小学数学总复习专题训练-百分数应用题-通用版

小学数学总复习专题训练-百分数应用题-通用版
小学数学总复习专题训练-百分数应用题-通用版

小学数学总复习专题训练(一)

模拟试题

一、填空。

1、篮球个数是足球的125%,篮球比足球多()%,足球个数是篮球的

()%,足球个数比篮球少()%。

2、排球个数比篮球多18%,排球个数相当于篮球的()%。

3、足球个数比篮球少20%。排球个数比篮球多18%,()球个数最多,()球个数最少。

4、果园里种了60棵果树,其中36棵是苹果树。苹果树占总棵数的()%,

其余的果树占总棵数的()%。

5、女生人数占全班的百分之几= ()÷ ()

杨树的棵数比柏树多百分之几= ()÷ ()

实际节约了百分之几= ()÷ ()

比计划超产了百分之几= ()÷ ()

6、20的40%是(),36的10%是(),50千克的60%是()

千克,800米的25%是()米。

7、进口价a元的一批货物,税率和运费都是货物价值的10%,这批货物的成本是()元。

二、解决实际问题

1、白兔有25只,灰兔有30只。灰兔比白兔多百分之几?

2、四美食盐厂上月计划生产食盐450吨,实际生产了480吨。实际比计划多生产了百分之几?

3、小明家八月份用电80千瓦时,小亮家比小明家节约10千瓦时,小亮家

比小明家八月份节约用电百分之几?

4、某化肥厂9月份实际生产化肥5000吨,比计划超产500吨。比计划超产百分之几?

5、蓝天帽业厂去年收入总额达900万元,按国家的税率规定,应缴纳17%的增值税。一共要缴纳多少万元的增值税?

6、爸爸买了一辆价值12万元的家用轿车。按规定需缴纳10%的车辆购置税。爸爸买这辆车共需花多少钱?

参考答案:

一、填空。

1、篮球个数是足球的125%,篮球比足球多(25 )%,足球个数是篮球的(80 )%,足球个数比篮球少(20 )%。

2、排球个数比篮球多18%,排球个数相当于篮球的(118 )%。

3、足球个数比篮球少20%。排球个数比篮球多18%,(排)球个数最多,(足)球个数最少。

4、果园里种了60棵果树,其中36棵是苹果树。苹果树占总棵数的(60 )%,

其余的果树占总棵数的(40 )%。

5、女生人数占全班的百分之几= (女生人数)÷ (全班人数)

杨树的棵数比柏树多百分之几=(杨树比柏树多的棵数)÷ (柏树棵数)实际节约了百分之几= (节约的数量)÷ (计划数量)

比计划超产了百分之几= (超产产量)÷ (计划产量)

6、20的40%是(8 ),36的10%是( 3.6 ),50千克的60%是(30 )

千克,800米的25%是(200 )米。

7、进口价a元的一批货物,税率和运费都是货物价值的10%,这批货物的成本是(1.2a)元。

二、解决实际问题

1、白兔有25只,灰兔有30只。灰兔比白兔多百分之几?

(30 - 25)÷ 25 = 20 %

2、四美食盐厂上月计划生产食盐450吨,实际生产了480吨。实际比计划多生产了百分之几?

(480 - 450)÷ 450 ≈ 6.7%

3、小明家八月份用电80千瓦时,小亮家比小明家节约10千瓦时,小亮家比小

明家八月份节约用电百分之几?

10 ÷ 80 = 12.5 %

4、某化肥厂9月份实际生产化肥5000吨,比计划超产500吨。比计划超产百分之几?

500 ÷ (5000 – 500)≈ 11.1%

5、蓝天帽业厂去年收入总额达900万元,按国家的税率规定,应缴纳17%的增

值税。一共要缴纳多少万元的增值税?

900 × 17%= 153(万元)

6、爸爸买了一辆价值12万元的家用轿车。按规定需缴纳10%的车辆购置税。

爸爸买这辆车共需花多少钱?

方法1:12 ×10%+ 12 = 1.2 + 12 = 13.2(万元)

方法2:12 ×(1 + 10%)= 12 ×1.1 = 13.2(万元)

百分数应用题专项练习

百分数应用题专项练习 (1) 在一次测验中,小明做对的题数是11道,错了4道,小明在这次测验中正确率是百分之几 (2) 大米加工厂用2吨的稻谷加工成大米时,共碾出大米1600千克,求大米的出米率。 (3) 林场春季植树,成活了570棵,死了30棵,求成活率。 (4) 家具厂有职工125人,有一天缺勤5人,求出勤率。 (5) 王师傅生产了一批零件,经检验合格的485只,不合格的有15只,求一批新产品的合格率。 (6) 用一批玉米种子做发芽试验,结果发芽的有192粒,没有发芽的有8粒,求这一批种子的发芽率。 (7) 六(1)班今天有48人来上课,有2人请事假,求这一天六(1)班的出勤率。 (8) 六(1)班有50人,期中考试有5人不及格,求这个班的及格率。 (9)在一次射击练习中,小王命中的子弹是200发,没命中的是50发,命中率是多少 (10)解放军战士进行实弹射击训练,50人每人射6发子弹,结果共命中256发,求命中率。 (11)某厂的一种产品,原来每件成本96元,技术革新后,每件成本降低到了84元,每件成本降低了百分之几 (12)录音机厂第三季度计划生产录音机3600台,实际生产4500台,实际产量超过计划百分之几 (13)化纤厂由于加强企业管理,每班的工人由800名减少到650名。现在每班工人数比原来减少了百分之几 (15)加工一种零件,现在每天加工1500个,比过去每天多加工300个,现在每天加工的零件个数比过去增加百分之几 (16)某小学今年计划用水250吨,比去年节约用水30吨,今年计划用水相当于去年用水的百分之几 (17)小明家十月份用电80度,比上月节约了20度,比上月节约了用电百分之几 (18)向群连锁店十月份的营业额是万元,比九月份营业额增加了万元,十月份的营业额比九月份增加了百分之几 (19)光明鞋厂六月份计划生产鞋24000双,实际生产了25200双。增产百分之几 (20)某糖厂七月生产552吨糖,比计划多生产72吨,超产百分之几(21)一个生产小组生产1600个零件,验收后有4个不合格,求产品的合格率 (22)西山村今年已积肥82万吨,比原计划多积14万吨,完成计划的几分之几 (23)某化工厂三月份生产化肥1280吨,比计划少生产320吨,完成计划的百分之几 (24)学校食堂五月烧煤吨,比四月份节省了吨,五月份比四月份节省用煤百分之几 (25)某工人加工一个机器零件的时间由原来的15分钟降低到10分钟,工作时间降低了百分之几工作效率提高了百分之几 (26)一个工厂扩建计划投资500万元,实际节约了45万元,节约投资百分之几 (27)一种电视机现在每台成本550元,比原来降低了100元,成本降低了百分之几 (28)某钢铁厂八月份生产钢铁2460吨,比计划增产60吨,增产百分之几 (29)某工厂计划第一季度生产机器零件1820个,实际生产了2320个,增产几分之几 (31)一项工程,由于采用了先进技术,只用了万元,比原计划节约投资万元,节约了百分之几 (32)红星机器厂设备更新后,每天生产零件2400个,比原计划多生产400个。比原计划增产百分之几 (33)某机关精简机构后有工作人员167人,比原来工作人员少68人。精简了百分之几 (34)一种彩色电视机,现在每台2400元,比原来每台降价350元,降价百分之几 (35)王师傅生产一种机器零件,原来要8天,结果提前3天完成。工作效率提高百分之几 (36)杉树的成活率是95%,今年植树节植树成活了285棵,求一共植了多少棵树 (37)一本书360页,第一天看了全书的40%,第二天看了全书的25%,这时还剩多少页没有看 (38)一块地用40%种冬瓜,其余的按3:2分别种西红柿和茄子,已知茄子种了公顷,这块地有多少公顷 (39)小军读一本故事书,第一天读了42页,第二读了43页,还余下全书的83%没有读,这本故事书一共多少页

