采用气相色谱对温室气体进行同时分析

采用气相色谱对温室气体进行同时分析
采用气相色谱对温室气体进行同时分析

采用气相色谱对温室气体进行同时分析

摘要

安捷伦科技公司已开发出基于Agilent 7890A GC 系统的两种分析方法,用于对空气样品中的甲烷(CH 4)、二氧化碳(CO 2) 和一氧化二氮(N 2O) 进行同时分析。每个系统都具有其独特的性能,以满足温室气体分析的不同要求。并且两个系统都能够很容易地扩展到检测六氟化硫(SF 6)。两种方法的检测结果都证明可以为所需的分析提供高灵敏度和优异的重现性。

作者

Chunxiao Wang Agilent Technologies 412 YingLun Road

Waigaoqiao Free Trade Zone Shanghai 200131China

应用

环境

引言

二氧化碳(CO 2)、甲烷(CH 4) 和一氧化二氮(N 2O) 被认为是地球大气中的主要温室气体。这些气体吸收大气中的热量,从而对地球温度造成影响。对温室气体不间断地测量为追踪气体排放趋势及对抗地球气候变化提供了有意义的信息。从2010年1月1日起,美国环保署要求温室气体排放量大的机构在新的报告系统下采集温室气体的数据。[1]。

安捷伦科技公司已开发出Agilent 7890A GC 系统的两种不同配置,用于分析温室气体。这两个系统也可以用于分析目的分析物包括CH 4, N 2O 和CO 2 等气体的其他样品,例如土壤气体分析或植物呼吸研究[2]。

方法1: SP1 7890-0468

Agilent 7890A GC 系统配备了使用两个检测器(火焰离子化检测器和微池电子捕获检测器)的单通道,用于分析空气样品中的CO 2、CH 4、N 2O 和SF 6。配备了火焰离子化检测器的甲烷转化器可以分析低浓度CO 2。

方法2: SP1 7890-0467

Agilent 7890A GC 系统配备了使用三个检测器(火焰离子化检测器、热导检测器和微池电子捕获检测器)的两个独立通道,用于分析空气样品中的CO 2、CH 4、N 2O 和SF 6。可以对浓度水平范围较大的CO 2进行检测。高浓度的CO 2可以通过热导检测器进行分析,而低浓度的CO 2可以通过配备了火焰离子化检测器的甲烷转化器进行分析。

动态配比系统可以以氮气为稀释剂用于制备低浓度气体校正标样。

实验与结果

方法1: SP1 7890-0468

该系统配备三个阀和两个检测器,使用1/8 英寸不锈钢填充柱(HayeSep Q 80/100)。甲烷转化器/火焰离子化检测器

(methanizer/FID )的组合系统用于检测低浓度的CH 4和CO 2,而微池电子捕获检测器用于检测N 2O 。图1 为该系统的阀图。使用6 通阀代替10 通阀可实现顶空进样器的自动进样。表1 中列出了方法1 所用的典型GC 条件。

图1.SP1 7890-0468 的配置

表1.

使用方法1 进行温室气体分析的典型GC 条件

7890A GC 阀温度:100 °C 柱箱温度:60 °C 建议在110 °C 柱箱温度下后运行2 分钟

甲烷转化器温度:375 °C 定量环:

1 mL

色谱柱1、2 流量(N 2):21 mL/min (60 °C),恒压

火焰离子化检测器温度:250 °C H 2流量:48 mL/min 空气流量:500 mL/min 尾吹气(N 2) 流量: 2 mL/min 微池电子捕获检测器温度:

350 °C 尾吹气,含5% 甲烷的氩气(Ar/5%CH 4): 2 mL/min 气体样品标样的浓度CH 4:20.18 ppm v CO 2:376.4 ppm v N 2O :

3.27 ppm v

图2 为使用方法1 获得的气体标样的色谱图。将样品注入短的HayeSep Q (色谱柱1)中,该色谱柱将组分(包括空气、CO 2和CH 4)与水隔开。将N 2O 之后的所有分析物都反吹到放空口1。同时空气(O 2) 应该远离甲烷转化器和微池电子捕获检测器并通过排放口2 排放。通过甲烷转化器使CO 2转变为CH 4,并通过如图2B 所示的火焰离子化检测器进行测量。CO 2从色谱柱2 流出后,将洗脱液引至微池电子捕获检测器,测量N 2O ,如图2A 所示。表2 列出21 次连续分析的重现性研究的结果。由此可以看出该配置对CH 4、CO 2和N 2O 标样的分析具有优异的峰面积重现性。

24

6

8ECD N 2ǖ

Ar/5% CH 4ǖ !

FID/ N 2ǖ

1012min

min

24681012N 2O: 32.7 ppb S/N 10

CO 2: 3.76 ppm S/N 100

CH 4: 0.2 ppm S/N 10

图3.

使用方法1 对稀释100 倍的CH 4、CO 2和N 2O 标样进行分析所得的色谱图。

2468ECD N 2ǖ

Ar/5% CH 4ǖ

FID/ N 2ǖ

1012min

min

24681012N 2O

CO 2

CH 4

CH 4 20.18 ppm v CO 2 376.4 ppm v N 2O 3.27 ppm v

图2.使用方法1 对温室气体标准样进行分析。

使用相同配置的系统分析实际样品。在本实验中,用方法1 分析实验室空气。图4 为所得的色谱图。检测出N 2O 、CH 4和CO 2的浓度分别为473 ppb 、2.7 ppm 和380 ppm 。

温室气体分析仪可以轻松实现对六氟化硫(SF 6) 的分析。只需将反吹时间延迟到SF 6洗脱进入柱1(前柱)。图5 显示1 毫升样品中含有约0.5 ppb 的SF 6的色谱图。0.5 ppb 的SF 6标样经动态配比稀释200 倍得到(初始SF 6标样浓度为100 ppb )。

ECD N 2ǖ

Ar/5% CH 4ǖ

min

24SF 6ǖ 0.5 ppb S/N ǖ 99

681012图5.约0.5 ppb 的SF6 标样的色谱图。

24

6

8ECD

N 2ǖ

Ar/5% CH 4ǖ

FID/ N 2ǖ

1012min

min

24681012N 2O: 473 ppb ? ?

SF6

CO 2: 380 ppm ? ?

CH 4: 2.7 ppm ? ?

图4.

