钢管桩单桩承载力试验现场施工方法

钢管桩单桩承载力试验现场施工方法
钢管桩单桩承载力试验现场施工方法

钢管桩单桩承载力试验施工方案

一、工程概况:

1、工程简介

厦门市海翔大道琼头立交工程位于厦门市翔安区海翔大道与东界路、滨海东大道的交叉口。它是海翔大道与东界路、滨海东大道的一个交叉接点,为一级互通式立体交叉工程,设计为两层迂回定向左转加苜蓿叶变型互通立交,滨海东大道至同安大桥和东界路至海翔大道左转采用迂回定向匝道,其余左转采用环形匝道。第一层为海翔大道,第二层为东界路、滨海东大道,地面交通通过地道方式解决。海翔大道、东界路与滨海东大道直行交通流均采用双向六车道设计。

东界路上跨海翔大道主线桥桥长375米(单跨最大跨度45米)设计时速为

60km/h。匝道桥全长1378米,设计时速情况为C、D、E、G匝道为35km/h,A、B、F、H匝道为40km/h,立交辅道为30km/h。

本工程结构物包括主线桥1座,长度375.08m,匝道桥8座,匝道合计长度1275.82m,人行桥1座,长度13.04m,盖板涵5道、圆管涵1道,人行通道1道。

2、施工场地情况:

本施工区域位于现有鱼塘上,为了加快施工进度及减少施工难度,我施工方对鱼塘进行回填,本次箱梁施工采用贝雷片钢管桩支撑施工方案。

二、检测项目及试验目的

1、基桩测试项目

(1)单桩竖向抗压静载试验,以确定单桩竖向抗压极限承载力;

2、工作量安排

(1)单桩竖向抗压静载试验:

根据现浇箱梁支架方案确定单桩竖向抗压极限承载力为426.554KN。

以上各检测方法工作量安排和检测桩位,由设计、监理、建设方共同商定。

2、试验目的

采用接近于通过竖向抗压桩的实际工作的试验方法,比较准确的反映单桩的受力状况和变形特征,确定单桩竖向抗压承载力,作为设计依据,或对工程桩的承载力进行抽样检验和评价。

三、仪器设备

1、加载设备:油压千斤顶(100T)。

2、荷载与沉降量测仪表:荷载量测使用60Mpa压力表,沉降量测使用百分表。荷载与沉降量测仪表均经过国家指定的计量标定单位进行计量标定。

四、试验准备工作

1、收集原始资料,了解试桩场地工程地质情况,试桩的基本情况(如桩长、桩径、

施工日期、施工工艺等),以及桩的预估极限承载力值。

2、制定出比较详细的试验方案(包括桩头处理、加载装置等)。

(1)试验加载装置的选择:试桩所承受的荷载由油压千斤顶分级施加。加载及反力装置根据现场实际条件压力平台反力装置。

单桩竖向抗压静载试验置示意图

(2)荷载与沉降的量测仪表:荷载用由标定合格的0.4级精密压力表测量。试桩沉降采用大量程百分表测量。根据规范要求在试桩的两个侧面对称安装4个百分表。(3)试验加载方式的选择:试验加载方式采用千斤顶慢慢加压,当油表读数达到设计值后,稳定荷载20分钟看是否由表读数有所变化,如果没什么变化继续加压,加压到油表读数变化后记录数据,卸载试验完成。

3、其它注意事项

(1)在试验设备、仪器仪表的运输过程中应确保其不损伤,以保证现场测试数据的准确无误。

(2)现场吊装安置加载设备时,应采取必要的安全措施,保证设备的安放位置正确和人员设备的安全。

(3)反力架的安装和焊接要牢固可靠,对于不符合要求的反力装置不能进行正式试验加载工作

(4)高压油泵等仪器设备应按照就近、方便、安全的原则安放。

(5)测试现场所接电源必须符合临时架设电源线路的要求,禁止乱扯电源、电线,防止漏电、触电等事故发生。

五、试验结果处理

本方案是结合检测中心提供施工方案施工,钢管桩检测委托专业检测中心检测,最终试验结果以检测报告为准。

钢管桩的计算公式

钢管桩的计算公式 条件: 地基土粘土、可塑,承载力特征值f ak ,重度γ,摩擦角φ,作用在基础顶面处内力标准值为:弯距M k ,剪力V k ,竖向轴力N k 一、根据结构力学知识,进行桩顶作用效应计算 求出每个桩顶的力 弯距ki M ,剪力ki V ,竖向轴力ki N , 如左图所示。 二、桩下压承载力计算 (参见《建筑桩基技术规范》) 单桩竖向承载力标准值为: p pk p j sjk pk sk uk A q l q u Q Q Q λ+=+=∑ sjk q ——桩侧第j 层土的极限侧阻力标准值,查表5.3.5-1。 pk q ——极限端阻力标准值,查表5.3.5-2。 j l ——桩周第j 层土的厚度 u ——桩身周长 p λ——桩端土塞效应系数,对于闭口钢管桩取1,对于敞口 钢管桩按下式计算: 当5/

三、 桩上拔承载力计算,即当0

钢管桩现场施工规范

钢桩施工工艺标准1 适用范围 本工艺标准适用于一般钢管桩或H型钢桩基础工程。 2 施工准备 2. 1原材料要求 2.1.1 钢桩的材料(含其它半成品)进场后,应按规格、品种、牌号堆放,抽样检验,检验结果与合格证相符者方可使用,未经进货检验或未经检验合格的物资不得投入使用。 2.1.2 钢管质量验收:按设计图纸规格尺寸及有关规范,允许误差,实测实量及外观全数检查验货,特别是钢管的垂直度和内外径是否达到要求,作为重点检查,经检查验收合格后,方能进货安装。 2.2 主要工机具 2.2.1机械设备 三点支撑式履带打桩机、轨道式柴油打桩机、轮胎式起重机、运输载重汽车、电焊机、切管机

