多环芳烃(PAHs)检测方法

多环芳烃(PAHs)检测方法
多环芳烃(PAHs)检测方法

信标检测分析技术服务中心始终着眼于客户的需求,我们一直致力于材料的研究,我们的经验与知识多环芳烃(PAHs )检测方法

信标(Symbol )检测分析技术服务中心提供包括汽车内饰件、石化产品、橡胶、塑胶、润滑油、防锈油等产品的多环芳烃的检测分析服务。

1标准检测方法

目前GC-FID 、GC-MS 和HPLC-UV/FL 是检测PAHs 最常用的方法。气相色谱具有高选择性、高分辨率和高灵敏度的特性,而且由于多环芳烃的热稳定性,用质谱(如EI 源)作为检测器时,能够得到大的分子离子峰和很少的碎片离子,所以用GC-MS 测定时能够得到很高的灵敏度,与GC-FID 相比,GC-MS 在定性方面更准确。相对于气相色谱,液相色谱可以更好地测定低挥发性的多环芳烃,并能够有效分离多环芳烃的同分异构体。在分离复杂的PAHs 母体化合物及样品净化方面有着相当的优势。在PAHs 的标准检测方法中以GC-MS 为检测手段的主要有:针对大气的EPA TO-13A 、ISO 12884:2000(E)、ASTMi D6209-98(2004)等方法;针对饮用水的EPA 525.2Rev 2.0方法;针对废水的EPA 1625方法;针对固体废气物的EPA 8270D ;针对土壤的EPA 8275A 和ISO 18287:2006方法。以LC-UV/FL 为检测手段的标准方法主要有:针对大气的ISO 16362:2005;针对饮用水的EPA 550、ISO 79811:2005、ISO 79812:2005、ISO 17993:2002和我国的GB13198-91;针对固体废气物的EPA 8310;针对土壤的ISO 13877:1998。以GC-FID 作为检测器的有:EPA 8100方法。2新的检测方法

2.1化学电离源质谱法测定多环芳烃

由于GC-MS 在定性方面具有很好的准确性,该方法是标准方法比较认可的检测手段。在标准方法中GC-MS 测定多环芳烃都是用的电子轰击离子源(EI 源)。近年来,将化学电离源(CI 源)用于测定多环芳烃的某些同分异构体。Simonaick 等[1]将CI 源用于测定高分子量的PAHs 的同分异构体,方法的分辨率由C28H14和C30H14两组同分异构体进行了评价,该方法能够较好的预测他们的质谱结果。Riahi 等人[2]采用GC-PCI-MS 测定了不同种异构体,结果表明二甲醚作为反应气比NH3具有更好的分离效果。

2.2快速气相色谱测定多环芳烃

快速气相色谱顾名思义就是分析速度快的GC ,其目的是在短时间内得到需要的样品信息。快速色谱最为常见的方法就是采用微型柱作为分离柱。分析多环芳烃时,常采用20m 、10m (5%苯基,0.1mm 管径,0.1μm 膜厚),与30m 的柱子相比,其分析时间能够分别缩短45%和60%[3]。

2.3超高速液相色谱测定多环芳烃

与快速气相色谱相似,配有细颗粒填料(小于2μm )及高压泵(柱压一般大于400bar )的超高速液相色谱(UPLC )[4]因为其快速、高效、高分辨的特点也迅速发展起来。但是由于硬件的限制,直到2004年才被商品化。Zhu 等[5]采用填充1.7μm 细粒径的C18的2.1×50mm 的色谱柱在不到十分钟之内分离了BaP 及其8种代谢产物,并用大气化学源(APCI )质谱进行检测,其检测限能达到0.01ng/μL 。