实际样品(实验室空气)的色谱图。

方法2: SP1 7890-0467

该系统包括两个独立的通道,配备1/8 英寸的不锈钢填充柱(HayeSep Q 80/100)。第一个通道采用两个配备热导检测器和火焰离子化检测器的阀。热导检测器与甲烷转化器-火焰离子化检测器串联,用于检测CH 4和CO 2。该通道的灵活性很好,可以检测各种浓度的CO 2。低浓度CO 2可以通过甲烷转化器转变为CH 4,然后火焰离子化检测器对其进行检测。该系统可以根据需要灵活运用。热导检测器可用于高浓度CO 2的分析。如果只要求分析高浓度CO 2(高于50 ppm ),可移除甲烷转化器。可通过增加一个额外的Molsive 色谱柱使本通道扩展到进行O 2和N 2的分析。另一个配备两个阀的微池电子捕获检测器通道专用于检测N 2O 和SF 6。前柱(色谱柱1 和2)将较重的组分(主要为水)反吹至放空口1 和放空口4。O 2不应进入甲烷转化器和微池电子捕获检测器,通过放空口2 和放空口3 排出。图6 为本装置典型的管道布置图。方法2 的典型气相色谱条件列于表3 中。

表3.使用方法2 进行温室气体分析的典型GC 条件。

阀温度:100 °C 柱箱温度:60 °C 建议在110 °C 柱箱温度下后运行2 min

定量环:

1 mL

色谱柱1、2 流量(He): 21 mL/min (60 °C),恒压色谱柱3、4 流量(N 2): 21 mL/min (60 °C),恒压火焰离子化检测器温度:250 °C H 2流量:48 mL/min 空气流量:500 mL/min 尾吹气流量(N 2): 2 mL/min 热导检测器温度:200 °C 参考流量:40 mL/min 尾吹气流量: 2 mL/min 微池电子捕获检测器温度:

350 °C 尾吹气,Ar/5% CH 4: 2 mL/min 甲烷转化器温度:

375 °C

图6.方法2 的阀门配置。

2

4

68

ECD

N 2ǖ !

Ar-5% CH 4ǖ

FID - He ǖ

TCD ǖ He ǖ

10

min

246810min

246810min

N 2O: 441 ppb ? ?

SF6

CO 2: 398 ppm ? ?

CH 4: 2.2 ppm ? ?

图7.使用方法2 所得实际样品(实验室空气)的色谱图。

参考文献

1.

Environmental Protection Agency (EPA), “40 CFR Parts 86, 87, 89 et al. Mandatory Reporting of Greenhouse Gases; Final Rule“.

2.

Teri Kanerva, Kristiina Regina, Kaisa Ramo, Katinka

Ojanpera, Sirkku Manninen, “Fluxes of N 2O, CH 4and CO 2in a meadow ecosystem exposed to elevated ozone and carbon dioxide for three years”, Environmental Pollution 145 (2007) 818-828.

3.

European Environment Agency, Manual for the EEA greenhouse gases data viewer.

结论

安捷伦科技公司已经开发出两种Agilent 7890A GC 系统,用以满足同时分析空气样品中温室气体(包括CH 4、CO 2和N 2O )的不同要求。

方法1 (SP1 7890-0468) 配备一个微小改动的简易阀装置,使其适用于顶空进样器的自动进样。

方法2 (SP1 7890-0467) 具有配备三个检测器的两个单独通道,能够更快地获取结果。单独的通道提高了灵活性,阀切换用时更短,方法建立更为容易。第三个热导检测器的使用能够检测到较宽浓度范围的CO 2(0.2 ppm 至20%)。两种分析方法所得的温室气体(N 2O 、CH 4、CO 2和SF 6)检测结果相同。

https://www.360docs.net/doc/bc7879364.html,/chem/cn

安捷伦对本资料中出现的错误,以及由于提供或使用本资料所造成的相关损失不承担责任。

本资料中涉及的信息、说明和指标,如有变更,恕不另行通知。

? 安捷伦科技公司,2010

中国印制

2010 年01 月15 日

5990-5129CHCN

气相色谱定性和定量分析

气相色谱定性和定量分析 一、实验目的 1、了解气相色谱各种定性定量方法的优缺点。 2、掌握纯标样对照、保留值定性的方法。 3、掌握面积和峰高归一化定量方法。 二、实验原理 气相色谱是一种强有力的分离技术,但其定性鉴定能力相对较弱。一般检测器只能“看到”有物质从色谱中流出,而不能直接识别其为何物。若与强有力的鉴定技术如质谱及傅里叶变换红外光谱等联用,则能大大提高气相色谱的定性能力。 在实际工作中,有时遇到的样品其成分是大体已知的,或者是可以根据样品来源等信息进行推测的。这时利用简单的气相色谱定性方法往往能解决问题。气相色谱定性方法主要有以下几种: (1)标准样品对照定性; (2)相对保留值定性; (3)利用调整保留时间与同系物碳数的线性关系定性; (4)利用调整保留时间与同系物沸点的线性关系定性; (5)利用Kovats 保留指数定性; (6)双柱定性或多柱定性。 (7)仪器联用定性,如用质谱、红外光谱及原子发射光谱检测器。 本实验采用标准样品对照和相对保留值定性方法。 气相色谱在定量分析方面是一种强有力的手段。常用的定量方法有峰面积百分比法、内部归一化法、内标法和外标法等。峰面积百分比法适合于分析响应因子十分接近的组分的含量,它要求样品中所有组分都出峰。内部归一化法定时准确,但它不仅要求样品中所有组分都出峰,而且要求具备所有组分的标准品,以便测定校正因子。内标法是精度最高的色谱定量方法,但要选择一个或几个合适的内标物并不总是易事,而且在分析样品之前必须将内标物加入样品中。外标法简便易行,但定量精度相对较低,且对操作条件的重现性要求较严。本实验采用内部归一化法,其计算公式如下: %100%?=∑mi i mi i i f A f A A 式中Ai 为组分i 的峰面积,fmi 为组分i 的相对校正因子,它可由计算相对响应值S ’的方法求得: i s i s m yA x A S S S f ==='1 式中,Ss 、Si 分别为标准物(常为苯)和被测物的响应因子,As 、y 和Ai 、x 分别为标准物和被测物的色谱峰面积及进样量。有些工具书或参考书记录了文献发表的一些fm 或S’值。

气相色谱定性与定量的分析

实验十一、气相色谱的定性和定量分析 一、实验目的: 1.进一步学习计算色谱峰的分辨率; 2.熟练掌握根据保留值,用已知物对照定性的分析方法; 3.熟悉用归一化法定量测定混合物各组分的含量。 二、实验原理 气相色谱是一种强有力的分离技术,但其定性鉴定能力相对较弱。一般检测器只能“看到”有物质从色谱中流出,而不能直接识别其为何物。若与强有力的鉴定技术如质谱及傅里叶变换红外光谱等联用,则能大大提高气相色谱的定性能力。 在实际工作中,有时遇到的样品其成分是大体已知的,或者是可以根据样品来源等信息进行推测的。这时利用简单的气相色谱定性方法往往能解决问题。气相色谱定性方法主要有以下几种: (1)标准样品对照定性; (2)相对保留值定性; (3)利用调整保留时间与同系物碳数的线性关系定性; (4)利用调整保留时间与同系物沸点的线性关系定性; (5)利用Kovats保留指数定性; (6)双柱定性或多柱定性。 (7)仪器联用定性,如用质谱、红外光谱及原子发射光谱检测器。 本实验采用标准样品对照和相对保留值定性方法。 气相色谱在定量分析方面是一种强有力的手段。常用的定量方法有峰面积百分比法、内部归一化法、内标法和外标法等。峰面积百分比法适合于分析响应因子十分接近的组分的含量,它要求样品中所有组分都出峰。内部归一化法定时准确,但它不仅要求样品中所有组分都出峰,而且要求具备所有组分的标准品,以便测定校正因子。内标法是精度最高的色谱定量方法,但要选择一个或几个合适的内标物并不总是易事,而且在分析样品之前必须将内标物加入样品中。外标法简便易行,但定量精度相对较低,且对操作条件的重现性要求较严。本实验采用内部归一化法,其计算公式如下:

怎样分析气相色谱图

在实际工作中,当我们拿到一个样品,我们该怎样定性和定量,建立一套完整的分析方法是关键,下面介绍一些常规的步骤: 1、样品的来源和预处理方法 GC能直接分析的样品通常是气体或液体,固体样品在分析前应当溶解在适当的溶剂中,而且还要保证样品中不含GC不能分析的组分(如无机盐),可能会损坏色谱柱的组分。这样,我们在接到一个未知样品时,就必须了解的来源,从而估计样品可能含有的组分,以及样品的沸点范围。如果样品体系简单,试样组分可汽化则可直接分析。如果样品中有不能用GC直接分析的组分,或样品浓度太低,就必须进行必要的预处理,如采用吸附、解析、萃取、浓缩、稀释、提纯、衍生化等方法处理样品。 2、确定仪器配置 所谓仪器配置就是用于分析样品的方法采用什么进样装置、什么载气、什么色谱柱以及什么检测器。 一般应首先确定检测器类型。碳氢化合物常选择FID检测器,含电负性基团(F、Cl等)较多且碳氢含量较少的物质易选择ECD检测器;对检测灵敏度要求不高,或含有非碳氢化合物组分时,可选择TCD检测器;对于含硫、磷的样品可选择FPD检测器。 对于液体样品可选择隔膜垫进样方式,气体样品可采用六通阀或吸附热解析进样方法,一般色谱仅配置隔膜垫进样方式,所以气体样品可采用吸附-溶剂解析-隔膜垫进样的方式进行分析。 根据待测组分性质选择适合的色谱柱,一般遵循相似相容规律。分离非极性物质时选择非极性色谱柱,分离极性物质时选择极性色谱柱。色谱柱确定后,根据样本中待测组分的分配系数的差值情况,确定色谱柱工作温度,简单体系采用等温方式,分配系数相差较大的复杂体系采用程序升温方式进行分析。 常用的载气有氢气、氮气、氦气等。氢气、氦气的分子量较小常作为填充柱色谱的载气;氮气的分子量较大,常作为毛细管气相色谱的载气;气相色谱质谱用氦气作为载气。 3、确定初始操作条件 当样品准备好,且仪器配置确定之后,就可开始进行尝试性分离。这时要确定初始分离条件,主要包括进样量、进样口温度、检测器温度、色谱柱温度和载气流速。进样量要根据样品浓度、色谱柱容量和检测器灵敏度来确定。样品浓度不超过10mg/mL时填充柱的进样量通常为1-5uL,而对于毛细管柱,若分流比为50:1时,进样量一般不超过2uL。进样口温度主要由样品的沸点范围决定,还要考虑色谱柱的使用温度。原则上讲,进样口温度高一些有利,一般要接近样品中沸点最高的组分的沸点,但要低于易分解温度。

气相色谱的定性和定量分析实验

气相色谱的定性和定量分析实验 一、实验药品 乙酸丁酯(AR)、正己烷(AR)、未知试样 二、实验仪器 SC3000气相色谱仪;注射器:1μL;容量瓶若干 三、实验目的 1、深入了解气相色谱仪的基本结构 2、进一步熟悉气相色谱分离分析的基本原理 3、学习计算色谱峰的分离度 4、掌握根据保留值,作已知物对照定性的分析方法 5、熟悉用归一化法定量测定混合物各组分的含量 四、实验原理 利用气相色谱仪,根据物质的沸点、极性、分子量等差别进行分离分析。 对—个混合试样成功地分离,是气相色谱法完成定性及定量分析的前提和基础。衡量一对色谱峰分离的程度可用分离度R表示: 式中,T R,2,w2和T R,1,w1分别是两个组分的保留时间和峰底宽(时间),当R=1.5时,两峰完全分离;当R=1.0时,98%的分离。在实际应用中,R=1.0一般可以满足需要。 用色谱法进行定性分析的任务是确定色谱图上每一个峰所代表的物质。在色谱条件一定时,任何一种物质都有确定的保留值、保留时间、保留体积、保留指数及相对保留值等保留参数。因此,在相同的色谱操作条件下,通过比较已知纯样和未知物的保留参数或在固定相上的位置,即可确定未知物为何种物质。 在一定的色谱条件下,组分i的质量m:或其在流动相中的浓度,与检测器的响应信号峰面积Ai或峰高h,成正比: m i = f i A? A i(1) 或m i = f i h? A i(2) 式中,f i A和f i h称为绝对校正因子。式(1)和式(2)是色谱定量的依据。不难看出,响

应信号A、h及校正因了的淮确测量直接影响定定分析的准确度。 由于峰面积的大小不易受操作条件如校温、流动相的流速、进样速度等因素的影响,故峰面积更适于作为定量分析的参数。现代色谱仪中一般都配有准确测量色谱峰面积的电学积分仪。 由式(1),绝对校正因子可用下式表示: (3) 式中,m i可用质量、物质的量及体积等物理量表示,相应的校正因子分别称为质量校正因子、摩尔校正因子和体积校正因子。由于绝对校正因子受仪器和操作条件的影响很大,其应用受到限制,一般采用相对校正因子。相对校正因子是指组分i与基准组分s的绝对校正因子之比,即: (4) 因绝对校正因子很少使用,一般文献上提到的校正因子就是相对校正因子。 根据不同的情况,可选用不同的定量方法。归一化法是将样品中所有组分合量之和按100%计算,以它们相应的响应信号为定量参数.通过下式计算各组分的质量分数: 该法简便、准确。当操作条件变化时,对分析结果影响较小,常用于定量分析,尤其适于进样量少而体积不易准确测量的液体试样。但采用本法进行定量分析时,要求试样中各组分产生可测量的色谱峰。 五、实验内容 1.认真阅读气相色谱仪操作说明。 2.在教师指导下,开启色谱仪。根据实验条件,将色谱仪按仪器操作步骤,调至可进样状态,待仪器上电路和气路系统达到平衡、记录仪上基线平直时,即可进样。 3、用气相色谱定性分析未知组成的酯类试样,进样量约0.05~0.3 L,2~3次,调节工作站的参数,得到合适的色谱图。 4、标准曲线制备,于一组6支已知含量的溶液试样,试样1(0.100g/ml)、试样2(0.160g/ml)、试样3(0.222g/ml)、试样4(0.288g/ml)、试样5(0.320g/ml)、试样6(0.364g/ml)。用气相色谱测定组分含量,并绘制面积对组分含量的标准曲线。

气相色谱定量分析方法

归一化法 归一化法有时候也被称为百分法(percent),不需要标准物质帮助来进行定量。它直接通过峰面积或者峰高进行归一化计算从而得到待测组分的含量。其特点是不需要标准物,只需要一次进样即可完成分析。 归一化法兼具内标和外标两种方法的优点,不需要精确控制进样量,也不需要样品的前处理;缺点在于要求样品中所有组分都出峰,并且在检测器的响应程度相同,即各组分的绝对校正因子都相等。归一化法的计算公式如下: 当各个组分的绝对校正因子不同时,可以采用带校正因子的面积归一化法来计算。事实上,很多时候样品中各组分的绝对校正因子并不相同。为了消除检测器对不同组分响应程度的差异,通过用校正因子对不同组分峰面积进行修正后,再进行归一化计算。其计算公式如下: 与面积归一化法的区别在于用绝对校正因子修正了每一个组分的面积,然后再进行归一化。注意,由于分子分母同时都有校正因子,因此这里也可以使用统一标准下的相对校正因子,这些数据很容易从文献得到。 当样品中不出峰的部分的总量X通过其他方法已经被测定时,可以采用部分归一化来测定剩余组分。计算公式如下: 内标法 选择适宜的物质作为预测组分的参比物,定量加到样品中去,依据欲测定组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入量进行定量分析的方法叫内标法。特点是标准物质和未知样品同时进样,一次进样。内标法的优点在于不需要精确控制进样量,由进样量不同造成的误差不会带到结果中。缺陷在于内标物很难寻找,而且分析操作前需要较多的处理过程,操作复杂,并可能带来误差。 一个合适的内标物应该满足以下要求:能够和待测样品互溶;出峰位置不和样品中的组分