同一计量器具。 2.3.6 桩位布点与验收:按基础纵横交点和设计图的尺寸确定桩位,用小方木桩打入并在上面用小圆钉做中心套样桩箍,然后在样箍的外侧撒石灰,以示桩位标记。测量误差 10mm。 2.3.7 按总图设置的水、电、汽管线不应与打桩相互影响,特别是供水、汽管线和地下电缆要防止打桩土体隆起的破坏作用。 2.4 作业人员 2.4.1 施工作业人员必须在上岗前进行岗位培训考核合格,持证上岗。按设计施工不得任意改变设计,应遵守其中有关安全的规定。 2.4.2 施工作业人员施工前,必须充分了解地质资料、施工图纸和设计说明以及有关资料。必须熟知打桩规范、质量评定标准、施工程序、验收标准以及劳动组织分工等。

2.4.3 施工作业人员应按国家规定的时间内容进行体格检查,必须持有健康检查合格证、高血压、心脏病、癫痫病患者不得参加打桩作业。 3施工工艺 3.1 工艺流程 3.1.1 钢管桩的工艺流程: 大量贯 直至桩 良好时,再连续进行击打,直至高出地面60cm~80cm停止锤击,进行接桩,再重复上述步骤直至达到设计标高。 3.2.2.8 在打入阶段发现桩位不正或倾斜,应调整或拔出钢管桩重新插入打。 3.2.2.9钢管桩打入贯入度小于1~2mm时,应停打分析原因,确定解决办法后,再继续施工。 3.2.2.10 因土体贯入量大而出现空打,需要采用两种重量不同型号的锤进行打桩,即第一节桩用重量轻的桩锤,第二节及以后的桩节用重量大的桩锤。 3.2.3 接桩 3.2.3.1 钢管桩桩身接头采用桩身内衬套上下对接焊接,H形钢采用坡口对接或连接板贴角焊接,严格按焊接工艺评定指标操作,严禁在没有焊接工艺评定指标情况下操作。

单桩竖向静载试验的实施细则

单桩竖向静载试验的实施细则 1.试验目的 1.1 确定极限承载力和单桩承载力特征值; 1.2 判定抗压竖向承载力是否满足设计要求; 1.3 实测桩身摩阻力和桩端阻力(对研究性试验)。 2.试验范围 混凝土预制桩、各种混凝土钻孔灌注桩、钢桩 3.试验依据 《建筑基桩检测技术规范》(JGJ106-2014); 《铁路工程基桩检测技术规程》(TB10218-2008)。 4.工作程序 4.1仪器设备 4.1.1 RS-JYB/C静载试验设备 4.1.2 超高压油泵和油压千斤顶及与二者相连的高压油管 4.1.3 荷载和沉降量测仪表:柱式力传感器或压力变送器量测荷载;百分表、调频式位移传感器量测沉降。荷载和沉降量测仪表均应经过计量标定。 4.2试验的准备工作 4.2.1 收集资料,了解试桩场地工程地质情况,试桩的基本情况(如桩长、桩径、砼强度等级、施工日期、施工工艺等),以及桩的预估极限承载力值。 4.2.2 在充分征求设计人员及建设单位对试桩的试验要求和进度要求后,制定出比较详细的试验方案(包括锚桩布置,桩头处理、加载装置等)。 4.2.2.1 试验加载装置的选择:试桩所承受的荷载一般由油压千斤顶施加。加载及反力装置可根据现场实际条件取下列三种形式之一

4.2.2.1.1 锚桩横梁反力装置(图1):锚桩数量、锚桩长度和横梁尺寸均应按1.2~1.4倍预估试桩破坏荷载进行设计,锚桩按抗拔桩的有关规定计算确定。采用工程桩作锚桩时,锚桩数量不得少于 4 根,并应对试验过程锚桩上拔量进行检测。 4.2.2.1.2 压重平台反力装置:压重量不得少于预估试桩破坏荷载的1.2倍压重应在试验开始前一次加上,并均匀稳固放置于平台上。 图1 单桩竖向抗压静载试验装置示意 4.2.2.1.3 锚桩压重联合反力装置:当试桩最大加载重量超过锚桩的抗拔能力时,可在横梁上放置或悬挂一定重物,由锚桩和重物共同承受千斤顶加载反力。 4.2.2.2 荷载与沉降的量测仪表:荷载可用压力传感器测定。试桩沉降采用调频式位移传感器测量。应在桩的2个正交直径方向对称安装4个调频式位移传感器,小桩径可安装2个或3个调频式位移传感器。沉降测定平面离桩顶距离不应小于0.5倍桩径,固定和支承调频式位移传感器的基准梁在构造上应确保不受气温影响而发生竖向变位。 4.2.2.3 试验加载方式选择;试验加载方式一般采用慢速维持荷载法(逐级加载,每级荷载达到相对稳定后加下一级荷载,直至试桩破坏,然后逐级卸载到零)。当考虑结合实际工程桩的荷载特征或为缩短试验时间,也可采用多循环加、卸载

钢管桩支架计算书

钢管桩支架计算书 一.工程概况 1.1 工程简介 A匝道2号大桥是陕西神木至府谷高速公路永兴镇立交互通的匝道桥,全桥长221.5m,跨径组合为:3×35m+46.5m+2×35m,,主梁横截面设计为单箱四室结构,箱梁高2.4m,顶板宽19.5m,底板宽14.5,箱梁自重每延米45.9吨,全桥采用现浇连续施工,其中主跨下面通过主干桥西尔沟2号大桥构成立交体系。 1.2 建设条件 该地区属于山谷地区且常年少雨,气候干燥。高程变化有时较剧烈,施工条件较困难。 1.2.1地形地貌 典型的黄土高原沟壑地形,气候干燥,地下水位较深,地形沿高程方向变化较剧烈。 1.2.2地质情况 Q,多属于分化砂岩和分化泥岩,岩土层大部或全部受到地质情况主要为 4 分化。承载力从中密碎石土的250KPa到风化砂岩的1200KPa不等,摩阻力相应的大体变化为80KPa到100KPa。 1.2.3气候 气候干燥少雨,年均降雨量很小,早晚温差变化较大。 二.施工方案总体布臵和荷载设计值 2.1 支架搭设情况说明 A匝道2号大桥上部结构采用现浇式预应力钢筋混凝土变截面箱梁。根据工程实际情况采用钢管桩支架方案进行现浇施工,砼浇筑分两次浇筑,即第一次浇