2.4全二维气相色谱测定多环芳烃

全二维气相色谱[6](Comprehensive two-dimensional gas chromatography,GC×GC),是把分离机理不同而又互相独立的两支色谱柱以串联方式结合成二维气相色谱,在这两支色谱柱之间装有一个调制器,这个调制器起捕集再传送的作用。通常用全二维气相测定PAHs时,其中第一维的分离柱是一根常规柱5%苯基-聚二甲基硅氧烷(30m×0.25mm×0.25μm),第二维的分离柱是50%苯基-聚二甲基硅氧烷(1m×0.1mm×0.1μm)。Ong等人[7]利用超临界流体萃取-全二维气相(FID)测定了土壤中的多环芳烃,并与普通气相(FID)、气质测定的结果进行了对比,发现定性结果三者一致,而对于定量来说,则由于分辨率的问题而有所不同,如当用GC-FID来测定Ace时,与全二维相比,其测定值较高,说明当萃取以后有些共萃物的干扰影响测定,而全二维气相就表现出较强的分离能力。

2.5全二维液相色谱测定多环芳烃

相对于全二维气相色谱,全二维液相色谱由于溶剂转换、转移体积和系统峰、以及实验设备和实际操作的相对复杂性,使得其发展较全二维气相色谱要困难得多。全二维液相色谱由采用两种不同分离机理色谱柱的一维分离系统通过一定的切换模式结合而成。设计一个二维分离体系的关键是相体系的选择[8]。Murahashi[9]设计了全二维NPLC/RPLC联用系统,第一维采用常规柱,第二维采用平行的整体柱实现快速分离。采用该联用模式分析了多环芳烃,在第一维柱后通过三通,泵入大量的纯水进行稀释,降低第一维切割液的洗脱强度,从而在第二维的柱头实现样品富集,降低谱带的扩散。

信标检测分析技术服务中心始终着眼于客户的需求,我们一直致力于材料的研究,我们的经验与知识

大气中多环芳烃的检测和治理

大气中多环芳烃的检测和治理 摘要:本文介绍了多环芳烃的大气污染来源,多环芳烃的检测技术和控制污染排放治理污染的技术,主要介绍了多环芳烃的生物监测技术和生物治理技术。 一、多环芳烃的简介 多环芳烃(polycyclic Aromatic Hydrocarbons,PAHs)是一类由两个或两个以上苯环结构组成的稠环类有机化合物。多环芳烃是广泛存在于环境中的一类污染物,在大气、水、土壤、动植物和食物等很多介质中都能检出。由于多环芳烃的暴露会引起肺癌等在内的疾病风险,对人体健康威胁比较大,且多环芳烃能够长距离传输,所以多环芳烃的研究一直是国内外环境领域研究的热点。美国环保局公布的129中优先控制的污染物中,有16种多环芳烃的异构体名列其中。图一为几种多环芳烃的结构。 表1为12种PAHs的基本性质及检测限

环境中多环芳烃的来源包括自然源和人为源,自然源主要包括天然火灾、 火山等自然活动。人为源包括工业过程,如燃煤行业,炼铝炼焦行业的排放、 居民生活中的生物质、机动车等交通排放源。和自然源相比,人为源仍是多环芳烃排放的主要贡献者。 表2为主要人为源产生BaP(苯并[a]芘)的估计量 表2 主要人为源产生BaP的估计量 多环芳烃在大气中的分布: 全世界每年排放在大气中的多环芳烃约为几十万吨,主要以吸附在颗粒物 和气相的形式存在,四环以下的PAHs如菲、蒽、荧蒽、芘等主要集中在气相部分,五环以上的则大部分集中在颗粒物上或散步在大气飘尘中,在大气飘尘中,几乎所有的PAHs都附在粒径小于7um的可吸入颗粒物上,直接威胁人类的健康。 二、大气中多环芳烃的检测: 1、标准检测方法: 目前最为常见的气溶胶PAHs分析技术有高效液相色谱-紫外检测(HPLC-UV)、高效液相色谱-荧光检测(HPLC-FLD)、气相色谱-氢火焰离子化检测(GC-FID)和气相色谱质谱联用(GC-MS).气相色谱具有高选择性、高分辨率 和高灵敏度的特性,而且由于多环芳烃的热稳定性,用质谱作为检测器时,能 够得到大的分子离子峰和很少的碎片离子,所以用GC-MS测定时能够得到很高 的灵敏度,与GC-FID相比,GC-MS在定性方面峰更准确。相对于气相色谱,液 相色谱能更好地测定低挥发性的多环芳烃,并能够有效分离多环芳烃的同分异 构体。紫外-可见分光光度法(UV-Vis)、红外光谱法(IR)单独用于检测PAH组分的报道极少。目前UV通常作为HPLC的检测器,或再结合荧光分析法。 2、生物技术检测多环芳烃:

区域环境振动作业指导书

区域环境振动监测 作业指导书 依据标准: GB10071-199-88 1.0 适用范围 本方法适用于: ⅰ 城市区域环境振动总体水平监测、环境背景振动调查、环境振动无人的时间与空间规律监测等; ⅱ 项目竣工验收“三同时”振动监测; ⅲ 工厂企事业振动扰民监测; ⅳ 建立工厂企事业振动监测档案; ⅴ 各类振动委托监测等。 2.0名词术语 2.1 振动加速度级VAL 加速度与基准加速度之比的以10未底的对数乘以20,记为VAL.单位为分贝,dB. 按定义此量为:V AL = 20lg 0 a a (dB) 式中: a — 振动加速度有效值, m/s 2; a 0; —基准加速度,a 0 = 10-6m/s 2 2.2 振动级VLz 按ISO2631/1—1985规定的全身振动Z 不同频率计权因子修正后得到的振动加速度级,简称振级,记为VL.单位为分贝。 2.3 Z 振动VLz

按ISO2631/1—1985规定的全身振动Z计权因子修正后得到的振动加速度级,记为VLz.单位为分贝,gB. 2.4累计百分Z振级VLzn 在规定的测量时间T内,有N%时间的Z振级超过某一个VLz值,这个VLz 值叫做累计百分Z振级,记为VLzn.单位为分贝,gB. 2.5稳态振动 观测时间内振级变化不大的环境振动。 2.6冲击振动 具有突发性振级变化的环境振动。 2.7 无规振动 未来任何时刻不能预先确定振级的环境振动。 3.0技术依据 1 GB10071-1988《城市区域环境振动噪声测量方法》 4.0 操作步骤 4.1测量仪器准备 4.1.1测量仪器性能必须符合ISO/D8041-1984有关条款的规定。 4.1.2测量系统每年至少送上海市计量测试技术研究院计量一次。 4.1.3拾振器盒监测仪器的携带盒安放应避免较大冲击,同时做好放水、防潮等仪器维护保养工作,保证仪器的正常工作状态。 4.2 现场测量 4.2.1 测量位置 测点置于各类区域建筑物室外0.5m以内的振动敏感处。必要时测量点置于建筑物室内地面中央。测量交通振动,必要时应记录车流量。 4.3 拾振器的安装 4.3.1 确保拾振器平稳地安放在平坦、坚实的地面上,避免置于如地毯、草地、沙地或雪地等松软的地面上。 4.3.2 拾振器的灵敏度主轴方向与测量方向一致。 4.4 测量条件 4.4.1 测量时振源应处于正常工作状态。 4.4.2 测量应避免足以影响环境振动测量值的其他环境因素,如剧烈的温度梯度