分数百分数应用题易错题专项汇总 (1)

分数百分数应用题易错题专项汇总 一. 一个数比另一个数多(少)几分之几 类型 二. 一个数比另一个数多(少)百分之几 类型 1. 一款桑塔纳轿车原价12万元,降价25%后是多少万元? 2. 一台洗衣机,原价3000元,现在降价152 ? 现在售价多少 元? 3. 儿童床原价1180元,现降低50%出售,便宜了多少元? 4. 水结成冰,体积增加1 10 ?现有一块冰,体积是2立方分米, 融化后的体积是多少? 5. 光明汽车厂四月份生产轿车1260辆,超过原计划的51 ,原 计划生产轿车多少辆? 6. 一本科技书售价13元,这本书售出后可获得30%的利润,这本书的成本是( )元? 7. 某化肥厂四月份生产化肥350吨,超过计划25%,四月份计划产化肥多少吨? 8. 一种儿童自行车原价154元,现在降价7 2,现在售价( )元?A.154×(1-72) B.154×72 C.154÷(1-7 2) 9. 水结冰后比原来体积增加11 1,121立方分米的水结冰后体积是多少立方分米? 10. 一款桑塔纳轿车降价25%后是9万元,原价是多少万元?

11. 一种电视机原价2500 元,现在降价51 ? 现在售价多少元? 12. 一件商品,降价10%后,售价为180元,原价多少元? 13. 当水成冰时,它的体积增加了111 ,现有水 1.1米3,结成冰 的体积是( ) 14. 1999年世界人口达60亿,预计2013年将增加6 1 ?2013年 世界人口将达多少亿? 15. 小明去年月薪是4500元,今年加薪10%,今年的月薪是多少元? 16. 一件上衣标价240元,“五一”节商店举行促销活动,所 有服装降价81 出售? 这件上衣的实际售价是多少元? 17. 一台电脑,原来售价是7800元,降价16%后,每台多少元? 18. 一种钢笔提价30%后每支售价3.9元,原来这种钢笔每枝的价钱是多少? 19. 一种商品降价7 1 后,售价840元?原来售价多少元? 20. 水结成冰后,体积增加1 10 ?现有一块冰,体积是5立方分 米,融化后的体积是多少立方分米? 21. 一种收音机,每台售价90元,降价30%后?现在售价多少元? 22. 深圳到北京的飞机票下浮(降价)10%后票价为1350元,飞

人教版六年级分数、百分数应用题专项训练及答案

分数、百分数应用题专项训练 1、一桶油第一次取出总数的10%,第二次取出剩下的20%,两次共取出28升。这桶油共有多少升? 2、一桶柴油,第一次用了全桶的20%,第二次用去20千克,第三次用了前两次的和,这时桶里还剩8千克油.问这桶油有多少千克? 3、服装厂一车间人数占全厂的25%,二车间人数比一车间少`1/5`,三车间人数比二车间多`3/10`,三车间是156人,这个服装厂全厂共有多少人? 4、加工一批零件,甲乙二人合作需12天完成;现由甲先工作3天,然后由乙工作2天还剩这批零件的`4/5`没完成. 已知甲每天比乙少加工4个,这批零件共有多少个? 5、某商店同时卖出两件商品,每件各得60元,但其中一件赚20%,另一件亏本20%,问这个商店卖出这两件商品是赚钱还是亏本?赚多少,亏多少? 6、甲、乙两只装有糖水的桶,甲桶有糖水60千克,含糖率4%,乙桶有糖水40千克,含糖率为20%,两桶互相交换多少千克才能使两桶糖水的含糖率相等? 7、现有浓度为10%的盐水20千克,再加入多少千克浓度为30%的盐水,可以得到浓度为22%的盐水? 8、在浓度为40%的酒精溶液中加入5千克水,浓度变为30%,再加入多少千克酒精,浓度变为50%? 9、一批商品,按期望获得 50%的利润来定价。结果只销掉 70%的商品。为尽早销掉剩下的商品,商店决定按定价打折扣销售。这样所获得的全部利润,是原来期望利润的91%,问:打了多少折扣 10、一列火车从甲地开往乙地,如果将车速提高20%,可以比原计划提前1小时到达;如果先以原速度行驶240千米后,再将速度提高25%,则可提前40分钟到达.求甲、乙两地之间的距离及火车原来的速度。

分数百分数应用题专项汇总大全 (6)