筑箱梁底板和腹板,第二次浇筑箱梁顶板和翼缘板。根据大桥结构设计情况及现场施工条件的特点,综合考虑安全性、经济性和适用性,拟采用钢管桩支架作为该现浇体系的临时支承结构。钢管桩采用Φ800mm×8mm-Q235的无缝焊接钢管。方木布臵情况:横桥向放臵截面尺寸为15cm×15cm的方木,间距0.3m。15cm×15cm方木放臵在工10型钢上,工10型钢放臵在贝雷梁上,贝雷梁放臵在钢管桩顶端的沙桶上。 2.2 设计荷载取值 混凝土自重取: 26.5kN/m3 箱梁重: 24.1kN/m2 模板自重: 2.5kN/m2 施工人员和运输工具重量: 2.5kN/m2 振捣混凝土时产生的荷载: 2.5kN/m2 考虑分项系数后的每平米荷载总重:31.6kN/m2 三.贝雷梁设计验算 大桥第四跨跨径为46.5m,其他跨径为35m,在计算中需要对不同的跨径进行验算。其中第一跨采用满堂支架法施工,验算过程参考满堂支架法计算书。 神杨路方向第二、三、五、六跨 神杨路方向第二跨,第三跨,第五跨,第六跨,跨中布臵两排钢管桩,计算采用间距17m进行计算,现场可以根据实际情况减小间距。 采用双排单层加强型贝雷梁,每组贝雷梁间距1m, 全截面使用21组。 混凝土箱梁每平方米荷载: 31.6kN/m2 贝雷梁每片自重: 2×3kN/m 荷载总重: 6kN+31.6kN/m=37.6kN/m 双排单层加强型贝雷梁力学性能: [M] = 3375kN〃m [Q] = 490kN

钢管桩设计与验算

钢管桩设计与验算 钢管桩选用Ф800,δ=10mm 的钢管,材质为A 3,E=2.1×108 Kpa,I= 64 π (80.04-78.04)=1.936×10-3M 4。依据386#或389#墩身高度和 周边地形,钢管桩最大桩长按30m 考虑。 1、桩的稳定性验算 桩的失稳临界力Pcr 计算 Pcr= 22 l EI π= 3 2 8 230 10 936.1101.2-????π =4458kN >R=658.3 kN 2、桩的强度计算 桩身面积 A=4 π (D 2-a 2) =4 π (802-782)=248.18cm 2 钢桩自身重量 P=A.L.r=248.18×30×102×7.85 =5844kg=58.44kN 桩身荷载 p=658.3+58.44=716.7 kN б=p /A=716.7×102/248.18=288.7kg /cm 2=35.3Mpa 3、桩的入土深度设计 通过上述计算可知,每根钢管桩的支承力近658.3kN ,按规范取用安全系数k=2.0,设计钢管桩入土深度,则每根钢管桩的承载力为658.3×2=1316.6kN ,管桩周长 U=πD=3.1416×0.8=2.5133m 。依地质勘察报告,河床自上而下各层土的桩侧极限摩擦力标准值为: 第一层 粉质黏土 厚度为3m , τ=120 Kpa

第二层 淤泥粉质黏土 厚度为4m ,τ=60 Kpa 第三层 粉砂 厚度为1.8m ,τ=90Kpa N=∑τi u h i N =120×2.5133×3+60×2.5133×4+90×2.5133×h 3=1316.6 kN =904.7+603.1+226.1 h 2 =1316.6kN 解得 h 3=-0.84m 证明钢管桩不需要进入第三层土,即满足设计承载力。 钢管桩实际入土深度: ∑h=3+4=7 m 4、打桩机选型 拟选用DZ90,查表得知激振动570 kN ,空载振幅≮0.8mm ,桩锤全高4.2 m ,电机功率90kw 。 5、振动沉桩承载力计算 根据所耗机械能量计算桩的容许承载力 []P = m 1{ ()[]v a A f m x 12 23 1111 βμα+-+Q } m —安全系数,临时结构取1.5 m 1—振动体系的质量 m 1=Q/g=57000/981=58.1 Q 1—振动体系重力 N g —重力加速度=981 cm /s 2 A X —振动沉桩机空转时振幅 A X = 10.3 mm M —振动沉桩机偏心锤的静力矩 N. cm μ—振动沉桩机振幅增大系数 μ= A n / A x

钢管桩的沉桩施工工艺

钢管桩的沉桩施工工艺

————————————————————————————————作者:————————————————————————————————日期:

浅析钢管桩的沉桩施工工艺 1、钢管桩的特点 规格众多,选择性强。目前定型生产的钢管桩直径有316-2500mm,有近几十种规格,壁厚6.5-25mm,且同管径有多种壁厚,可根据受力情况,选用几种合适的规格同时使用,使强度充分利用,以满足安全经济要求。 承载能力大。钢管桩目前大多采用1%号低碳钢,材料的抗压、抗拉、抗剪强度很高,加工成钢管后抗弯能力很强,在持力层好的地质情况下选用,可以大大地发挥其受力特性,提高单桩承载力,减少布桩数量、缩小基础承台尺寸。 桩长容易调整,经济效益高。钢管桩常规每节长6m,采用焊接接长,当持力层埋深变化时,根据沉桩实际情况可以任意切割或焊接,切割部分还可以接到其它钢管桩上,不会象其它桩型造成浪费,并可以准确控制桩顶设计标高,对施工极为有利。 挤土有限。钢管桩大多采用敞口式,加之管壁薄,压桩过程中土可以进入桩身,形成土塞效应,从而降低挤土和表土隆起,减小土的扰动,降低对场地周边设施的影响。并可以在小面积场地上进行非常密集的施工。 2钢管桩的沉桩施工分析 2.1施工顺序安排原则 制定施工顺序前应对工程性质、地质资料、桩的特点桩的规格、布局情况、密度、工程量,地貌环境、设计要求、工程期限以及拟采用的施工机械等等予以切实掌握,综合分析,然后规划打桩施工。