重叠;易于做到加入浓度与待测组分浓度接近;谱图上内标物的峰和待测组分的峰接近。内标法的计算公式推导如下: 式中,Ai,As分别为待测组分和内标物的峰面积;Ws,W分别为内标物和样品的质量;Gwi/s是待测组分对于内标物的相对质量校正因子(此值可自行测定,测定要求不高时也可以由文献中待测组分和内标物组分对苯的相对质量校正因子换算求出)。 内加法 在无法找到样品中没有的合适的组分作为内标物时,可以采用内加法;在分析溶液类型的样品时,如果无法找到空白溶剂,也可以采用内加法。内加法也经常被称为标准加入法。 内加法需要除了和内标法一样进行一份添加样品的处理和分析外,还需要对原始样品进行分析,并根据两次分析结果计算得到待测组分含量。和内标法一样,内加法对进样量并不敏感,不同之处在于至少需要两次分析。下面我们用一个实际应用的例子来说明内加法是如何工作的: 题:在分析某混合芳烃样品时,测得样品中苯的面积为1100,甲苯的面积为2000,(其它组分面积略)。精确称取40.00g该样品,加入0.40g甲苯后混合均匀,在同一色谱仪上进混合后样品测到苯的面积为1200,甲苯的面积为2400,试计算甲苯的含量。 分析:本题的分析过程是一个典型的内加法操作,其中内加物为甲苯,待测组分为甲苯和苯。 解:1. 由于进样量并不准确,因此两次分析的谱图很难直接进行对比。为了取得可以对比的一致性,我们通过数字计算调整两次分析苯的峰面积相等。此时由于两次分析苯峰面积相等,因此可以断定两次分析待测样品的进样量是相等的。需要注意的是:此时两次分析的总的进样量并不相等,添加后样品比原始样品调整后的进样量中,多了添加的内标物的量。调整可以用原始样品谱图为依据,也可以用添加后样品谱图为依据。但是通常采用原始样品作为依据以便计算最终结果时比较简单。注意:选用的依据不同,中间计算结果会产生差异,但不会影响最终结果。依据的谱图一旦选定,计算就应该围绕此依据进行。 在以原始样品谱图为依据的情况下,调整添加后样品谱图中甲苯的峰面积如下: 对比两次分析,甲苯的面积增加为2200-2000=200。在两次分析待测样品量相同的情况下,内加物面积的增加来自于内加量。也就是说,由于内加物的加入,导致了内加物峰面积的增

实验1 甲苯的气相色谱定性和定量分析

实验1 甲苯的气相色谱定性和定量分析 一、目的要求 1. 学习利用保留值和相对保留值进行色谱对照的定性方法。 2. 学习利用外标法进行定量分析。 3. 熟悉色谱仪器操作。 二、基本原理 各种物质在一定的色谱条件(一定的固定相与操作条件等)下有各自确定的保留值,因此保留值可作为一种定性指标。对于较简单的多组分混合物,若其中所有待测组分均为巳知,它们的色谱峰均能分开,则町将各个色谱峰的保留值与各相应的标准样品在同一条件下所得的保留值进行对照比较,就能确定各色谱峰所代表的物质,这就是纯物质对照法定性的原理。该法是气相色谱分析中最常用的一种定性方法。以保留值作为定性指标,虽然简便,但由于保留值的测定,受色谱操作条件的影响较大,而相对保留值,仅与所用的固定相和温度有关,不受其它色谱操作条件的影响,因而更适合用于色谱定性分析。相对保留值r is 定义为: M R M R R R is t t t t t t r s i s i --= = // 式中t M 、t M ’t Rs ’分别为死时间、被测组分i 及标准物质s 的调整保留时间。 还应注意,有些物质在相同的色谱条件下,往往具有相近的甚至相同的保留值,因此在进行具有相近保留值物质的色谱定性分析时,要求使用高柱效的色谱柱,以提高分离效率,并且采用双柱法(即分别在两根具有不同极性的色谱柱上测定保留值)。 在没有已知标准样品可作对照的情况下,可借助于保留指数 (Kovátts 指数)文献值进行定性分析。对于组分复杂的混合物,采用更为有效的方法,即与其它鉴定能力强的仪器联用,如气相色谱/质谱,气相色谱/红外吸收光谱联用等手段进行定性分析。 本实验以甲苯作为标准物质,利用保留值和相对保留值对未知甲苯溶液进行定性分析,利用外标法对未知甲苯溶液进行定量分析。 三、仪器及试剂 1.仪器 气相色谱仪(岛津GC —17A ); 氮气钢瓶、氢气钢瓶; 空气压缩机; 氢火焰检测器; 色谱柱; 微量进样器 1μL 、10μL 、100μL (医用注射器)。

气体色谱分析方法总结

永久性气体色谱分析 .方法原理 以或分子筛为固定相,用气固色谱法分析混合气中地氧、氮、甲烷、一氧化碳,用纯物质对照进行定性,再用峰面积归一化法计算各个组分地含量. .仪器和试剂①仪器气相色谱仪,备有热导池检测器;皂膜流量计;秒表. ②试剂个人收集整理勿做商业用途 或分子筛(目);使用前预先在高温炉内,于℃活化后备 用.纯氧气、氮气、甲烷、一氧化碳装入球胆或聚乙烯取样袋中.氢气装在高压钢瓶内. .色谱分析条件 固定相:或分子筛(目);不锈钢填充柱管φ×;柱温:室温. 载气:氢气,流量个人收集整理勿做商业用途 检测器:热导池检测器,桥流;衰减,检测室温度:室温. 气化室:室温,进样量用六通阀进样,定量管. .定性分析个人收集整理勿做商业用途 记录各组分从色谱柱流出地保留时间,用纯物质进行对照. .定量分析 由谱图中测得各个组分地峰高和半峰宽计算各组分地峰面积.已知氧、氮、甲烷、一氧化碳地相对摩尔校正因子分别为、、、.再用峰面积归一法就可计算出各个组分地体积百分数().个人收集整理勿做商业用途 白酒中主要成分地色谱分析 .方法原理 白酒地主要成分为醇、酯和羟基化合物,由于所含组分较多,且沸点范围较宽,适合用程序升温气相色谱法进行分离,并用氢火焰离子化检测器进行检测. 个人收集整理勿做商业用途为分离白酒中地主要成分可使用填充柱或毛细管柱,常用地填充柱固定相为;邻苯二甲酸二壬酯吐温硅烷化白色载体(目);聚乙二醇有机载体(目);吐温司班红色载体(目)等.也可使用以聚乙二醇或交联制备地石英弹性毛细管柱. .仪器和试剂个人收集整理勿做商业用途 ①仪器带有分流进样器和氢火焰离子化检测器地气相色谱仪、皂膜流量计、微处理机. ②试剂氮气、氢气、压缩空气,与白酒中主要成分对应地醛、醇、酯地色谱纯标样. .色谱分析条件个人收集整理勿做商业用途 色谱柱:冠醚交联石英弹性毛细管柱φ×,固定液液膜厚度.程序升温:℃()以℃升温至℃(). 载气:氮气,流量.燃气:氢气,流量.助燃气:压缩空气,流量. 个人收集整理勿做商业用途 检测器:氢火焰离子化检测器,高阻 Ω,衰减,检测室温度℃. 气化室:℃,分流进样分流比:,进样量. .定性分析个人收集整理勿做商业用途 记录各组分地保留时间和保留温度,用标准样品对照. .定量分析 以乙酸正丁酯作内标,用内标法定量. 有机溶剂中微量水地分析 .方法原理 以为固定相,利用高分子多孔小球地弱极性、强憎水性,可分析有机溶剂甲醇中地微量水含量.用纯水对照定性,用外标法测水地含量. .仪器和试剂①仪器气相色谱仪,热导池检测器;皂膜流量计;秒表. ②试剂个人收集整理勿做商业用途 氢气,苯水饱和溶液;(目). .色谱分析条件 色谱柱:(目);不锈钢填充柱管φ×;柱温:℃. 载气:氢气,流量. 个人收集整理勿做商业用途