分数百分数应用题专项汇总大全 1. 一个数比另一个数多(几)百分之几 类型 2. 一个数比另一个数少(几)百分之几 类型 1. 李强体重33千克,比去年增加10%,去年他的体重是多少千克? 2. 水果店里有苹果200千克,比运来的雪梨多5 4,运来雪梨多少千克? 3. 车间有男工60人,比女工多4 1 。女工多少人? 4. 大齿轮每分钟转80周,比小齿轮每分钟转的周数少5 4。小齿轮每分钟多少周? 5. 光华小学开展了支持北京2008奥运会捐款活动,其中六年级捐款336元, 比五年级多3 1 ,五年级捐款多少元? 6. 青年农场第一天割麦8.5公顷,第二天比第一天多割20%,第二天割多少公顷? 7. 一头大象重750千克,比一头牛重3 2.一头牛重多少千克? 8. 2000年第五次全国人口普查果表明,我国人口最多的两个省是河南和山东, 山东约有9000万人,约比河南少46 1 。河南大约有多少万人? 9. 鸡有60只,鸭比鸡多20%,鸭有多少只? 10.根据爸爸和小明的对话算一算,爸爸集邮票多少张?小明:我已经集了99张邮 票,爸爸你集了几张?爸爸:你比我多2 9 ? 11.六(1)班有图书120本,六(2)班的图书比六(1)班多6 1 。六(2)班有 图书多少 12.学校有20个足球,足球比篮球多1 4 ,篮球有多少个? 13.学校图书室有文艺书1500本,科技书比文艺书多5 1,科技书有多少本? 14.今年小明家储蓄了5145元,比去年多25%.去年小明家储蓄了有多少元? 15.空调厂六月份生产空调45000台,比五月份增产4 1 。五月份生产空调多少台? 16.学校图书馆有故事书180本,科技书比故事书少61,科技书有多少本? 17.某校新建一座教学楼,共投资84万元,比计划节省了1 8 ,计划投资多少万元?

六年级分数百分数应用题分类总结

六年级分数、百分数应用题分类总结 第一类:求一个数的几分之几(百分之几)是多少?(用乘法,包括连乘) 1、某食油批发店,上午卖出花生油96箱,下午卖出的是上午的5/12,下午卖出多少箱? 2、一根钢管长8米,用去一部分,还剩下全长的20%,还剩下多少米? 3、水果店运来苹果20筐,运来的橘子的筐数是苹果的12% ,运来橘子多少筐? 4、修一段公路,第一天修300米,第二天比第一天的7/15 少60米,第二天修多少米? 5、水果店进苹果36箱,进的梨的箱数是苹果的12% (5/8)。 (1)进的梨的箱数是多少?(2)进的梨的箱数比苹果少多少箱?(3)进的梨和苹果共有多少箱? 6、小红体重42千克,小方体重38千克,小明的体重相当于小红和小方体重总和的50%,小明体重多少千克? 7、从邮电局汇款需要交1%的汇费,寄2000元需要交多少汇费? 8、王格尔塘镇中小学和洒索玛小学的男生人数分别占全校学生总数的52%,王格尔塘镇中小学有学生800人,洒索玛小学有学生750人,哪个学校的男生多?多多少人? 9、小强在银行里储蓄了1200元钱,取出一部分捐献给灾区,还剩40%,他捐献了多少元? 10、养鸡场用2400个鸡蛋孵小鸡,有5%没有孵出来,孵出来多少只小鸡? 11、王格尔塘镇中小学有学生480人,只有10%的学生没有参加意外事故保险,参加保险的学生有多少?

12、一个长方形花坛,长是12米,宽是长的60%,这个花坛的面积是多少? 13. 王格尔塘镇中心小学有480人,只有5%的学生没有参加意外事故保险。参加保险的学生有多少人? 14王格尔塘镇中心小学开展回收废纸活动,共回收废纸87.5吨,用废纸生产再生纸的再生率为80%,这些回收的废纸能生产多少吨再生纸? 15.海象的寿命大约是40年,海狮的寿命是海象的3/4,海豹的寿命是海狮的2/3。海豹的寿命大约是多少年? 第二类:(1)求甲数是/占/相当于)已数的几分之几(百分之几)?(用除法:甲数÷已数) 1、六(1)班有男生30人,女生20人,男、女生各占全班的几分之几? 2、某村计划种树250棵,实际种树200棵,计划种树的棵树是实际的百分之几? 第三类:已知甲数的几分之几(或百分之几)是多少,求甲数(用除法或者用方程解)1、工地运来的水泥有24吨,运来的水泥是黄沙的5/6 ,运来的黄沙有多少吨? 2、水果店运来苹果28箱,正好是运来梨的箱数的45% ,运来的梨有多少箱? 3、一辆客车从甲地开往乙地,已行240千米,占全长的30%,甲乙两地相距多少千米? 4、鲜牛肉煮熟后的重量只有原来的5/12,要得到熟牛肉26千克,需要鲜牛肉多少千克? 5、王格尔塘下摊村种玉米120公顷,种玉米的面积是种小麦面积的36% ,这个村种小麦多少公顷?

百分数应用题专题

百分数应用题专题 百分数有两种不同的定义。 (1)分母是100的分数叫做百分数。这种定义着眼于形式,把百分数作为分数的一种特殊形式。 (2)表示一个数(比较数)是另一个数(标准数)的百分之几的数叫做百分数。这种定义着眼于应用,用来表示两个数的比。所以百分数又叫百分比或百分率。 百分数通常不写成分数形式,而采用符号“%”来表示,叫做百分号。 在第二种定义中,出现了比较数、标准数、分率(百分数),这三者的关系如下: 比较数÷标准数=分率(百分数), 标准数×分率=比较数, 比较数÷分率=标准数。 根据比较数、标准数、分率三者的关系,就可以解答许多与百分数有关的应用题。 此外,这里还总结了一些解应用题常用的公式。 1、【求分率、百分率问题的公式】 增长数÷标准数=增长率; 减少数÷标准数=减少率。 或者是 两数差÷较小数=多几(百)分之几(增加); 两数差÷较大数=少几(百)分之几(减少)。 2、【求比较数应用题公式】 标准数×分(百分)率=与分率对应的比较数; 标准数×增长率=增长数; 标准数×减少率=减少数;