芳烃联合装置

芳烃联合装置

抽提蒸馏塔塔顶产品为非芳烃,作为非芳烃副产品送出装置,塔底产物为富含苯的溶剂,送溶剂回收塔作为进料。抽提蒸馏塔重沸器热源由中压蒸汽提供,通过控制加热蒸汽量来调节热负荷,加热蒸汽分成两股进行控制,主流股(约80%)由定流量控制,次流股流量(约20%)由灵敏板温度与流量串级控制。 溶剂回收塔的作用是实现苯产品与溶剂的分离。溶剂回收塔在减压下操作,塔顶残压由压力控制器控制回收塔蒸汽喷射泵的尾气返回量或氮气吸入量进行调节。溶剂回收塔塔顶产物为苯产品,经白土处理后送往苯检验罐,塔底贫溶剂大部分直接循环使用,少部分去溶剂再生罐进行减压蒸发再生后循环使用。溶剂回收塔重沸器热源由中压蒸汽提供,加热量由重沸器出口凝结水流量进行控制。 溶剂再生罐实际上是一个减压蒸发器,操作压力由压力控制器控制再生罐蒸汽喷射泵的尾气返回量或氮气吸入量进行调节。溶剂再生罐热量由内插式溶剂再生罐加热器提供,加热热源为中压蒸汽,加热量由蒸汽凝结水流量进行调节。再生后溶剂送至贫溶剂泵入口循环使用。溶剂再生罐罐底残渣采用不定期方式排出。 4、对二甲苯装置 对二甲苯装置采用美国UOP的专利工艺技术,主要生产纯度99.8%的对二甲苯(PX)产品,并富产苯、邻二甲苯(OX)、重芳烃等。包括甲苯歧化-烷基转移单元、二甲苯异构化单元、二甲苯精馏单元、吸附分离单元四部分。 甲苯歧化-烷基转移单元采用UOP的TATORAY工艺,选用活性、选择性及稳定性较高的新一代TA-4催化剂,在高温作用下,甲苯和C9A发生歧化和烷基转移反应,生成目的产品苯和二甲苯。可以通过调整甲苯和C9A的比例来实现苯和二甲苯产品的分布。2003年月份催化剂进行了国产化,使用上海石油化工科学研究院自主开发的HAT-97催化剂,该催化剂最大的特点是可以加工3-5%的C10A,并且具有更高的选择性和转化率。 二甲苯异构化单元采用UOP的ISOMAR工艺,选用乙苯异构型I-9K催化剂,在反应过程中建立限定性平衡,通过环烷烃中间体将乙苯最大限度地转化为二甲苯,采用这种催化剂可以从混合二甲苯中获取最高产率的对二甲苯。该催化剂稳定性好,反应压力和氢油比低,不需注氯,减少了系统腐蚀,改善了操作环境。 吸附分离单元采用UOP的PAREX工艺,通过多通道旋转阀实现连续逆流接触,利用分子筛选择吸附PX,再用解吸剂对二乙基苯将PX置换解吸,从而达到分离PX 的目的。选用最新分子筛吸附剂ADS-27,改进吸附系统设备和优化工艺参数,增大了吸附塔的处理能力,对二甲苯单程收率可提高到97%,纯度达到99.80%。 二甲苯精馏单元采用精密分馏工艺,将混合芳烃中的C8A、C9A分离出来,分别作为原料提供给吸附分离和歧化单元,从而将联合装置各单元有机的联合起来。二甲苯塔采用加压操作,操作压力为1.0Mpa(a),利用塔顶和塔底高温物流分别作为其它单元集中供热热源,多余的塔顶汽相通过蒸汽发生器发生1.0Mpa蒸汽,全塔的热量均被利用,节能效果显著。 5、中间原料及溶剂油罐区负责芳烃联合装置的原料、甲苯、溶剂油的收储工作。包括中间原料油罐区、溶剂油罐区、芳烃原料罐区三部分。