气相色谱的定性和定量分析实验

气相色谱的定性和定量分析实验 一、实验药品 乙酸丁酯(AR )、正己烷(AR )、未知试样 二、实验仪器 SC3000气相色谱仪;注射器:1L ;容量瓶若干 三、实验目的 1、深入了解气相色谱仪的基本结构 2、进一步熟悉气相色谱分离分析的基本原理 3、学习计算色谱峰的分离度 4、掌握根据保留值,作已知物对照定性的分析方法 5、熟悉用归一化法定量测定混合物各组分的含量 四、实验原理 利用气相色谱仪,根据物质的沸点、极性、分子量等差别进行分离分析。 对—个混合试样成功地分离,是气相色谱法完成定性及定量分析的前提和基础。衡 量一对色谱峰分离的程度可用分离度R 表示: 式中,T R,2,w 2和T R,1,w 1分别是两个组分的保留时间和峰底宽(时间),当R=1.5时,两峰完全分离;当R=1.0时,98%的分离。在实际应用中,R=1.0一般可以满足需要。 用色谱法进行定性分析的任务是确定色谱图上每一个峰所代表的物质。在色谱条件 一定时,任何一种物质都有确定的保留值、保留时间、保留体积、保留指数及相对保留值等保留参数。因此,在相同的色谱操作条件下,通过比较已知纯样和未知物的保留参数或在固定相上的位置,即可确定未知物为何种物质。 在一定的色谱条件下,组分i 的质量m :或其在流动相中的浓度,与检测器的响应 信号峰面积Ai 或峰高h ,成正比: 21)1()2(21)1()2()(22 w w t t w w t t R R R R R +-=+-=

m i = f i A? A i(1) 或m i = f i h? A i(2) 式中,f i A和f i h称为绝对校正因子。式(1)和式(2)是色谱定量的依据。不难看出,响应信号A、h及校正因了的淮确测量直接影响定定分析的准确度。 由于峰面积的大小不易受操作条件如校温、流动相的流速、进样速度等因素的影响,故峰面积更适于作为定量分析的参数。现代色谱仪中一般都配有准确测量色谱峰面积的电学积分仪。 由式(1),绝对校正因子可用下式表示: (3) 式中,m i可用质量、物质的量及体积等物理量表示,相应的校正因子分别称为质量校正因子、摩尔校正因子和体积校正因子。由于绝对校正因子受仪器和操作条件的影响很大,其应用受到限制,一般采用相对校正因子。相对校正因子是指组分i与基准组分s的绝对校正因子之比,即: (4) 因绝对校正因子很少使用,一般文献上提到的校正因子就是相对校正因子。 根据不同的情况,可选用不同的定量方法。归一化法是将样品中所有组分合量之和按100%计算,以它们相应的响应信号为定量参数.通过下式计算各组分的质量分数: 该法简便、准确。当操作条件变化时,对分析结果影响较小,常用于定量分析,尤其适于进样量少而体积不易准确测量的液体试样。但采用本法进行定量分析时,要求试样中各组分产生可测量的色谱峰。

气相色谱定性和定量分析

气相色谱定性和定量分析 一、目的要求 1. 学习利用保留值和相对保留值进行色谱对照的定性方法。 2. 学习利用外标法进行定量分析。 3. 熟悉色谱仪器操作。 二、基本原理 各种物质在一定的色谱条件(一定的固定相与操作条件等)下有各自确定的保留值,因此保留值可作为一种定性指标。对于较简单的多组分混合物,若其中所有待测组分均为巳知,它们的色谱峰均能分开,则町将各个色谱峰的保留值与各相应的标准样品在同一条件下所得的保留值进行对照比较,就能确定各色谱峰所代表的物质,这就是纯物质对照法定性的原理。该法是气相色谱分析中最常用的一种定性方法。以保留值作为定性指标,虽然简便,但由于保留值的测定,受色谱操作条件的影响较大,而相对保留值,仅与所用的固定相和温度有关,不受其它色谱操作条件的影响,因而更适合用于色谱定性分析。相对保留值r is 定义为: M R M R R R is t t t t t t r s i s i --= = // 式中t M 、t M ’t Rs ’分别为死时间、被测组分i 及标准物质s 的调整保留时间。 还应注意,有些物质在相同的色谱条件下,往往具有相近的甚至相同的保留值,因此在进行具有相近保留值物质的色谱定性分析时,要求使用高柱效的色谱柱,以提高分离效率,并且采用双柱法(即分别在两根具有不同极性的色谱柱上测定保留值)。 在没有已知标准样品可作对照的情况下,可借助于保留指数 (Kov átts 指数)文献值进行定性分析。对于组分复杂的混合物,采用更为有效的方法,即与其它鉴定能力强的仪器联用,如气相色谱/质谱,气相色谱/红外吸收光谱联用等手段进行定性分析。

离子色谱分析方法通则..