标准数×(两分率之和)=两个数之和; 标准数×(两分率之差)=两个数之差。 3、【求标准数应用题公式】 比较数÷与比较数对应的分(百分)率=标准数; 增长数÷增长率=标准数; 减少数÷减少率=标准数; 两数和÷两率和=标准数; 两数差÷两率差=标准数; 4、【利率问题公式】 利率问题的类型较多,现就常见的单利、复利问题,介绍其计算公式如下。(1)单利问题: 本金×利率×时期=利息; 本金×(1+利率×时期)=本利和; 本利和÷(1+利率×时期)=本金。 年利率÷12=月利率; 月利率×12=年利率。 (2)复利问题: 本金×(1+利率)存期期数次方=本利和。 例1、迎春农机厂计划生产一批插秧机,现已完成计划的56%,如果再生产5040台,总产量就超过计划产量的16%,那么,原计划生产插秧机多少台? 解:已完成计划的56%,则未完成的还有原计划的44%, 如果再生产5040台后就超过计划产量的16%,即5040台是原计划的44%+16%=60%, 那么,原计划台数=5040/60%=8400台。 例2、李大娘把养的鸡分别关在东、西两个院内。已知东院养鸡40只;现在把

百分数应用题专项训练

分数、百分数应用题专项训练 一、求百分数 1、把8克糖放入92克水中,糖水的浓度是百分之几? 2、601班共50人,体育锻炼达标的有48人。求达标率;未达标的人数占全班的百分之几? 3、学校植树绿化,种了120棵树,成活了102棵。求成活率。 4、602班昨天1人有事请假、2人生病没有到校上课,到校上课的有57人。求昨天的出席率。 5、口算测验时,小明做对100题,错了4题,小明计算的正确率是多少? 6、401班有50人,昨天有4人缺席,昨天出席率。 1、电视机厂去年计划生产彩电20万台,结果生产25万台。完成了计划的百分之几? 2、401班有女生44名,男生36名。男生人数是女生人数的百分之几?女生人数是全班人数的百分之几? 3、清水湖春季植树400棵,未成活的有10棵。求成活率。 4、李兵参加数学竞赛,做对了18题错了2题。求李兵的正确率。 5、战士王明打靶训练,一共打了5组子弹,每组10发子弹。其中有3发子弹没有命中目标。求战士王明打靶的命中率。 6、在450千克水中加入 50千克的盐。求盐水的含盐率。 1、王大伯用300千克小麦磨出258千克面粉。求小麦的出粉率。 2、一种电脑原价每台5000元,现在每台降价800元。降价百分之几?现在每台价钱是原价的百分之几? 3、王师傅加工了500个零件,经检验有8个次品。求零件的合格率。 4、六年级学生种了102棵数,有两棵未成活。求成活率。 5、201班有50名学生,今天2人请病假,1人请事假。求今天的出席率。 1、601班有64名学生,上学期共评出8名优秀学生,优秀学生占全班人数的百分之几? 2、用650粒玉米种子做发芽试验,有15粒没有发芽。求发芽率。 3、李明参加射击比赛,打了20组子弹,每组10发子弹。有8发子弹没有打中目标,求李明射击的命中率。 4、某工厂计划投资200万元,实际节约10万元。实际投资是计划的百分之几? 2、星期日小明计划做50道口算题,实际做了80道。实际比计划多做百分之几? 3、小军家上月电话费50元,本月电话费38元。本月比上月节约百分之几? 4、四年级有学生490人,其中男生256人达标,女生194人达标。达标人数占总人数的百分之几?男生达标人数比女生多百分之几? 5、食堂九月份用煤25吨,十月份比九月份节约2吨。十月份比九月份节约百分之几? 6、食堂七月份用煤21吨,比六月份节约3吨。七月份比六月份节约百分之几? 7、某厂去年计划产值80万元,实际增产20万元。实际比计划增产百分之几? 8、某厂去年产值100万元,比计划增产20万元。实际比计划增产百分之几? 二、分数、百分数解决问题: 1.小红家养了15只母鸡,公鸡的只数是母鸡的40%,小红家养公鸡多少只? 2.小明家养公鸡20只,是母鸡的40%,小明家养母鸡多少只? 3.拖拉机厂计划生产4800台拖拉机,实际比计划生产增产20%,实际生产了多少抬? 4.山西煤矿,去年采煤2400万吨,今年采煤量比去年多60%,今年采煤多少万吨? 5.一件产品的成本原来是40元,改造工艺后,成本费降低了37.5%,现在一件成本多少元? 6.蔬菜商店运来黄瓜12筐,运来的西红柿比黄瓜多25%,西红柿有多少筐? 7.修路队修一条路,第一天修480米,第一天比第二天多修20%,第二天修多少米?两天共修多少米?

【精品】第十一讲 分数、百分数应用题初步

第十一讲分数、百分数应用题初步 教学说明:在课本上此章节应为小学六年级上半学期内容,也是整个小学的重难点,但各各学校的进度不一,有部分学校已经讲解过,在我们奥数的学习进度中也必须提前有所了解,所以教师在讲解时侧重于基础知识的理解应用提高,同时兼顾本班孩子的进度, 进行适当补充,为我们以后的工程问题、经济浓度等问题打好基础!我们将“列 方程解应用题"放在此讲之前,意在让学生多一种解决分数、百分数应用题的方 法,增加他们的信心,但主体仍以算术方法为主,碰到个别例题教师可讲述方 程思路. 古希腊杰出的数学家丢番图的墓碑上有一段话:“他生命的六分之一是幸福的童年.再活十二分之一脸上长起了细细的胡须,他结了婚还没有孩子,又度过了七分之一.再过了五年,他幸福地得到了一个儿子.可这孩子光辉灿烂的寿命只有他父亲的一半.儿子死后,老人在悲痛中活了四年,也结束了尘世的生涯".你能根据这段话推算出丢番图活了多少岁?多少岁结的婚吗? 怎么样?你能根据大数学家丢番图的叙述找到答案么?呵呵!学习了今天的知识,你就可以在课后解决这个“数学趣题"了!好了,让我们开始今天的学习吧! 内容概述