多环芳烃测定方法

多环芳烃在上海近郊大气颗粒物的污染特征、来源及其健康风险评估样品的预处理: (1)样品滤膜剪成碎片,添加内标选择氘代混表(Naphthalene-d8、Acenaphthene-d10、Phenanthrene-d10、Chrysene-d12、Pyrene-d12-USA) (2)提取——快速萃取仪(ASE-150, Dionex ,USA),萃取溶剂为二氯甲烷、正己烷(3:1) (3)净化——活性硅胶层析柱 (4)浓缩——氮吹 样品的分析: GCMS 2010 Plus,Shimadzu,Japan GC条件 (1)毛细管柱——Rtx-5MS(30m*0.25mm*0.25um) (2)不分流进样,进样2uL (3)进样口温度270℃,色谱柱初始温度为90℃(保持1min),8℃/min升温速率升到180℃,最后以15℃/min升温速率升至280℃(保持15min) (4)载气流速1mL/min,氩气 MS条件 (1)电子电离源(EI,70eV),SIM模式 (2)离子源温度为260℃,接口温度为200℃ (3)选择离子m/z

南黄海中部表层沉积物中多环芳烃分布特征及来源分析 样品的预处理: (1)沉积物样品冷冻干燥,研磨,添加内标(蒽-d10) (2)提取——索式提取72h,提取溶剂为二氯甲烷,索提时加入一定量的活化铜片去除硫 (3)净化——层析柱(去活氧化铝、去活硅胶、无水硫酸钠),二氯甲烷-正己烷洗脱 (4)浓缩——温度不高于20℃条件下溶剂自然挥发近干 样品的分析: HPGC6890/5973MSD GC条件 (1)色谱柱——HP-5MS(60m*0.25mm*0.25um) (2)不分流进样 (3)进样口温度290℃,色谱柱以20℃/min升至100℃,再以3℃/min至310℃,恒温18min (4)载气流速1mL/min,氩气 MS条件 (1)电子电离源(EI,70eV),SCAN模式

除菌过滤后消毒剂无菌验证方案

消毒剂除菌过滤后检验方法验证方案

目录 1.0 概述 (3) 1.1 目的 (3) 1.2 范围 (3) 1.3 职责 (3) 2.0 可接受标准 (4) 3.0 确认前条件 (4) 1.1 人员确认 (4) 1.2 文件确认 (5) 4.0 文件记录要求 (5) 5.0 程序 (5) 5.1 仪器的确认 (5) 5.2 菌株、培养基及试剂 (5) 5.3 验证步骤 (7) 5.4 验证总结 (9) 6.0 再确认 (9) 7.0 偏差 (9) 8.0 变更 (10) 9.0 术语 (10) 10.0 参考文件 (10) 11.0 修订历史 (10) 12.0 附录列表 (10)

1.0概述 1.1目的 2010版GMP附录无菌第九章第四十四条A/B级洁净区应当使用无菌的或经无菌处理的消毒剂和清洁剂。本公司在A/B级洁净区使用的消毒剂有75%乙醇、过氧乙酸消毒液PAA,清洁剂为注射用水。 按2010版GMP第七章第一百四十条规定对该除菌方式进行验证。 1.2范围 本确认方案时应用于江苏复旦复华药业有限公司消毒剂除菌过滤后检验方法验证工作。 1.3职责 1.3.1QC检验员职责 QC检验员,同时作为验证实施部门,职责如下: 1.3.1.1起草验证草案,完成验证报告; 1.3.1.2负责对相关人员进行培训,确保验证工作按方案进行; 1.3.1.3负责本方案的实施,验证数据的收集及数据分析; 1.3.1.4协调进行验证中可能出现的偏差的调查、完成变更的书面记 录、完成验证报告; 1.3.1.5负责向QC部门经理及时报告验证中出现的问题。 1.3.2QC部门经理职责 1.3. 2.1QC经理审核本验证方案与验证报告; 1.3. 2.2负责指导验证中发生的偏差的调查及审核验证期间发生的 偏差; 1.3. 2.3负责安排具有资格的操作人员开展验证工作; 1.3. 2.4负责验证过程中的监督与指导等其它工作。 1.3.3QA职责 1.3.3.1负责确认工作实施的监督; 1.3.3.2协调进行验证中可能出现的偏差的调查、完成变更的书面记 录; 1.3.3.3为制定和实施本验证方案提供相关程序等必要文件、技术支 持;