由于大量桩体的逐渐打入土中,造成地基的压缩,土密度的增高,桩周围的土向侧向及垂直方向位移,形成打桩场地的沉陷或者隆起,而且波及的范围较广钢桩的截面积较小,钢管桩下端开口,与其它打入式实心桩体相比,挤土量较其它类型实心桩为小,但毕竟仍存在一定的挤土量,这些挤土影响,也会造成已打好桩的位移,和对周围地下管线及建筑物的危害。因此,合理安排钢桩施工顺序,将有利于保证桩的施工质量与打桩进度。这对桩数多、桩距密的群桩基础尤为重要。 选择施工顺序的基本原则是: 对桩数少的基础或条形基础:先长桩后短桩;先实心桩后空心桩;先小直径桩后大直径桩。 对桩数多、桩距密的群桩除遵照上述原则外,尚须注意:先打中间桩,逐渐向外围扩展;往后退打;处于桩机回转半径范围内的桩可安排在同一流水范围内;桩机运行路线较短,移动次数少;桩机下铺设的厚钢板要布置得当,尽可能做到多留出些样桩数,减少倒运钢板作业。 2.2沉桩施工 2.2.1钢桩的堆放 钢桩应予以妥善堆放保存。场地要平坦,大型车辆能够直达,场地低洼处要在搁支点下方做人工加固(铺道碴、垫道木等)。四周挖排水沟。钢桩应按规格分别堆放(即上节桩、中节桩、下节桩),这样配套运输方便。堆放支点以不使钢桩产生变形为原则,一般堆叠层数为三层(高度在2m以内),支点用枕木为妥,钢管桩堆放时,为了防止底层的桩滚动,应在枕木支点的两侧各用木楔塞牢。H型钢桩堆放时,所有上下支点应设置在同一垂线上。

桩静载试验讲解

桩基静载试验是一项方法成立,理论上无可争议的桩基检测技术。在确定单桩极限承载力方面,它是目前最为准确、可靠的检验方法,判定某种动载检验方法是否成熟,均以静载试验成果的对比误差大小为依据。因此,每种地基基础设计处理规范都把单桩静载试验列入首要位置。一般情况下,桩基静载试验的成果数据,如单桩承载力、沉降量等均认为是准确、可靠的,这已为无数的工程实例证明。 桩基静载试验-我国静载试验的发展 桩基静载测试技术是随着桩基础在建筑设计中的使用越来越广泛而发展起来的。新中国成立以前,在国内基本上没有桩基静载测试技术的发展,新中国成立以后, 桩基静载测试技术才逐步发展起来,就拿西南边陲省份云南来讲,50年代末和60年代初,就有了在预制桩上进行的静载试验,单因为桩基础的使用量很少,故试验的数量也少。进入到80年代以后,随着改革开放的深入,基本建设规模的逐年加大,特别是灌注桩在工程上的广泛应用,我国的桩基静载测试技术也进入了一个全新的发展时期。 测试理论的发展 桩基测试技术理论的发展本身促进了桩土荷载传递机理理论的研究,而这一直是国内外岩土工程界研究的热点,在这方面我国的学者也通过试验研究发表了许多自己的理论方法。我国的沈保汉分析了大量的为测试位移和应力数据而埋有实测元件的试桩资料,结果表明: (1)S —炯Q法的极限荷载是桩侧摩阻力得到充分发挥时的荷载,相应于极限荷载时的极限桩顶下沉量Su (即桩土间相对位移量)与桩的类型、桩径和施工方法等有关;对于同一施工类型的桩,一般说来,按摩擦桩、端承摩擦桩和摩擦端承桩的顺序排列,Su依次增大; ⑵ 大直径钻孔桩的Su值比小直径钻孔桩的Su值大; (3)打入式预制桩和钻孔灌注桩的Su也有较大差别 (4)施工工艺和施工质量对钻孔桩的极限荷载Qu和极限桩顶下沉量Su有较大影响。 在桩的破坏模式研究方面,赵明华认为应分为三种模式,即:屈曲破坏、整体剪切破坏、刺入破坏;沈保汉认为应分为四种模式,即:端承摩擦桩的整体剪切破坏、摩擦桩的整体剪切破坏、摩擦端承桩的刺入剪切破坏、端承桩的屈曲破坏。 在依靠桩的下沉量确定桩的极限承载力方面,我国《建筑地基基础设计规范》(GBJ1 89)规定:当Q— s曲线无明显的拐点时,可取桩顶总沉降量为40伽时相应的荷载值为单桩极限承载力;《建筑桩基技术规范》(JGJ94- 94)规定: 对于缓变型CH s曲线一般可取s = 40?60mm寸应的荷载,对大直径桩可取s = 0.03?0.06D(D为桩端直径,大桩径取低值,小桩径取高值)所对应的荷载值;

单桩竖向抗压静荷载试验

单桩竖向抗压静荷载试验实例分析 摘要:本文结合具体的工程实例,详细介绍了施工现场利用堆载荷重加载反力装置,按慢速维持荷载法确定试桩的单桩极限承载力的试验方法、原理以及利用q—s曲线、s—lgt曲线分析实验数据的具体方法。 关键词:极限承载力、承载力特征值、慢速维持荷载法、沉降量、回弹量、q—s曲线、s—lgt曲线 abstract: combining with practical examples, detailed introduces the construction site of heavy load of loading counterforce device, according to slow maintain load method is used to determine the piles of the ultimate bearing capacity of single pile test method, principle and the use of q-s curve, s-lgt curve analysis of the specific method experimental data. keywords: limit bearing capacity, characteristic value of bearing capacity, slow maintain load method, the settlement, the springback quantity, q-s curve, s-lgt curve 一、工程概况 本工程为慈溪香格国际广场二期项目,建筑高度208.5m,地下3层,地上54层,该工程抗压试桩采用φ1000mm、长55.40-60.60m的钻孔灌注桩(桩底采用后注42.5级水泥浆4t),现对该工程中的一根试桩223#(设计单桩承载力特征值为8600kn)进行单桩竖向抗压静载荷试验(桩基施工情况见表1),试验采用堆载荷重,加载反力装置按