在解有关分数的应用题时,首先要弄清以下几个基本问题: (1)如何求一个数的几分之几(或百分之几)? 求一个数的几分之几,只需要将这个数乘以几分之几就得到. 例如:5的24%是多少?解答:5×24%=1.2. (2)如何求一个数是另一个数的几分之几(或百分之几)? 求一个数是另一个数的几分之几,只需要将前一个数除以后一个数就得到. 例如:2 3 是 3 4 的几分之几?解答: 23248 34339 ÷=?=。 (3)已知一个数的几分之几(或百分之几),如何求这个数? 已知一个数的几分之几,要求这个数,只需要将这个几分之几的数除以几分之几. 例如:一个数的2 3 等于18,那么这个数等于多少?解答: 23 181827 32 ÷=?=. 分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,例如a是b的几分之几,就把数b看作单位“1”.在几个量中,弄清哪一个是单位“1”很重要,否则容易出错误.而百分数应用题中所涉及的百分数,只是分母是100的分数,因而计算的方法和分数应用题是一样的,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系

22分数百分数应用题综合解法经典题型 (18)

分数百分数应用题综合解法经典题型 1. 某工程队修一段公路,第一天比第二天多修1/4,第二天比第 一天少修1/4千米,两天修的比这段公路的全长少1/4,这段公路长多少千米? 2. 小明家六月份用电180千瓦时,七月份比六月份多用了20%, 每千瓦时电费为0.54元,小明家七月份的电费为多少元?〕 3. 某工程队修一条公路,已经修了30千米,比没修的少20千米, 修好的占全长的(—)? 4. 同学们在操场上围成三层圆圈,最里面一层有48人,向外每一层都比里面一层多31 。一共有多少学生? 5. 小明家四月份电话费64元,以后每个月都比前一个月少了81 。他家六月份电话费多少元? 6. 某工厂一车间有工人84人,二车间人数比一车间少61,三车间人数是二车间人数的76 ,三车间有多少人? 7. 两队合铺一段铁路,甲队每天铺6千米,乙队每天比甲队多铺 61 。两队同时开工,经过16天完成。这段铁路长多少千米? 8. 六年级三个班的学生共同植树,一班植树80棵,二班植树的棵数是一班的89,三班植树的棵数比二班的97 还多7棵,三班植树多少棵? 9. 学校图书馆有三种书,已知连环画有100本,文艺书比连环画

少2/5,连环画比科技书多1/4。三种书共有多少本? 10. 一个长方形的长是16米,宽是长的3/4?这个长方形的面积 是多少? 11. 胜利学校有学生840人,五年级学生数是全校学生总数的81,一年级比五年级多人数多71 ,一年级有学生多少人? 12. 一项工,6月1日开工,原定一个月完成,实际6月25日完成, 到6月30日超额( )%. 13. 某班男生32人,女生比男生少25%,女生有多少人?想:题 中把( )看作单位“1”的量,要求女生多少人,可以先求出( ),也就是( )×75%=( );还可以想:要求女生多少人,可以先求出女生人数相当于男生的( ),也就可以用男生人数×( )=女生人数。 14. 一个畜牧场养猪500头,比羊多14 ,牛的头数是羊的35 ,这个畜牧场养牛多少头? 15. 商店有120辆电瓶车,第一天卖出总数的81 ,第二天卖出的比第一天的32 多10辆。第二天卖出多少辆? 16. 禽场养鸡120只,养的鹅是鸡的43 ,养的鸭是鹅的 2倍少100只。养鸭多少只? 17. 六年级三个班学生帮助图书室修补图书。一班修补了54本,

奥数专题百分数应用题

百分数应用题(一) 知识引领 在日常生活中,我们常常听到出勤率、收视率、成活率等词语,这些都叫百分率,也叫百分数和百分比。有关百分率的问题,经常会出现在我们的周围,例如,两杯糖水,比较哪一杯甜一些,农药的稀释等等,这些都是有关百分数的问题。本章,我们就一起来探讨百分数的应用问题。 经典题型 例1、某商品降价1200元后,售价为4800元,该商品打了几折出售? 思路导航求打了几折,就是先要求降低的价格 是原价的百分之几,我们把原价看做单位“1”,降 低的价格和原价比,关系为:降价÷原价,知道了 降低了百分之几,就可以求出现价是原价的百分之 几,最后再折算成折扣就可以了。 1200÷(1200+4800) =1200÷6000 =20% 1—20%=80%=8折 答:该商品打了8折。 模仿提升1 1、一件商品第一次降价10%,第二次又降价10%,现 价是原价的百分之几? 2、姐妹两人上山采蘑菇,姐姐采的比妹妹多20%,妹 妹采的比姐姐少百分之几? 3、商场进行“买四赠一”的促销活动,某商品原 价为每瓶100元,如果购买该商品10瓶比原来 可节省多少钱? 例2 狐狸、小熊、小鹿、小猴得到了1千克饼干,怎样分配好呢?大家请狐狸出主意,狐狸说:“饼干不多,我就少分一点吧,我先留下20%,小猴从我留下来的饼干中分25%,小鹿从小猴分剩后的饼干中分30%,小熊再从小鹿剩下的饼干中分35%,最后剩下的一点给我,怎么样?”大家都觉得狐狸分得最少,便同意了。问狐狸、小猴、小熊、小鹿各分得多少饼干? 思路导航狐狸首先分出了20%,即分去了 100 20 ×1=(千克), 剩下的饼干为1—=(千克) 小猴分得的饼干为:×=(千克) 小鹿分得的饼干为:×=(千克) 小鹿所剩的饼干为:—=(千克) 小熊分得的饼干为:×=(千克) 剩下的饼干为:—=(千克) 狐狸分得的饼干为:+=(千克) 答:狐狸分到千克,小猴分到千克,小鹿分到千克,小熊分到千克。 方法总结:本题只要按百分比逐步计算就可以了,但把百分数化成小数计算较为方便。 模仿提升2 1、运一批货,第一天运了这批货物的 9 4 多300吨,

