,3( π________,→ ) 3 2 ,2( π________ 2. 直角坐标化为极坐标:→ )3 ,3( ________,→ -) 3 5 ,0(________ 二、合作探究 探究点一:圆的极坐标方程(P12-13) 如图,半径为a的圆的圆心坐标为C(a,0)(a>0).你能用一个等式表示圆上任意一点的极坐标) , (θ ρ满足的条件吗 探究点1图拓展1图小结(P13):一般的,在极坐标系中,如果满足下列两个条件,那么方程

0),(=θρf 叫做曲线C 的极坐标方程: (1) (2) 拓展1(P13):已知圆O 的半径为r ,建立怎样的极坐标系,可以使圆的 极坐标方程更简单并将所得结果与直角坐标方程进行比较. 探究点二:直线的极坐标方程(P13) 如图,直线l 经过极点,从极轴到直线l 的角是4 π ,求直线l 的极坐标方 程. 探究点2图 拓展2图 拓展3图 拓展2(P14):求过点A(a,0)(a>0),且垂直于极轴的直线l 的极坐标方程. 拓展3(P14):设P 点的极坐标为),(11θρ,直线l 过点P 且与极轴所成的角为α,求直线l 的极坐标方程. 【课堂小结】 1. 知 识 方 面 _____________________________________________________________________ 2. 数 学 思 想 方 面 _______________________________________________________________

高考数学-圆锥曲线解题常用方法

高考数学-圆锥曲线解题常用方法 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、设而不求法 解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:(1)A 在抛物线外,如图,连PF ,则PF PH =当A 、P 、F 三点共线时,距离和最小。 (2)B 在抛物线内,如图,作QR ⊥l 交于R ,则当B 、Q 、R 距离和最小。 解:(1)(2,2)

常见曲线的极坐标方程1

常见曲线的极坐标方程(1) 学习目标: 1、能在极坐标系中给出简单图形(过极点的直线)的方程; 2、通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形 时选择适当坐标系的意义; 3、理解极坐标系中直线的方程。 活动过程: 活动一:知识回顾 1、曲线的极坐标方程的意义。 2、(1)直线x y 1的极坐标方程是__________________________________ ; (2)曲线COS 1的直角坐标方程是____________________________ 。 活动二:直线的极坐标方程 探究:若直线l经过M (0,0),且直线I的倾斜角为,求直线I的极坐标方程。 (这里,直线I的倾斜角是指极轴与直线I向上的方向所成的角。) 小结:一些特殊位置的直线的极坐标方程: (1)当直线I过极点时,直线I的极坐标方程是:______________________________ ; (2) 当直线I过点M(a,0)且垂直于极轴时,直线I的极坐标方程是: _________________ (3)当直线I过点M(b,7)且平行于极轴时,直线I的极坐标方程是: _______________

活动三:直线的极坐标方程的求解 例1按下列条件写出直线的极坐标方程: (1)经过极点和点A(6,g)的直线;(2)经过点B(5,),且垂直于极轴的直线; (3)经过点C(8,6),且平行于极轴的直线; (4)经过点D(2.. 3,0),且倾斜角为务的直线。 例2:分析极坐标方程cos 6,sin 6的特点,说明他们分别表示什么曲线? 例3:求曲线cos 1 0关于直线7对称的曲线方程。

极坐标的几种常见题型p

极坐标的几种常见题型 一、极坐标方程与直角坐标方程的互化 互化条件:极点与原点重合,极轴与x 轴正半轴重合,长度单位相同. 互化公式:???==θρθρsin cos y x 或 ? ? ? ??≠=+=)0(tan 2 22x x y y x θρ θ的象限由点(x,y)所在的象限确定. 例1(2007海南宁夏)⊙O 1和⊙O 2的极坐标方程分别为θρcos 4=,θρsin 4-=. (I)把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程; (II)求经过⊙O 1,⊙O 2交点的直线的直角坐标方程. 解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位. (I)θρcos =x ,θρsin =y ,由θρcos 4=得θρρcos 42=.所以x y x 42 2=+. 即042 2 =-+x y x 为⊙O 1的直角坐标方程. 同理042 2 =++y y x 为⊙O 2的直角坐标方程. (II)解法一:由? ??=++=-+04042 222y y x x y x 解得???==0011y x ,???-==22 22y x 即⊙O 1,⊙O 2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x . 解法二: 由???=++=-+0 40 42 222y y x x y x ,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x . 评述:本题主要考查曲线的极坐标方程化为直角坐标方程的方法及两圆公共弦所在直线方程的求法. 例2(2003全国)圆锥曲线θ θ ρ2cos sin 8= 的准线方程是 (A)2cos -=θρ (B)2cos =θρ (C) 2sin -=θρ (D) 2sin =θρ 解: 由θ θρ2 cos sin 8= 去分母后两边同时乘以ρ得:θρθρsin 8cos 22=,所以x 2 =8y ,其准线方程为y=2-,在极坐标系中方程为2sin -=θρ,故选C. 例3(1998年上海)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,若椭圆两焦点的极坐标分别是(1, 2 π),(1,23π),长轴长是4,则此椭圆的直角坐标方程是_______________. 解:由已知条件知椭圆两焦点的直角坐标为(0,1),(0,-1).c=1,a=2,b 2=a 2-c 2=3, 故所求椭圆的直角坐标方程为4 32 2y x +=1 类题:1(1995年上海)把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并且在两种坐标系中取相同的长度单位.若曲线的极坐标方程是1 cos 4122 -= θρ,则它的直角坐标方程是___________. (答案:3x 2-y 2=1) 2(1998年全国)曲线的极坐标方程ρ=4sin θ化成直角坐标方程为 (A) x 2+(y+2)2=4 (B) x 2+(y-2)2=4