离子色谱分析方法通则 1 范围 本标准规定了离子色谱法对仪器的要求和分析方法。所用仪器应具备输液泵、离子交换色谱柱、抑制器以及检测器(电导检测器、安培检测器、吸光度检测器或者其中任一种检测器)等。系统中应含完成分析任务所必需的附件—色谱工作站或积分仪等。 本标准适用于多种阴离子、阳离子、有机酸、糖类的测定。 2.引用标准 GB 1.4-88 标准化工作导则化学分析方法标准编写规定 GB 3102.8-93 物理化学和分子物理学的量和单位 3 定义 3.1 电导 conductance 电阻的倒数称为电导,单位为西门子,符号是S。它的导出单位为微西门子,符号是μS。1S=106μS。 3.2 电导率 conductivity 25℃时,一立方厘米液体的电阻的倒数,以Ω1·cm1或S/cm 表示。 3.3 抑制电导检测 suppressed conductance detection 在分离柱后,采用离子交换膜或离子交换柱将淋洗液中的淋洗离子转变为弱酸、弱碱或水,使淋洗液的背景电导降低,同时提高检测灵敏度的方法称为抑制电导检测。 3.4 分辨率(分离度) resolution 评价色谱柱对相邻双峰分离情况的指示: 分峰的分离情况。分辨率按

式中 R—相邻两组分峰的分辨率 tR1——组分1的保留时间 tR2——组分2的保留时间 W1——组分1的峰底宽度 W2——组分1的峰底宽度 4 方法原理 不同的色谱柱中装填有不同类型的离子交换树脂。离子交换树脂上的活性交换基团能与样品中的离子及流动相中的淋洗离子发生离子交换作用。此种交换作用又因不同离子与树脂上的活性交换基团之间的静电力或亲和力存在差异,与树脂静电力或亲和力大的离子易被保留而难于被洗脱,静电力或亲和力小的离子则易于洗脱。随着淋洗液的流动,样品中的离子与树脂上的交换基团不断地发生交换—洗脱—再交换—再洗脱,最终被淋洗液带到检测器中形成高斯分布型色谱峰。在一定的色谱条件下组分峰的流出时间即保留时间固定,以此作为组分离子的定性依据。在一定的浓度范围内组分的峰面积(或峰高)正比于组分的浓度,积分仪拾得此信号给出组分的定量结果。 图1 分辨率示意图 5 试剂和材料 5.1 配制淋洗液、再生液的试剂纯度应是分析纯(A.R)或分析纯以上试剂。 5.2 去离子水应满足以下要求: 5.2.1 电导率:<1μS/cm(20℃时)。

气相色谱在环境分析中的应用(精)

气相色谱法在环境分析中的应用 摘要:气相色谱法是一种很常见的环境分析检测方法,我们也经常将它应用在水、大气、固废等环境检测中。我们以检测非甲烷烃为例来进行探究和学习,(非甲烷烃是一种对人体健康有害的气体)因此我们利用带有双柱双氢火焰离子化检测器的气相色谱仪(岛津GC2014型)和自己所学的知识来对此进行气相色谱检测。并且通过这次检测来了解和复习流动相、检测器、色谱柱以及温度等色谱条件是如何选择以及定性、定量分析方法。 关键词:非甲烷总烃;气相色谱法;定性、定量分析; 1.非甲烷总烃 非甲烷烃(NMHC通常是指除甲烷以外的所有可挥发的碳氢化合物(其中主要是C2~C8,又称非甲烷总烃。主要包括烷烃、烯烃、芳香烃和含氧烃等组分。大气中的非甲烷总烃超过一定浓度,除直接对人体健康有害外,在一定条件下经日光照射还能产生光化学烟雾,对环境和人类造成危害[1]。 监测环境空气和工业废气中的NMHC有许多方法,但目前多数国家采用气相色谱法。由于直接测定NMHC所用仪器价格昂贵,因此我们采用双柱双氢火焰离子化检测器气相色谱法分别测出总烃和甲烷的含量,两者之差为NMHC的含量。在规定的条件下所测得的NMHC是于气相色谱氢火焰离子化检测器有明显响应的除甲烷外碳氢化合物总量,以碳计[2]。 目前我国基本采用气相色谱法测定非甲烷总烃, 按进样的不同有活性炭吸附一热解吸法及针筒采样一手动进样法,采用活性炭吸附一热解吸法[3]易受到活性炭吸附效率的影响,而针筒采样——手动进样法[4]则重复性较差、易熄火。而我们采用气袋采样—气体自动进样器进样分析气体中非甲烷总烃,而这样也最令人满意。此方法操作简单、重复性好、效率高、干扰少,且可用于其他挥发性有机物,如苯系物等的测定。 2.利用气相色谱法检测非甲烷总烃

气相色谱的原理及定性定量分析

气相色谱的原理及定性定量分析 基本原理 气相色谱是将有机物分离的一种方法,它也可以对混合物的组成进行定性定量分析。混合物是通过在流动相和固定相中的相作用而分离的。流动相和固定相构成色谱法的基础。流动相可以有气体和液体两种状态,固定相则有液体和固体两种状态。流动相是气体的称作气相色谱。流动相是液体的称做液相色谱。气相色谱是一种分配色谱,其固定相是由特定的液体黏附在一些固体基质上组成的。 各种气相色谱仪虽然在功能、价格和操作上有所不同,但其都是由气流系统、分离系统、检测系统和数据处理系统所组成的。如下图: 气相色谱的气流系统主要包括气源和气体纯化及调节装置。气源一部分是作为流动相 的载气,我们所使用的载气是氮气。气源的另一部分是作为后期检测所

用的燃烧气体,主要是氢气和空气。由于进入分离系统的气体纯度需要保证,所以不论气源纯度如何,都应通过气体净化装置才能进入色谱分离系统。虽然根据检测器或色谱柱不同,气相色谱的气体纯度有所差异,但所有气体的纯度至少要达到99%以上,许多情况下应达99?99%。气相色谱分离系统包括样品汽化室和色谱柱两部分。气相色谱分离技术需要所测有机物样品必须在气态才能进行,因此,首先需要将液态或固态的样品加热 (100一300℃)汽化才能进入色谱柱进 行分离。这样气相色谱进样是用人工或自动注射的方式将有机样品首先注入汽化室。 气相色谱的定性定量分析 气相色谱主要功能不仅是将混合有机物中的各种成分分离开来,而且还要对结果进行定 性定量分析。所谓定性分析就是确定分离出的各组分是什么有机物质,而定量分析就是确定分离组分的量有多少。色谱在定性分析方面远不如其它的有机物结构鉴定技术,但在定量分析方面则远远优于其它的仪器方法。 有机物进入气相色谱后得到两个重要的测试数据:色谱峰保留值和面积,这样气相色谱可根据这两个数据进行定性定量分析。色谱峰保留值是定性分析的依据,而色谱峰面积则是定量分析的依据。

第2章气相色谱分析复习过程

第2章气相色谱法 一、判断题 1.色谱法与其他分析方法之间最大的不同是色谱法的灵敏度高。(×)2.在气相色谱中试样中各组分能够被相互分离的基础是各组分具有不同的热导系数。(×) 3.组分的分配系数越大,表示其保留时间越长。(√) 4.色谱法特别适合混合物的分析。(√) 5.热导检测器属于质量型检测器,检测灵敏度与载气的相对分子量成正比。(×)6.塔板理论给出了影响柱效的因素及提高柱效的途径。(×)7.在载气流速比较高(低)时,分子扩散成为影响柱效的主要因素。(×) 8.分离温度提高,保留时间缩短,峰面积不变。(√) 9.某试样的色谱图上出现三个色谱峰,该试样中最多有三个组分。(×)10.分析混合烷烃试样时,可选择极性固定相,按沸点大小顺序出峰。(×) 二、选择题 1、在气相色谱分析中, 色谱流出曲线的宽度与色谱过程的哪些因素无关? ( A ) A、热力学因素 B、色谱柱长度 C、动力学因素 D、热力学和动力学因素 2、在一定的柱温下, 下列哪个参数的变化不会使比保留体积(Vg)发生改变?( A ) A、改变检测器性质 B、改变固定液种类 C、改变固定液用量 D、增加载气流速 3、使用热导池检测器时, 应选用下列哪种气体作载气, 其效果最好?( B ) A、H2 B、He C、Ar D、N2 4、在气相色谱法中,实验室之间能通用的定性参数是( C ) A、保留时间 B、调整保留时间 C、相对保留值 D、调整保留体积 5、在气液色谱中,色谱柱使用的上限温度取决于( D ) A、试样中沸点最低组分的沸点 B、试样中各组分沸点的平均值 C、固定液的沸点 D、固定液的最高使用温度 6、为了检查气相色谱仪的整个流路是否漏气,比较简单而快速的方法是打开载气后( C ) A、用皂液涂在管路接头处,观察是否有肥皂泡出现; B、用手指头堵死气路的出口,观察转子流量计的浮子是否较快下降到其底部; C、打开记录仪,观察基线是否发生漂移或不稳定;