分数百分数应用题

分数百分数应用题 教学目标 1.分析题目确定单位“1” 2.准确找到量所对应的率,利用量÷对应率=单位“1”解题 3.抓住不变量,统一单位“1” 4.知识点拨: 一、知识点概述 分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键. 关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a是b的几分之几,就把数b看作单位“1”. (2)甲比乙多1 8 ,乙比甲少几分之几? 方法一:可设乙为单位“1”,则甲为 19 1 88 +=,因此乙比甲少 191 889 ÷=. 方法二:可设乙为8份,则甲为9份,因此乙比甲少 1 19 9÷=. 二、怎样找准分数应用题中单位“1” (一)、部分数和总数 在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么 总数就是单位“1”。 例如: 我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。 解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。 (二)、两种数量比较 分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是带 有指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通常就 作为标准量,也就是单位“1”。 例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”), 解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于” 谁的,“是”谁的几分之几。这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。(三)、原数量与现数量 有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。这类分数应 用题的单位“1”比较难找。需要将题目文字完善成我们熟悉的类似带“比”的文字,然后在分析。 例如:水结成冰后体积增加了,冰融化成水后,体积减少了。 完善后:水结成冰后体积增加了→“水结成冰后体积比原来增加了”→原来的水是单位“1” 冰融化成水后,体积减少了→“冰融化成水后,体积比原来减少了”→原来的冰是单位“1” 解题关键:要结合语文知识将题目简化的文字丰富后在分析 例题精讲 【例 1】 (小数报数学竞赛初赛)甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是86元.在人 民市场,甲买一双运动鞋花去了所带钱的4 9 ,乙买一件衬衫花去了人民币16元.这样两人身上所 剩的钱正好一样多.问甲、乙两人原先各带了多少钱?

北师大版百分数应用题综合训练_精选

1、小明每天看12页故事书,看了5天,还剩下全书的40% ,这本故事书共有多少页? 2、工人修一条公路,第一天修了全长的10%,第二天修了63米,还剩下全长的70% ,求全长。 3、一块铜和银的合金有290克,其中铜的质量比银的25%少10克,这块合金中银和铜各有多少克? 4、某校新建一幢教学楼,实际投资了126万元,比计划节约了10%,计划投资是实际投资的百分之几?(百分号前面的数保留一位小数) 5、哥哥体重45千克,比弟弟重18 ,哥哥比弟弟重多少千克? 6、汽车开往某地,行驶2.5小时,距目的地还有全程的38 ,如果速度不变,全程共需行驶多少小时? 7、小刚的爸爸参与一项研究活动,得到劳务费3600元,按照国家规定,个人劳务收入1000元以内的,要按照3%缴纳个人所得税;1000元以上的部分,缴纳20%的个人所得税。小刚的爸爸缴纳个人所得税以后,实际得到多少元? 8、小红看了一本书的13 ,还剩30页,这本书共有多少页? 9、一根电线,用去75%,还剩42米,这根电线原来长多少米? 10、一批树苗,第一次种了146棵,第二次种了154棵,两次共种了总数的37.5%,这批树苗共多少棵? 11、一桶油用去一半后,又倒进30千克,这样桶内油的重量是原来的45 ,原来有油多少千克? 12、一袋水泥,用去20%,剩下的比用去的多30千克,这袋水泥共重多少千克? 13、李阿姨月工资是4100元。按规定,扣除2600元以外的部分,要缴纳5%的个人所得税。李阿姨税后工资是多少元? 14、一根绳子,第一次用去它的37.5%,第二次用去13 ,还剩33米,这根电线原来长多少米?

15、某校高年级学生占全校人数的25%,中年级学生占全校人数的13 ,低年级有学生375人,全校共有学生多少人? 16、李明看一本书,第一天看了全书的25%,第二天看了全书的13 ,还剩60页没看,这本书共有多少页? 17、小红看一本书,第一天看了全书的10%,第二天看了12页,还剩全书的45 ,全书多少页? 18、修一段公路,第一天修了5千米,第二天修了7千米,两天共修了这段路的40%,这段公路全长多少米? 19、一根电线,用去10米,余下的比全长的40%多5米,这根电线原有多少米? 20、一桶油用去13 又3千克,剩下9千克,这桶油原有多少千克? 21、甲厂有工人400名,比乙厂的23 多100人,乙厂有多少人? 22、有桃树96棵,比李树的43 少3棵,李树有多少棵? 23、学校今年种树300棵,比去年多种114 ,今年比去年多种树多少棵? 24、有黑兔25只,比白兔少16 ,黑兔比白兔少多少只? 25、有科技书100本,比文艺书少20%,文艺书比科技书多多少本? 26、一袋米,吃了13 还多3千克,剩下的比吃去的多4千克,这袋米原有多少千克? 27、一桶油,吃了15 还多4千克,剩下的比吃去的多5千克,这桶油原有多少千克? 28、一本书分两天看完,第一天看了60页,恰好占全书的是40%,第二天看了多少页? 29、定期一年,年利率是3.5%。李叔叔存款一年后得到的本金和利息一共是41400元。李叔叔存入的本金是多少元? 30、一桶油,吃了20千克,正好吃了这桶油的23 ,还剩多少千克? 31、某时装店同时卖出两件衣服,每件各卖200元,其中一件赚了20%,另一件亏了20%,这家店卖出这两件衣服是赚了还是亏了? 32、某班男生人数占全班人数的58 ,女生比男生少10人,全班多少人?

分数百分数应用题综合练习

分数百分数应用题综合练习(3) 班别 姓名 成绩 1、小明看一本60页的书,第一天看了全书的 ,第二天看了全书的 ,还剩多少页没有看? 2、某批发水果市场去年批发的苹果比雪梨多800千克,其中批发的雪梨的千克数是苹果的 ,苹果和雪梨各是多少千克?(用方程解答) 3、饲养小组养了白、黑、兔,其中白兔18只,黑兔是白兔的 ,灰兔是黑兔的 ,灰兔有多少只? 4、水果店运回苹果200千克,比梨多 ,水果店运回梨多少千克?(用方程解答) 5、王丽和张星共有邮票350枚,其中小月收集邮票的枚数是小星的 。小月收集邮票多少枚?(用方程解答) 6、一个乡去年计划造林12公顷,实际造林14公顷,实际造林比原计划增加了百分之几? 7、红星制衣厂上月用水100吨,这个月用水90啊,制衣厂节约用水百分之几? 8、某机器厂五月份用去钢材68吨,比原计划节约14吨,节约了百分之几? 9、六年级有学生180人,第一学期期未考试时,数学科不合格人数达9人。合格人数占六年级学生人数的百分之几? 53655341415241