GB社会生活环境噪声监测方法验证报告

社会生活环境噪声排放标准GB 22337-2008 方法验证报告 编制: 日期: 校核: 日期: 审核: 日期: 广东XX检测技术有限公司

社会生活环境噪声监测 方法验证报告 1 方法依据 依据《社会生活环境噪声排放标准GB 22337-2008》。 2 适用范围 适用于对营业性文化娱乐场所、商业经营活动中使用的向环境排放噪声的设备、设施的边界噪声排放限值和测量方法以及管理评价与控制的监测。 3 测量仪器 AWA6228型多功能声级计、AWA6221A型声校准器 测时仪器时间计权物性设为“F”档,采样时间间隔不大于1s. 4测量所象条件、测点位置及测量时段 测定步骤: 准备好仪器,将声级标准器(94dB,1kHz)配合在传声器上,开启标准器电源,声级计计权设置A声压级,读数应为93.6dB,否则调节声级计右侧面灵敏度调节电位器至声级计显示93.6dB,校准完成后取下校准器备用。 测量噪声,一般噪声的测量均选“F”快物征状态。每秒一个读数,测1分钟,最后噪声仪给出等效声极Leq. 测量完后,再次将声级校准器配合在传声器上,开启校准器电源,声压级读数应在(93.6±0.5)dB 5 校准测量

5.2测量结果的修正 1)噪声测时值与背景噪声值相差大于10dB(A)时,噪声测量值不做修正 2)噪声测量值与背景噪声值相差在3dB(A)-10 dB(A)之间时,噪声测量值与背景噪声值的差值取整后按下表进行修正。 3)噪声测量值与北景噪声值相差小于3dB(A)时,不做修正。 5.1人员比对测量结果 5.2测量示意图 9 结论 通过我司实验室检测技术人员对社会生活环境噪声的监测,本方法具有操作简单、快速等特点。选择了最佳的仪器、气象条件、测点位置、测量时段,在严格的质量控制下,测试结果满足方法要求。

QG-JC-139.D1 测定聚合物中多环芳烃的协调方法检验方法细则

测定聚合物中多环芳烃的协调方法检验方法细则 1. 概述 本检测方法细则根据本实验室仪器的实际配置情况及现有的检测能力进行编写,参照德国ZEK 01.4-08《测定聚合物中多环芳烃的协调方法》中规定的测定方法,适用于本实验室使用气相色谱-质谱联用仪测定聚合物中多环芳烃的含量。 2. 适用范围 本检测方法细则适用于聚合物中多环芳烃含量的测定。 3. 检验依据 ZEK 01.4-08《测定聚合物中多环芳烃的协调方法》。 4. 实验原理 在超声波作用下,用甲苯萃取出试样中的多环芳烃,必要时萃取液需经硅胶固相萃取柱净化,用气相色谱-质谱仪(GC-MS)测定,内标法定量。 5. 试剂及材料 5.1 甲苯:色谱纯; 5.2 石油醚; 5.3 18种多环芳烃混标或单标:标准品; 5.4 内标物:萘-d8、蒽-d10和十二氘代苝(Perylene-d12)标准品; 5.5 硅胶固相萃取柱; 5.6 0.25μm有机滤膜。 6 仪器 6.1 气相色谱-质谱联用仪(GC-MS); 6.2 分析天平:精确至0.1mg; 6.3 旋转蒸发仪; 6.4 氮吹仪。 7. 样品制备 取代表性样品,用合适的工具破碎成粒径不超过2-3mm的颗粒,混匀。 8. 实验步骤 8.1提取 称量:用分析天平称取约0.5g(精确至0.0001g)试样,放入带旋塞的玻璃瓶中。 萃取:往玻璃瓶中加入20mL含内标的甲苯溶液,在60℃水浴的超声波中萃取1h,冷却至室温后进行短暂的振荡,此萃取液可直接用于测试,必要时需对萃取液进行净化。 8.2净化 对于某些塑料或橡胶产品,尤其是在上述超声条件下可大量溶解于甲苯的样