气相色谱归一化法定量分析(1)

气相色谱归一化法定量分析 、实验目的 1. 掌握气相色谱中利用保留值和相对保留值进行色谱对照的定性方法 2. 掌握测定质量校正因子的方法。 3. 掌握面积校正归一化法定量的基本原理和测定方法。 4. 学习色谱操作技术。 、实验原理 2.1纯物质对照法定性分析 各种物质在一定的色谱条件(固定相与操作条件等)下有各自确定的保留值,因此保留 值可作为一种定性指标。对于简单的多组分混合物,若其中所有待测组分均为已知且它们的 色谱峰均能分开,则可将各个色谱峰的保留值与各相应的标准试样在同一条件下所得的保留 值进行对照比较,就能确定各色谱峰所代表的物质, 这就是纯物质对照法定性的原理。 是气相色谱分析中最常用的一种定性方法。 以保留时间作为定性指标, 留时间的测定受载气流速等色谱操作条件的影响较大, 相种类有关而不受其他操作条件影响的相对保留值 析。相对保留值r is 定义为: 式中t M ,t R ,t R 5分别为死时间, 分i 及标准物质s 的保留时间。 校正因子的测量:色谱分析中。几乎都要用到校正因子。 校正因子有绝对校正因子和相 对校正因子。 绝对校正因子f i 是指i 物质进校量 m i 与它的峰面积 A 或峰高h 之比: 只有在仪器条件和操作条件严格恒定的情况下,一种物质的绝对校正因子才是稳定值, 才有意义。同时,要准确测定绝对校正因子,还要求有纯物质,并能准确知道进样量 所以它的应用受到限制。 相对校正因子是指i 物质的绝对校正因子与作为基准的 s 物质的绝对校正因子之比。可 以表示为: 峰面积之比A s/A ,即可计算出f i..?s 。进样多少,不必准确计量,所以相对校正因子更容易 测定。而且,只要是同类检测器。色谱条件不同时,相对校正因子基本上保持恒定。使用中 不必要操作条件严格相同,适应性和通用性更强。 纯物质可以自行测定,没有纯物质时,可 该法 虽然简便,但由于保 可靠性较差;若采用仅与柱温和固定 r s 作为指标,则更适合用于色谱定 性分 r is t R i t R R S t R t R S t M 被测组分 i 及标准物质s 的调整保留时间;t R j ,t R s 为被测组 m i m i f i —或 f i A i h i f i s — f s m i A s A m s 测定相对校正因子,只需配制i 和s 的质量比 m i 《m s 为已知的标样,进样后测出它们的

气相色谱定性与定量分析报告实验

气相色谱的定性与定量分析 一、 实验目的: 1、 学习计算色谱峰的分享度 2、 掌握根据纯物质的保留值进行定性分析 3、 掌握用归一化法定量测定混合物各组分的含量 4、 学习气相色谱信的使用方法 二、 方法原理 1、 柱效能的测定:色谱柱的分享效能,主要由柱效和分离度来衡量。柱效率是以样品中验 证分离组分的保留值用峰宽来计算的理论塔板数或塔板高度表示的。 2 2 2 1 1654.5??? ? ??=???? ? ??=b R R W t W t n 理论塔板数: n L H = 理论塔板高度: 式中R t 为保留值(S 或mm ):2 1 W 为半峰宽(S 或mm ):b W 为峰底宽(S 或mm ):L 为 柱长(cm )。 理论塔板数越大或塔板高度越小,说明柱效率越好。但柱效率只反应了色谱对某一组分的柱效能,不能反映相邻组分的分离度,因此,还需计算最难分离物质对的分离度。 分离度是指色谱柱对样品中相邻两组分的分离程度,对一个混合试样成功的分离,是气相色谱法完成定性及定量分析的前提和基础。分离度R 的计算方法是: ) ()(2211211 2W W t t R R R +-= 或 2112)(2B b R R W W t t R +-= 分离度数值越大,两组分分开程度越大,当R 值达到1.5时,可以认为两组分完全分开。 2、 样品的定性: 用纯物质的保留值对照定性。在一个确定的色谱条件下,每一个物质都有一个确定的保留值,所以在相同条件下,未知物的保留值和已知物的保留值相同时,就可以认为未知物即是用于对照的已知纯物质。但是,有不少物质在同一条件下可能有非常相近的而不容易察觉差异的保留值,所以,当样品组分未知时,仅用纯物质的保留值与样品的组分的保留值对照定性是困难的。这种情况,需用两根不同的极性的柱子或两种以上不同极性固定液配成的柱子,对于一些组成基本上可以估计的样品,那么准备这样一些纯物质,在同样的色谱条件下,以纯物质的保留时间对照,用来判断其色谱峰属于什么组分是一种简单而行方便的定性方法。 用标准加入法来定性。首先用未知的混合样品在一定的色谱条件下采集混合物样品的色谱峰,然后取一定量的混合物样品中加入怀疑有的物质的纯物质,在相同的色谱条件下采集加入某纯物质的色谱峰,用两个色谱图进行比较,就会发现两个色谱图上某一个峰的保留值相同,但加了某纯物质的色谱图上的色谱峰的峰高增加、峰面积增大,那么此峰即为某纯物质。 3、 样品的定量

白酒气相色谱分析方法

白酒气相色谱分析方法 白酒香味成份复杂,除乙醇和水外,还有大量芳香组分存在。构成白酒质量风格的是酒内所含的香味成分的种类以及其量比关系。应用气相色谱法能快速而准确地测出白酒中的醇类、酯类、有机酸类、碳基化合物、酚类化合物以及高沸点化合物等成分的含量。 一、填充柱DNP柱测定白酒中醇、酯等组分(一般酒厂需要,白酒) (一)DNP柱直接进样法测定白酒中主要醇、酯成份 白酒中醇和酯是主要香味成份。吸取原样品进行色谱分析,其优点是:操作简便,测定结果准确性高、快速;缺点是:极其微量的组分不易检出。 1样品的配制 ●2%内标的配制: 吸取2mL的内标--乙酸正丁酯于1OOmL的容量瓶中,(因内标物易挥发,可在瓶内先放少量酒精),用55%-60%的乙醇定容。 ●1-2%标样的配制: 分别吸取乙醛、甲醇、正丙醇、仲丁醇、乙缩醛、正丁醇、异戊醇、(正己醇)、(糠醛)各lmL,乙酸乙酯、丁酸乙酯、戊酸乙酯、乳酸乙酯、己酸乙酯、乙