班别姓名成绩 1、学校购进800本图书,借给低年级学生200本,剩下的图书按1∶2的比分配给中、高年级的学生。中年级和高年级学生各借得多少本图书? 2、两车同时从两地相对开出,3小时相遇,甲、乙两车速度之比是5:4,两地相距270千米,求两车的速度各是多少? 3、用同样的砖铺地,铺18平方米要用618块砖。如果铺24平方米,要用多少块砖?(用比例知识解) 4、一间会议室地面用面积是0.09平方米的方砖铺地,需要480块。如果改用面积是0.16平方米的方砖铺地,需要多少块?(用比例知识解) 5、某村响应“绿化白云”活动,购进一批树苗种在荒山上,如果每行种20棵可以种36行。如果每行种30棵,可以种多少行?(用比例方法解) 6、电信工程为阳光小区安装电话,前4天安装了112部。照这样计算,7天可以安装多少部?(用比例知识解) 5*、学校买地砖装修会议室,原来准备用边长5dm的方地砖,需要400块.如果改用边长8分米的地砖,需要多少块地砖?(用比例知识解) 6*、工程队修一条路,12天共修780米,还剩下325米没有修。照这样速度,修完这条公路,共需要多少天?(用比例方法解)

小升初百分数应用题

百分数应用题【知识拓展】 百分数应用题的解题方法和思路与分数应用题基本相同。 利润和折扣问题,要准确理解利润、成本价、定价、售价。折扣表示实际售出价是定 税后=本金×利率×时间; 税款=本金×税率 税后利息=税后-税款 通常称糖、盐、药等为溶质(即被溶解的物质),把溶解这些溶质的液体称为溶剂,溶质和溶剂的混合液体称为溶液。而浓度则是溶质和溶液的比值,在浓度问题中,经常用到

下面的数量关系: 质量百分比=溶质重量÷溶液重量×100% 溶液重量=溶质质量+溶剂重量 浓度=溶质质量÷(溶质重量+溶剂重量)×100% 100件,84)=105 =10.5×350-2100 =1575(元) 答:每天利润比原来增加1575元。 【题后反思】计算物品进货价、售价时要弄清物价的利润、利润率是杜少即题目中

具体数量所对应的百分数是多少。 例二一辆快客上午8:00从甲地开往乙地,到下午2:00正好走完了全程的40%,这时汽车离全程的一半还差42千米。问这辆汽车平均每小时行驶多少千米? 【思路点拨】客车行了全程的40%与客车行了全程的一半还差42千米相等,可以利用对应量除以对应分率求出全程,利用客车6个小时行了全程的40%就可以算出客车的速度。 20% 【解析】 30÷(1+20%)=25元 30÷(1-20%)=37.5元 25+37.5-30×2=2.5元 答:卖出这两件商品总体上是亏了2.5元。

【题后反思】分别求出两件衣服的成本,得到成本和,然后与卖出的总价做对比。 例四按规定,稿费收入扣除800元后要按14%的税率缴纳个人所得税。王编辑领得稿费按规定缴纳了税款210元,那么他这次税前稿费是多少元? 【思路点拨】稿费扣除800元就是除去800元剩下的部分才需要缴纳个人所得税。缴纳税款题目中有,可以求得需要缴纳个人所得税的钱数,再加上不需要缴纳的800元,就 2. 比千克少30%是35千克。 3. 六年级一班有45人,其中男生有25人,女生比男生少 %。 4. 一种小麦出粉率为85%,要磨13.6吨面粉,需要这样的小麦吨。 5.一件商品先提价25%,之后降价,则:需要降价的百分数是才能保持原来的

六年级数学百分数应用题综合训练题_题型归纳

六年级数学百分数应用题综合训练题_题型归纳 1.一个车间,原来每月用煤150吨,改进技术后,每月用煤127.5吨,节约了百分之几? 2.一块棉花地,去年收皮棉30吨,比前年增产了5吨。这块棉花地皮棉产量增长了几成? 3.某连锁店十一月份营业额3 4.5万元,比十月份增加了4.5万元。十一月份营业额十月份增加了百分之几? 4.一件商品,由原来的96元降到了84元。降低了百分之几? 5.一块土地,用第一台拖拉机10小时可以耕完,用第二台拖拉机耕8小时可以耕完.现在用两台拖拉机一同耕了1小时20分,耕了这块地的百分之几? 6.六年级学生参加植树活动。一班应到42人,实到42人。二班应到45人,实到44人。求两班的出勤率。 7.一袋小麦共磨出面粉80千克,出麸皮20千克。出粉率? 8.一个机器厂原计划每天生产40台机器,20天完成任务,如果要16天完成,每天要完成原计划日产量的百分之几? 9.一项工程,甲独做用15天完成,结果提前5天完成了任务,甲的工作效率提高了百分之几? 10.甲数是80,比乙数少40,少百分之几? 11.*夏令营举行射击比赛,有50人参加,每人3发子弹,命中105发,算算这次比赛的命中率。 12.3800千克的甜菜可以榨糖418千克,求出糖率。 13.花生仁的出油率是42%,有1600千克花生仁,可榨油多少千克? 14.小麦的出粉率是85%,要磨出170千克面粉,需多少千克小麦? 15.一块小麦实验田,去年产小麦24.5吨,今年增产了二成。这块实验田今年产小麦多少吨? 16.一块地,去年产水稻12吨,因为水灾比前年减少二成五。这块地前年产水稻多少吨? 17.一件衣服打八五折后就可以少花61.2元。这件衣服原价多少元?

6分数百分数应用题专题训练 求分率

分数百分数应用题专题训练求分率 求一个数比另一个数多(少)百分之几 1. 师傅每天加工48个零件,徒弟每天加工36个零件,每天徒弟比师傅少加工 百分之几? 2. 一个养殖厂养鸡1000只,养鸭1250只,鸡比鸭少()只,鸡比鸭少()%;鸭比鸡 多()只,鸭比鸡多()%? 3. 男生4人,女生5人,男生比女生少25%?( ) 4. 一个厂计划全年生产洗衣机6万台,实际生产了7.2万台,超过了百分之几? 5. 某厂5月份生产机床160台,六月份生产200台,六月份比五月份增产百分 之几? 6. 一家旅游公司,非节假日海南四日游的价格是1200元,元旦期间价格上升 到1500元,元旦期间的海南旅游费增加了百分之几? 7. 新疆夏至时的日照时间是18小时,到了冬至时缩短为8小时,日照时间缩短 了百分之几? 8. 一种电视机,原来每台售价400元,现在售价240元,现在比原来每台降价 百分之几? 9. 一台电脑原价8000元,现价6000元,降价了百分之几? 10. 建设一座宾馆,计划投资1080万元,实际只用了900万元,节省了百分之 几? 11. 一种录音机,原价每台1200元,现在每台售价是840元,降价百分之几? 12. 六(1)班男生25人,女生22人,男生比女生多百分之几,列式计算为 (25—22)÷22.() 13. 某机床厂五月份生产机床450台,六月份生产500台,六月份比五月份增 产百分之几? 14. 水果店有苹果100筐,梨60筐。苹果的筐数是梨的百分之几?梨的筐数 是苹果的百分之几?苹果比梨多百分之几?梨比苹果少百分之几? 15. 工程队原计划一周修路36千米,实际修了45千米,实际修的占原计划的 百分之几?实际比原计划多修百分之几? 16. 一个班有男生25人,女生20人,男生比女生多( )%,女生比男生少( )%. 17. 某饲养厂有公鸡2000只,母鸡5000只,(1)公鸡是母鸡的百分之几?(2)母