钢管桩施工规范

钢桩施工工艺标准 1 适用范围 本工艺标准适用于一般钢管桩或H型钢桩基础工程。 2 施工准备 2. 1原材料要求 2.1.1 钢桩的材料(含其它半成品)进场后,应按规格、品种、牌号堆放,抽样检验,检验结果与合格证相符者方可使用,未经进货检验或未经检验合格的物资不得投入使用。 2.1.2 钢管质量验收:按设计图纸规格尺寸及有关规范,允许误差,实测实量及外观全数检查验货,特别是钢管的垂直度和内外径是否达到要求,作为重点检查,经检查验收合格后,方能进货安装。 2.1.3 螺旋焊管钢桩钢管:壁厚为6~19mm长度不限,卷板焊管钢桩钢管:壁厚为6~47mm 长度不超过6m。型号为STK、SKK号钢卷制。 2.1.4 H型钢,为标准型钢,材质为普通碳素钢、16Mn钢或海港工程用防氯盐钢材。 2.1.5 钢管桩顶部抗锤击和底部为减少摩擦抗变形的加强箍,用宽200~300mm、厚6~12mm 和钢管桩材质相同的钢板制作,用电焊满焊,焊接时箍板的纵缝要和卷焊桩管的纵缝错开90度。 2.1.6 钢桩应按规格分别堆放(即上节桩、中节桩、下节桩)一般堆叠层数为三层(高度控制在2m以内)。支点用枕木两侧用木楔塞牢,防止变形。 2.1.7 成品钢桩的质量检验标准

2.2 主要工机具 2.2.1机械设备 三点支撑式履带打桩机、轨道式柴油打桩机、轮胎式起重机、运输载重汽车、电焊机、切管机 2.2.2 主要工具 钢丝绳吊索、卡环、撬杠、气焊工具、扁铲。 2.3 作业条件 2.3.1 打桩现场三通一平,处理打桩地基上面障碍物,清理、整平时要设雨水排出沟渠,

附近有建筑物的要挖隔震沟,预先充分了解打桩场地,清理妨碍打桩的高空和地下障碍物。 2.3.2 打桩场地整平用压路机碾压平整,并在地表铺10~20cm 厚石子使地基承载力达到0.2 Mpa ~0.3Mpa 。 2.3.3 控制点的设置应尽可能远离施工现场,以减少施工土体扰动对基准点的影响。 2.3.4 施工现场的轴线、水准控制点、桩基布点必须经常检查,妥善保护,设控制点和水准点的数量不应少于2个。 2.3.5 测量放线使用的全站仪、经纬仪、水准仪、钢盘尺、线锤应计量检查合格,多次使用应为同一计量器具。 2.3.6 桩位布点与验收:按基础纵横交点和设计图的尺寸确定桩位,用小方木桩打入并在上面用小圆钉做中心套样桩箍,然后在样箍的外侧撒石灰,以示桩位标记。测量误差 10mm 。 2.3.7 按总图设置的水、电、汽管线不应与打桩相互影响,特别是供水、汽管线和地下电缆要防止打桩土体隆起的破坏作用。 2.4 作业人员 2.4.1 施工作业人员必须在上岗前进行岗位培训考核合格,持证上岗。按设计施工不得任意改变设计,应遵守其中有关安全的规定。 2.4.2 施工作业人员施工前,必须充分了解地质资料、施工图纸和设计说明以及有关资料。必须熟知打桩规范、质量评定标准、施工程序、验收标准以及劳动组织分工等。 2.4.3 施工作业人员应按国家规定的时间内容进行体格检查,必须持有健康检查合格证、高血压、心脏病、癫痫病患者不得参加打桩作业。 3 施工工艺 3.1 工艺流程 3.1.1 钢管桩的工艺流程: 3.1.2 H 型钢桩的工艺流程: 3.2 操作工艺: 3.2.1 打桩方式 3.2.1.1 钢桩施工工艺主要依据工程特点、地质水文条件、施工机具的机械性能以及设计要求等决定。 钢桩打桩有三种通用方式:a )自然地面打桩,采用送桩至设计标高施工;b) 地面打桩,但不送桩,待基坑开挖后切割至设计标高; c) 挖坑打桩施工; 3.2.1.2 打桩施工流水作业,通常还可以分为:单流水、双流水、三流水、四流水及多流

单桩竖向抗压静载试验检测细则

单桩竖向抗压静载试验检测细则 1、试验目的 确定单桩的竖向抗压承载力特征值是否满足设计要求。 2、适用范围 (1)对于本项目,本检测适用CFG桩、水泥土搅拌桩、柱锤冲扩桩等; (2)当埋设有测量桩身应力、应变、桩底反力的传感器或位移杆时,可测定桩的分层侧阻力和端阻力或桩身截面的位移量。 (3)对工程桩抽样检测时,加载量不应小于设计要求的单桩承载力特征值的2.0倍。 2、检测评定依据 1)《新建时速200公里客货共线铁路工程施工质量验收暂行标准》(铁建设【2004】8号); 2)《铁路工程基桩检测技术规程》(TB 10218-2008); 3)《建筑基桩检测技术规范》(JGJ 106-2014/J256-2014); 4)《铁路路基工程施工质量验收标准》(TB TB10414-2003); 5)《铁路建设工程监理规程》(TB 10402-2007/J269-2007); 3、设备仪器及其安装 (1)试验加载宜采用油压千斤顶。当采用两台及两台以上千斤顶加载时应并联同步工作,且应符合下列规定: 1)采用的千斤顶型号、规格应相同; 2)千斤顶的合力中心应与桩轴线重合; 3)承压板直径不小于设计桩径且有足够的刚度。 (2)加载反力装置可根据现场条件选择锚桩横梁反力装置、压重平台反力装置、锚桩压重联合反力装置、地锚反力装置,并应符合下列规定: 1)加载反力装置能提供的反力不得小于最大加载量的1.2倍; 2)应对加载反力装置的全部构件进行强度和变形验算; 3)应对锚桩抗拔力(地基土、抗拔钢筋、桩的接头)进行验算;采用工程桩作锚桩时,锚桩数量不应少于4根,并应监测锚桩上拔量; 4)压重宜在检测前一次加足,并均匀稳固地放置于平台上; 5)压重施加于地基的压应力不宜大于地基承载力特征值的1.5倍,有条件时宜利用工程桩作为堆载支点。 (3)荷载测量可用放置在千斤顶上的荷重传感器直接测定;或采用并联于千斤顶油路的压力表或压力传感器测定油压,根据千斤顶率定曲线换算荷载。传感器的测量误差不应大于