酸异戊酯)各2mL一起加入1OOmL容量瓶中,用55%-60%(V/V)的乙醇定容,混匀后组成标样。(在容量瓶中先加少许乙醇,以防挥发) ●混标的配制: 分别用移液管吸取标样lOmL和内标5mL,用55%-60%(V/V)的乙醇定容到1OOmL,混匀后(可分装)待用。 混标中各组分i及内标含量计算公式: mi=ci×Vi×di×lO00 ms=cs×Vs×ds×lO00 式中:mi/ms—混标中各组分i/内标的含量(mg/l0OmL); ci/cs—混标中各组分i/内标的浓度(V/V) Vi/Vs—混标中各组分i/内标的体积(mL) ; di/ds—混标中各组分i/内标的密度(g/mL) ; 1000—算成以mg为单位的系数。 例:计算混标中正丁醇的含量 m正丁醇=1%×lOml×0.809g/ml×lO00=80.9mg/100ml混标样

气相色谱定性分析

气相色谱定性分析 一、实验目的 1、了解气相色谱仪的基本结构和工作原理。 2、学习和熟悉气相色谱仪的基本操作。 3、了解氢火焰离子化检测器和电子俘获检测器的原理和特点。 二、实验原理 各种物质在一定的色谱条件(固定相与操作条件等)下有各自确定的保留值,因此保留值可作为一种定性指标。对于简单的多组分混合物,若其中所有待测组分均为已知且它们的色谱峰均能分开,则可将各个色谱峰的保留值与各相应的标准试样在同一条件下所得的保留值进行对照比较,就能确定各色谱峰所代表的物质,这就是纯物质对照法定性的原理。该法是气相色谱分析中最常用的一种定性方法。以保留时间作为定性指标,虽然简便,但由于保留时间的测定受载气流速等色谱操作条件的影响较大,可靠性较差;若采用仅与柱温和固定相种类有关而不受其他操作条件影响的相对保留值r is 作为指标,则更适合用于色谱定性分析。相对保留值r is 定义为: M R M R R R is t t t t t t r S i S i --== '' 式中'',,S i R R M t t t 分别为死时间,被测组分 i 及标准物质s 的调整保留时间;s i R R t t ,为被测组 分i 及标准物质s 的保留时间。 氢火焰离子化检测器(FID )是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A )经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。本实验以丙酮作为标准物质,利用保留时间和相对保留值进行甲苯和乙酸乙酯的定性分析。 三、仪器与试剂 1、Agilent 6890N Network GC system ,FID 检测器 2、氮气、氢气、空气 3、微量注射器:1μL 和50μL 4、 试剂:丙酮、甲醇 5、配制混合试样 在2只10mL 的容量瓶内,按1:1的比例分别配制丙酮、甲醇溶液,摇匀备用。 四、实验步骤 1、开机

气相色谱分析方法的建立

气相色谱分析方法的建立

内标法与外标法 一、内标法 什么叫内标法?怎样选择内标物? 内标法是一种间接或相对的校准方法。在分析测定样品中某组分含量时,加入一种内标物质以校谁和消除出于操作条件的波动而对分析结果产生的影响,以提高分析结果的准确度。 内标法在气相色谱定量分析中是一种重要的技术。使用内标法时,在样品中加入一定量的标准物质,它可被色谱拄所分离,又不受试样中其它组分峰的干扰,只要测定内标物和待测组分的峰面积与相对响应值,即可求出待测组分在样品中的百分含量。采用内标法定量时,内标物的选择是一项十分重要的工作。理想地说,内标物应当是一个能得到纯样的己知化合物,这样它能以准确、已知的量加到样品中去,它应当和被分析的样品组分有基本相同或尽可能一致的物理化学性质(如化学结构、极性、挥发度及在溶剂中的溶解度等)、色谱行为和响应特征,最好是被分析物质的一个同系物。当然,在色谱分析条什下,内标物必须能与样品中各组分充分分离。需要指出的是,在少数情况下,分析人员可能比较关心化台物在一个复杂过程中所得到的回收率,此时,他可以使用一种在这种过程中很容易被完全回收的化台物作内标,来测定感兴趣化合物的百分回收率,而不必遵循以上所说的选择原则。 在使用内标法定量时,有哪些因素会影响内标和被测组分的峰高或峰面积的比值? 影响内标和被测组分峰高或峰面积比值的因素主要有化学方面的、色谱方面的和仪器方面的三类。 由化学方面的原因产生的面积比的变化常常在分析重复样品时出现。 化学方面的因素包括: 1、内标物在样品里混合不好; 2、内标物和样品组分之间发生反应, 3、内标物纯度可变等。 对于一个比较成熟的方法来说,色谱方面的问题发生的可能性更大一些,色谱上常见的一些问题(如渗漏)对绝对面积的影响比较大,对面积比的影响则要小一些,但如果绝对面积的变化已大到足以使面积比发生显著变化的程度,那么一定有某个重要的色谱问题存在,比如进样量改变太大,样品组分浓度和内标浓度之间有很大的差别,检测器非线性等。进样量应足够小并保持不变,这样

如何建立气相色谱分析方法

气相色谱分析方法的建立步骤 在实际工作中,当我们拿到一个样品,我们该怎样定性和定量,建立一套完整的分析方法是关键,下面介绍一些常规的步骤: 1、样品的来源和预处理方法 GC能直接分析的样品通常是气体或液体,固体样品在分析前应当溶解在适当的溶剂中,而且还要保证样品中不含GC不能分析的组分(如无机盐),可能会损坏色谱柱的组分。这样,我们在接到一个未知样品时,就必须了解的来源,从而估计样品可能含有的组分,以及样品的沸点范围。如果样品体系简单,试样组分可汽化则可直接分析。如果样品中有不能用GC直接分析的组分,或样品浓度太低,就必须进行必要的预处理,如采用吸附、解析、萃取、浓缩、稀释、提纯、衍生化等方法处理样品。 2、确定仪器配置 所谓仪器配置就是用于分析样品的方法采用什么进样装置、什么载气、什么色谱柱以及什么检测器。 一般应首先确定检测器类型。碳氢化合物常选择FID检测器,含电负性基团(F、Cl等)较多且碳氢含量较少的物质易选择ECD检测器;对检测灵敏度要求不高,或含有非碳氢化合物组分时,可选择TCD检测器;对于含硫、磷的样品可选择FPD检测器。 对于液体样品可选择隔膜垫进样方式,气体样品可采用六通阀或吸附热解析进样方法,一般色谱仅配置隔膜垫进样方式,所以气体样品可采用吸附-溶剂解析-隔膜垫进样的方式进行分析。 根据待测组分性质选择适合的色谱柱,一般遵循相似相容规律。分离非极性物质时选择非极性色谱柱,分离极性物质时选择极性色谱柱。色谱柱确定后,根据样本中待测组分的分配系数的差值情况,确定色谱柱工作温度,简单体系采用等温方式,分配系数相差较大的复杂体系采用程序升温方式进行分析。 常用的载气有氢气、氮气、氦气等。氢气、氦气的分子量较小常作为填充柱色谱的载气;氮气的分子量较大,常作为毛细管气相色谱的载气;气相色谱质谱用氦气作为载气。

相关文档
最新文档