百分数应用题的分类及方法(推荐文档)

把百分数应用题分为以下六种主要类型: 一、求一个数的百分之几是多少? 1、 60的40 %是多少?提示: 强调分数乘法的意义:把60(即单位“1”),平均分成100份,取其中的40份。 2、五(1)班有40人,男生占全班的 65 % ,男生有多少人? 3、五(1)班男生有25人,女生是男生的80 %,女生多少人? 4、一条公路60千米,已经修了60%, 还剩下多少千米? “单位“1”x对应分率=对应数量“:公路全长x60%=已经修的部分,公路全长x40%=剩下的部分 二、已知一个数的百分之几是多少,求这个数。 1、()的30%是30。 2、五(1)班男生有20人,男生是全班的40 %,全班有多少人? 3、五(1)班男生有16人,男生是女生的80 %,女生有多少人? 4、一条公路,已经修了60 %,还剩下20千米,这条公路有多长? 5、五(1)班男生占全班的60 %,男生比女生多了10人,全班有多少人? 三、求比一个数多(或少)百分之几是多少? 1、五(1)班男生有20人,女生比男生多了10 %,女生有多少人? 如“女生比男生多了10%”,完整的句子是“女生比男生多了男生的10%”。“比”相当于“等于”,转化成数学语言“男生人数+男生的10%=女生人数” 2、五(2)班男生有20人,女生比男生少了10 %,女生有多少人? 四、已知比一个数多(或少)百分之几是多少,求这个数。 1、五(1)班男生有22人,男生比女生多10 %,女生有多少人?

单位“1”不知道,“单位“1”对应分率=对应数量”或者对应数量÷对应分率=单位“1” 2、五(1)班男生有27人,男生比女生少10 %,女生有多少人? 五、求一个数是另一个数的百分之几? 把另一个数分成100份,即是单位“1”。单位“1”可能是标准量或整体量,在出油率、正确率、成活率、出勤率、含盐率等题目中,单位“1”是总数,即整体量。 1、五(1)班有50人,男生有20人,男生占全班的百分之几? 2、男生有20人,女生有30人,男生是女生的百分之几? 3、 100千克的花生,能榨出65千克的花生油,花生的出油率是多少? 六、求一个数比另一个数多(或少)百分之几? 1、男生有30人,女生有20人,男生比女生多了百分之几?女生比男生少了百分之几? 2、电饭锅的原价是220元,现价是160元,电饭锅的价格降低了百分之几?补充完整“男生比女生多了女生的百分之几”.方法:先算多(或少)的部分,用多(或少)出来的部分除以单位“1”。或者先求出一个数是另一个数的百分之几,然后再跟单位“1”(即另一个数)比较大小。 百分数应用题通常会有以下几种题型。针对不同的题型进行分析,采用不同的解题规律,做到这两点 一、求比一个数多(或少)百分之几的数是多少。 解题规律:把一个数看作单位“1”, 一个数+一个数×百分之几或一个数×(1+百分之几)

六年级数学上册分数、百分数应用题复习题

六年级数学上册分数、百分数应用题复习题 【知识要点】 一、“求一个数的几分之几是多少用乘法计算”是分数应用题解题的根本依据,结合分数的定义来理解,就是把一个数(或是整体)平均分成分母份,取分子份。 二、分数、百分数应用题的主要类型: (1)求一个数是另一个数的几(百)分之几: 用“一个数÷另一个数” (2)求一个数的几(百)分之几是多少; (3)求比一个数多(少)几(百)分之几的数是多少: A、 B、 (4)求一个数比另一个数多(少)几(百)分之几 (大数—小数)÷单位“1”的量,或者“相差数÷单位“1”的量” (5)已知一个数的几(百)分之几是多少,求这个数。 A.或者 B..设所求的数为未知数X,然后根据求这个数的几(百)分之几,用乘法列方程解。 三、较复杂的分数(百分数)应用题是基本分数应用题的延续和发展,它的特点是已知条件之间、已知条件和所求问题之间不再有直接的对应量率关系。解题时一定要找准标准量(单位“1’),找准“与量对应的率”、“与率对应的量”,并利用线段图来帮助理解题意,分析数量关系。 四、百分率问题: 优秀率=优秀人数÷总人数×100% 成活率=成活棵树÷总棵树×100% 合格率=合格人数÷总人数×100% 百分率=部分数÷总数×100% 出粉率=面粉质量÷小面质量×100% 花生出油率=花生油重量÷花生重量×100% 现实生活中还有“及格率”、“出勤率”、“合格率”、“达标率”、“利息”、“成数”、“利润率”、“折扣”等含意相近的词,我们要灵活运用(百)分数知识,解决这些实际问题。 五、按比例分配问题: 按比例分配:把一个数按着一定的比来进行分配,这种分配方法通常叫做按比例分配。解答按比例分配问题,要根据已知条件,把已知数量与份数对应起来,转化为求一个数的几分之几来做。 六、工程问题。 解题指导:“工程问题”指的都是两个人以上合作完成某一项工作,有时还将内容延伸到相遇运动和向水池注水等等。 解答工程问题时,一般都是把总工作量看作单位“1”,把单位“1”除以工作时间看成工作效率,因此,工作效率就是工作时间的倒数。 工程问题关系式是:工作总量÷工作效率=工作时间 工作总量÷工作效率和=合作时间

相关文档
最新文档