桩基础作业(承载力计算)-附答案

1.某灌注桩,桩径0.8d m =,桩长20l m =。从桩顶往下土层分布为: 0~2m 填土,30sik a q kP =;2~12m 淤泥,15sik a q kP =;12~14m 黏土,50sik a q kP =;14m 以下为密实粗砂层,80sik a q kP =,2600pk a q kP =,该层厚度大,桩未穿透。试计算单桩竖向极限承载力标准值。 【解】 uk sk pk sik i pk p Q Q Q u q l q A =+=+∑ ()20.8302151050280426000.84 1583.41306.92890.3uk sk pk Q Q Q kN π π=+=???+?+?+?+??=+= 2.某钻孔灌注桩,桩径 1.0d m =,扩底直径 1.4D m =,扩底高度1.0m ,桩长 12.5l m =,桩端入中砂层持力层0.8m 。土层分布: 0~6m 黏土,40sik a q kP =;6~10.7m 粉土,44sik a q kP =; 10.7m 以下为中砂层,55sik a q kP =,1500pk a q kP =。试计算单桩竖向极限承载力标准值。 【解】 1.00.8d m m =>,属大直径桩。 大直径桩单桩极限承载力标准值的计算公式为: p pk p i sik si pk sk uk A q l q u Q Q Q ψψ+=+=∑ (扩底桩斜面及变截面以上d 2长度范围不计侧阻力) 大直径桩侧阻、端阻尺寸效应系数为: 桩侧黏性土和粉土:() 1/5 1/5(0.8/)0.81.00.956si d ψ=== 桩侧砂土和碎石类土:()1/3 1/3(0.8/)0.81.00.928si d ψ=== 桩底为砂土:() 1/3 1/3(0.8/)0.81.40.830p D ψ=== ()2 1.00.9564060.956440.831500 1.410581505253.3564 uk Q kN ππ =????+??+???=+= 3.某工程采用泥浆护壁钻孔灌注桩,桩径1.2m ,桩端进入中等风化岩1.0m ,中等风化岩岩体较完整,饱和单轴抗压强度标准值为41.5a MP ,桩顶以下土层参数

单桩承载力的动静试验对比分析

单桩承载力的动静试验对比分析 解振和1陈永军2 1、河北中核岩土工程有限责任公司050021 2、湖南省工程勘察院417000 摘要:确定桩基承载力的方法主要包括静载试验及大应变,本文通过实际工程实例,对动静试验进行对比分析,并评价两者的相关关系。关键词:桩基检测高应变载荷试验动静对比 中图分类号:TU473文献标识码:A 1前言桩基是各类建筑基础的一种常用型式。随着我国工程建设事业的蓬勃发展,铁路、公路、港口码头及城市建设得到了迅速发展,桩基础往往成为了最基本的基础形式。目前我国常用的基本成桩方法达到20多种,如何检测成桩质量及各种桩型的承载力往往是设计者与建设业主所关心的问题。 桩基检测技术应明确分为两大类,即成桩质量检测与桩基承载力检测。目前桩基承载力检测上主要有载荷试验及大应变法,即动、静试验方法。 2桩承载力的动静对比试验方法对比 2.1静载试验与大应变的试验原理 2.1.1静载试验原理 通过反力装置分级对桩顶施加垂直荷载,在每级荷载作用下按规定时间间隔测读桩顶沉降量,获得可供分析判定桩顶荷载与桩顶沉降关系的Q~s曲线,当桩顶沉降量达到某条件或某数值时,可认为岩土阻力已充分发挥,或桩已破坏,从而求得桩的极限承载力。

2.1.2大应变试验原理 在桩顶以下1.5D (桩径)处的桩身两侧对称安装应变式力传感器和加速度计,通过重锤冲击桩顶,对桩顶施加较高能量的冲击脉冲,该脉冲在沿桩身向下传播过程中使桩-土之间产生一定的相对位移,量测桩在瞬态激发力下产生的应力波和速度波。采用一维纵波理论分析桩-土体系确定承载力,还可判断桩身结构完整性和桩尖、桩侧土阻力分布等,并获得模拟静载荷试验的Q ~s 曲线。 2.2动静检测试验的基本计算原理 2.2.1高应变动力检测的基本计算原理 假设桩为一维线弹性杆,测点下桩长为L ,横截面积为A ,桩材弹性模量为E ,桩材质量密度为ρ,桩身内应力波传播速度(俗称弹性波速)为C (C 2=E /ρ),广义波阻抗或桩身截面力学阻抗为Z =AρC ;其桩身应力应变关系可写为: 假设土阻力是由静阻力和动阻力两部分组成: 推导可得桩的一维波动方程:2.2.2高应变确定地基承载力及桩完整性的方法 目前工程中主要应用的是Case 法和实测曲线拟合法,Case 法计算公式为: (承载力)冲击速度峰对应时间为1t ,C L t t 212+=为桩底反射对应时 ε ε σ??=?=E A F E d s R R R +=A R x u c t u ????=??ρ222222 )()()1(2)()()1(2211t V Z t F J t V Z t F J R c c c ??++?+?=

钢管桩计算书

边跨现浇直线段支架设计计算 一、计算何载(单幅) 1、直线段梁重:15#、16#、17#混凝土方量分别为22.26、25.18、48m3。端部1.0范围内的重量,直接作用在墩帽上,混凝土方量为: V=1×[6.25×2.5+2×3×0.15+2×2×0.25/2+2× 225 .0 65 .0 ×1-1.2×1.5]=16.125 m3 作用在支架的荷载: G1=(22.26+25.18+48-16.125)×22800×10=1957.78 KN 2、底模及侧模重(含翼缘板脚手架):估算G2=130KN 3、内模重:估算G3=58KN 4、施工活载:估算G4=80KN 5、合计重量:G5=1957.78+130+58+80=2226KN 二、支架形式 支架采用Φ800mm(壁厚为10mm)作为竖向支承杆件。纵桥向布置2排,横桥向每排2根,其中靠近10#(13#)墩侧的钢管桩支承在承台上,与墩身中心相距235cm,第二排钢管桩与第一排中心距为550cm,每排2根排的中心距离为585cm。钢管桩顶设置砂筒,砂筒上设纵横向工字钢作为分配梁,再在纵梁上敷设底模方木及模板。钢管桩之间及钢管桩与墩身之间设置较强的钢桁架梁联系,在平面上形成框架结构,以满足钢管桩受载后的稳定性要求,具体详见“直线段支架结构图”。