利用圆锥曲线的统一定义解题

利用圆锥曲线的统一定义解题 圆锥曲线的统一定义揭示了圆锥曲线的内在联系,使焦点、离心率、准线等构成了一个和谐的整体。恰当而灵活运用统一定义来解题,往往能化难为易,化繁为简,起到事半功倍的效果.下面谈一谈圆锥曲线的统一定义的解题功能。 一、“统一定义”活解曲线方程 例1、已知圆锥曲线过点(4,8)P --,它的一个焦点(4,0)F -,对应这个焦点的准线方程为4x =,求这条曲线的轨迹方程. 解:设(,)M x y 为该圆锥曲线上任一点,由统一定义得:4 44 MF PF x =---,即 0)= 216y x =-,故所求曲线的方程为216y x =- 点评:利用圆锥曲线的统一定义来解,体现问题的本质,避免不必要的讨论,解题过程简捷.求圆锥曲线的轨迹方程时,涉及到焦点、准线、离心率和曲线上点4个条件中的3个,往往用圆锥曲线的统一定义解. 练习1:在平面内到定点(0,4)的距离比它到定直线5y =-的距离小1的动点的轨迹方程。 解:由题设可知:平面内动点到定点(0,4)的距离等于到定直线4y =-距离,由“统一定义”可知,动点的轨迹是以(0,4)为焦点,4y =-为准线的一条抛物线,其方程为216x y =。 二、“统一定义”妙解圆锥曲线的最值 例2、已知点(2,1)A 在椭圆内,F 的坐标为(2,0),在椭圆上求一点P ,使||2||P A P F +最小. 分析:如果直译,很难使问题得到解决.根据所提供数据的特点,已知椭圆的离心率为 1 2 ,而表达式||2||PA PF +中有系数2,可以考虑构造表达式||2||PA PF +的几何意义,紧扣椭圆的定义解答. 解:设椭圆上点P 到准线的距离为d ,则 1 2 PF e d ==,即2||d PF =,则问题转化为,在椭圆上求一点,使它到焦点F 与对应准线的距离之和最小,如图6,根据平面几何中的“垂线段最短”的性质,作2AM 垂直于准线,其与椭圆的交点即为所求点P ,故设 (,1)P x ,代入椭圆方程得x =P 为所求. 点评:根据椭圆的第二定义,通过离心率把到焦点的距离与到对应准线的距离之间进行 转化,结合图形的性质,探求解题方法,优化解题过程。 练习2:已知点A (3,0)、F (2,0),在双曲线22 13y x -=上求一点P ,使1 ||||2 P A P F + 的值最小。 解:1,2,2a b c e ==∴=∴=。设点P 到与焦点F (2,0)相应的准线的距离为d ,则 ||2PF d =。∴1 ||2 PF d =。1||||||2PA PF PA d ∴+=+,这问题就转化为在双曲线上求点P ,

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程 知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 引论(1)若 1+cos ep e ρθ = 则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin ep e ρθ = 当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线 当 e >1时!方程表示极点在上焦点的双曲线

(3)1+sin ep e ρθ = 当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编 (1)二次曲线基本量之间的互求 例1.确定方程10 53cos ρθ = -表示曲线的离心率、焦距、长短轴长。 解法一:31025333 1cos 1cos 55 ρθθ? ==-- 31053 e P ∴==, 2332555851015103383c a c a a b a c c c ???===??????∴????????-===?????? 2225155( )()882 b ∴=-= 31554e ∴=方程表示椭圆的离心率,焦距,25 54 长轴长,短轴长 解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需 令0θ=,右顶点的极径,同理可得左顶点的的极径。根据左右顶点极径之和等于长轴长,便可以求出长轴。 点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义, 简洁而有力,充分体现了极坐标处理问题的优势。下面的弦长问题的解决使极坐标处理的优势显的淋漓尽致。 (2)圆锥曲线弦长问题

相关文档
最新文档