根据支架的具体结构,现将其简化成力学计算模型,如下图所示: 327.5 585 327.5 10×120 20 20 780 550 115 115 纵桥向横桥向 三、支架内力及变形验算 1、 横梁应力验算:横梁有长度为12.4m ,采用2I56a 工字钢,其上 承托12根I45a 工字钢。为简化计算横梁荷载采用均布荷载。 (1)纵梁上面荷载所生的均布荷载: Q 1=2226÷2÷12.25=90.86KN/m (2)纵梁的自重所生的均布荷载: Q 2=0.8038×(1.15+5.5/2)×11÷12.25=2.815N/m (3)横梁自身的重量所生的均布荷载: Q 3=2×1.0627=2.125N/m (4)横梁上的总均布荷载: Q=90.86+2.815+2.125=95.8N/m

钢管桩稳定性计算计算书

悬臂式板桩和板桩稳定性计算计算书 万科城六期工程;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天;施工单位:。 本工程由投资建设,设计,地质勘察,监理,组织施工;由担任项目经理,担任技术负责人。 一、编制依据 本计算书的编制参照《建筑基坑支护技术规程》(JGJ120-99),《土力学与地基基础》(清华大学出版社出版)等编制。 二、参数信息 重要性系数:1.00;开挖深度度h:6.00m; 基坑外侧水位深度h wa:8m;基坑下水位深度h wp:2.00m; 桩嵌入土深度h d:6m;基坑边缘外荷载形式:荷载满布 土坡面上均布荷载值q0:1.00kN/m; 悬臂板桩材料:63a号工字钢;弹性模量E:206000N/mm2; 强度设计值[fm]:205N/mm2;桩间距bs:0.50m; 截面抵抗矩Wx:2981.47cm3;截面惯性矩Ix:93916.20cm4; 基坑土层参数: 序号土名称土厚度坑壁土的重度内摩擦角内聚力浮容重 (m) (kN/m3) (°) (kPa) (kN/m3) 1 填土 2 19 16 10 20 2 细砂 1 18 25 0 20 3 中砂 3 18.5 28 0 20 4 砾砂 3 19 30 0 20 5 圆砾 3 20.25 35 5.5 20 6 碎石 3 21 37.5 9 20 三、土压力计算

1、水平荷载 (1)、主动土压力系数: K a1=tan2(45°- φ1/2)= tan2(45-16/2)=0.568; K a2=tan2(45°- φ2/2)= tan2(45-25/2)=0.406; K a3=tan2(45°- φ3/2)= tan2(45-28/2)=0.361; K a4=tan2(45°- φ4/2)= tan2(45-30/2)=0.333; K a5=tan2(45°- φ5/2)= tan2(45-30/2)=0.333; K a6=tan2(45°- φ6/2)= tan2(45-35/2)=0.271; (2)、土压力、地下水以及地面附加荷载产生的水平荷载: 第1层土:0 ~ 2米; σa1上= -2C1K a10.5 = -2×10×0.5680.5 = -15.071kN/m2; σa1下= γ1h1K a1-2C1K a10.5 = 19×2×0.568-2×10×0.5680.5 = 7.075kN/m2; 第2层土:2 ~ 3米; H2' = ∑γi h i/γ2 = 38/18 = 2.111; σa2上= [γ2H2'+P1+P2a2/(a2+2l2)]K a2-2C2K a20.5 = [18×2.111+1+0]×0.406-2×0×0.4060.5 = 15.828kN/m2; σa2下= [γ2(H2'+h2)+P1+P2a2/(a2+2l2)]K a2-2C2K a20.5 = [18×(2.111+1)+1+0]×0.406-2×0×0.4060.5 = 23.134kN/m2; 第3层土:3 ~ 6米; H3' = ∑γi h i/γ3 = 56/18.5 = 3.027;

单桩竖向抗压静载试验规程

单桩竖向抗压静载试验 4.1 适用范围 4.1.1 本方法适用于检测革桩的竖向抗压承载力。 4.1.2 当埋设有测量桩身应力、应变、桩底反力的传感器或位移杆时,可测定桩的分层侧阻力和端阻力或桩身截面的位移量。 4.1.3 为设计提供依据的试验桩,应加载至破坏;当桩的承载力以桩身强度控制时,可按设计要求的加载量进行。 4.1.4 对工程桩抽样检测时,加载量不应小于设计要求的单桩承载力特征值的2.0 倍。 4.2 设备仪器及其安装 4.2.1 试验加载宜采用油压千斤顶。当采用两台及两台以上千斤顶加载时应并联同步工作,且应符合下列规定: 1 采用的千斤顶型号、规格应相同。 2 千斤顶的合力中心应与桩轴线重合。 4.2.2 加载反力装置可根据现场条件选择锚桩横梁反力装置、压重平台反力装置、锚桩压重联合反力装置、地锚反力装置,并应符合下列规定: 1 加载反力装置能提供的反力不得小于最大加载量的1. 2 倍。 2 应对加载反力装置的全部构件进行强度和变形验算。 3 应对锚桩抗拔力(地基土、抗拔钢筋、桩的接头)进行验算;采用工程桩作锚桩时,锚桩数量不应少于 4 根,并应监测锚桩上拔量。 4 压重宜在检测前一次加足,并均匀稳固地放置于平台上。 5 压重施加于地基的压应力不宜大于地基承载力特征值的1.5 倍,有条件时宜利用工程桩作为堆载支点。 4.2.3 荷载测量可用放置在千斤顶上的荷重传感器直接测定;或采用并联于千斤顶油路的压力表或压力传感器测定油压,根据千斤顶率定曲线换算荷载。传感器的测量误差不应大于1%,压力表精度应优于或等于0.4 级。试验用压力表、油泵、油管在最大加载时的压力不应超过规定工作压力的80%。的压力不应超过规定工作压力的80%。 4.2.4 沉降测量宜采用位移传感器或大量程百分表,并应符合下列规定:4.2.4 沉降测量宜采用位移传感器或大量程百分表,并应符合下列规定: 1 测量误差不大于0.1%,分辨力优于或等于0.01mm 。1 测量误差不大于0.1%,分辨力优于或等于0.01mm 。

钢管桩单桩承载力试验施工方案

钢管桩单桩承载力试验施工方案 一、工程概况: 1、工程简介 厦门市海翔大道琼头立交工程位于厦门市翔安区海翔大道与东界路、滨海东大道的交叉口。它是海翔大道与东界路、滨海东大道的一个交叉接点,为一级互通式立体交叉工程,设计为两层迂回定向左转加苜蓿叶变型互通立交,滨海东大道至同安大桥和东界路至海翔大道左转采用迂回定向匝道,其余左转采用环形匝道。第一层为海翔大道,第二层为东界路、滨海东大道,地面交通通过地道方式解决。海翔大道、东界路与滨海东大道直行交通流均采用双向六车道设计。 东界路上跨海翔大道主线桥桥长375米(单跨最大跨度45米)设计时速为60km/h。匝道桥全长1378米,设计时速情况为C、D、E、G匝道为35km/h,A、B、F、H匝道为40km/h,立交辅道为30km/h。 本工程结构物包括主线桥1座,长度375.08m,匝道桥8座,匝道合计长度1275.82m,人行桥1座,长度13.04m,盖板涵5道、圆管涵1道,人行通道1道。 2、施工场地情况: 本施工区域位于现有鱼塘上,为了加快施工进度及减少施工难度,我施工方对鱼塘进行回填,本次箱梁施工采用贝雷片钢管桩支撑施工方案。 二、检测项目及试验目的

1、基桩测试项目 (1)单桩竖向抗压静载试验,以确定单桩竖向抗压极限承载力; 2、工作量安排 (1)单桩竖向抗压静载试验: 根据现浇箱梁支架方案确定单桩竖向抗压极限承载力为426.554KN。 以上各检测方法工作量安排和检测桩位,由设计、监理、建设方共同商定。 2、试验目的 采用接近于通过竖向抗压桩的实际工作的试验方法,比较准确的反映单桩的受力状况和变形特征,确定单桩竖向抗压承载力,作为设计依据,或对工程桩的承载力进行抽样检验和评价。 三、仪器设备 1、加载设备:油压千斤顶(100T)。 2、荷载与沉降量测仪表:荷载量测使用60Mpa压力表,沉降量测使用百分表。荷载与沉降量测仪表均经过国家指定的计量标定单位进行计量标定。 四、试验准备工作 1、收集原始资料,了解试桩场地工程地质情况,试桩的基本情况(如 桩长、桩径、施工日期、施工工艺等),以及桩的预估极限承载力值。 2、制定出比较详细的试验方案(包括桩头处理、加载装置等)。

单桩竖向静载试验作业指导书

单桩竖向静载试验实施细则 1. 试验目的 1.1确定极限承载力和单桩承载力特征值; 1.2判定抗压竖向承载力是否满足设计要求; 1.3实测桩身摩阻力和桩端阻力(对研究性试验)。 2. 试验范围 混凝土预制桩、各种混凝土钻孔灌注桩、钢桩 3. 试验依据 《建筑基桩检测技术规范》(JGJ106-2014); 《铁路工程基桩检测技术规程》(TB10218-2008)。 4. 工作程序 4.1仪器设备 4.1.1 RS-JYB/C静载试验设备 4.1.2超高压油泵和油压千斤顶及与二者相连的高压油管 4.1.3荷载和沉降量测仪表:柱式力传感器或压力变送器量测荷载;白分表、调频式位移传感器量测沉降。荷载和沉降量测仪表均应经过计量标定。 4.2试验的准备工作 4.2.1收集资料,了解试桩场地工程地质情况,试桩的基本情况(如桩长、桩径、碌强度等级、施工日期、施工工艺等),以及桩的预估极限承载力值。 4.2.2在充分征求设计人员及建设单位对试桩的试验要求和进度要求后,制定出

比较详细的试验方案(包括锚桩布置,桩头处理、加载装置等)。 4.2.2.1 试验加载装置的选择:试桩所承受的荷载一般由油压千斤顶施加。加载及反力装置可根据现场实际条件取下列三种形式之一 4.2.2.1.1 锚桩横梁反力装置(图1):锚桩数量、锚桩长度和横梁尺寸均应按1.2?1.4倍预估试桩破坏荷载进行设计,锚桩按抗拔桩的有关规定计算确定。 采用工程桩作锚桩时,锚桩数量不得少丁4根,并应对试验过程锚桩上拔量进 行检测。 4.2.2.1.2 压重平台反力装置:压重量不得少丁预估试桩破坏荷载的 1.2倍压重应在试验开始前一次加上,并均匀稳固放置丁平■台上。 亓厚钢槌通木包闹成— 4.2.2.1.3 锚桩压重联合反力装置:当试桩最大加载重量超过锚桩的抗拔能力时,可在横梁上放置或悬挂一定重物,由锚桩和重物共同承受千斤顶加载反力。 4.2.2.2 荷载与沉降的量测仪表:荷载可用压力传感器测定。试桩沉降采用调频式位移传感器测量。应在桩的2个正交直径方向对称安装4个调频式位移传感器, 小桩径可安装2个或3个调频式位移传感器。沉降测定平面离桩顶距离不应小丁0.5倍桩径,固定和支承调频式位移传感器的基准梁在构造上应确保不受气温影响而发生竖向变位。 4.2.2.3 试验加载方式选择;试验加载方式一般采用慢速维持荷载法(逐级加载,每级荷载达到相对稳定后加下一级荷载,直至试桩破坏,然后逐级卸载到零)。 当考虑结合实际工程桩的荷载特征或为缩短试验时间,也可采用多循环加、卸载法(每级荷载达到相对稳定后卸载到零)和快速维持荷载法(一般采用每一小时加一级荷载) 4.2.2.4 试桩、锚桩(压重平台支墩)和基准梁之间的中心距离应符合 5.2.4的规定。 4.2.3试桩制作要求

相关文档
最新文档