品,还需要用硅胶固相萃取柱对萃取液进行净化。净化方法如下:将萃取液用旋转蒸发仪浓缩至约1mL ,并转移至固相萃取柱中。用20mL 淋洗液冲洗,冲洗液也转移到硅胶柱中。洗脱液中再加入50mL 石油醚,收集的石油醚洗脱液中加入1mL 甲苯,并用氮吹仪浓缩至1mL ,最后用甲苯稀释定容至20mL ,供GC-MS 分析测试。 8.3分析测试 用浓度为0.005 mg/L 的多环芳烃标准溶液进行校准,对于阳性样品,采用校正曲线进行定量,校准曲线配制如下:以含D8、D10和D12三种内标的甲苯作溶剂,配制浓度为0.005mg/L 、0.025mg/L 、0.075mg/L 、0.15mg/L 、0.30mg/L 和0.5mg/L 的系列标准工作溶液,根据仪器检测结果,绘制校正曲线,曲线有效期1周。标准工作溶液和待测样液中每种多环芳烃的响应值均应在仪器检测范围内。 9. GC-MS 分析条件 仪器名称:GC-MS ,型号:安捷伦7890A/5975C ; 色谱柱:毛细管柱,DB-5ms ,30m×0.25mm×0.25μm ; 载气:氦气,纯度≥99.999%; 载气流速:1mL/min ; 进样口温度:280℃; 进样量:1μL ;进样方式:不分流; 质谱接口温度:280℃; 离子源:EI 源,离子源温度:300℃,四级杆温度:150℃; 柱温程序: 。 质量扫描方式:总离子流色谱图(TIC )定性,质量扫描范围:m/z=50u ~350u ,选择离子(SIM )定量。18种多环芳烃的参考保留时间、定性定量参数及内标分组表见表1。 5℃/min 50℃(1min ) 25℃/min 200℃ 8℃/min 250℃ 310℃(2min )

微生物限度检查方法及其验证报告(修改)

文件编号:73021微生物限度检查方法及其验证报告

目录1 样品相关信息 1.1 基本信息 2 主要仪器设备和试验耗材信息 2.1 主要使用的仪器设备 2.2 试验用培养基 2.3 试验用试剂 2.4 试验用菌种 3 试验环境 3.1 无菌室 3.2 洁净工作台 3.3 生物安全柜 4 试验方案 4.1 验证试验目的 4.2 微生物限度检查方法草案 5 方法验证试验 5.1 菌液制备 5.2 计数培养基适用性检查 5.3 控制菌检查用培养基使用性检查 5.4 供试液制备 5.5 方法验证 5.5.1 菌落计数方法验证试验 5.5.2 控制菌检查方法的验证 5.6 方法验证结论 6 供试品微生物限度检查结果

1 样品相关信息 1.1 基本信息(三批) 2 主要仪器设备和试验耗材信息2.1 主要使用的仪器设备 2.2 试验用培养基 2.2.1 对照培养基

2.2.2 试验用培养基 2.3 试验用试剂 2.4 试验用菌种

3 试验环境 《中国药典》2015版规定,微生物限度检查应在环境洁净度10000级下的局部洁净度100级的单向流空气区域进行。 本公司微生物限度室、阳性对照室、生物安全柜及超净工作台洁净度检测无特殊情况下每季度进行一次。 3.1 无菌室 无菌室按《医药工业洁净厂房设计规》GB 50457-2008监测,静态洁净度检测结果符合GB50457-2008对10000级洁净度要求。 3.2 超净工作台 超净工作台按《医药工业洁净厂房设计规》GB50457-2008监测,静态洁净度检测结果符合GB50457-2008对100级洁净度要求。 超净工作台沉降菌检测记录 2015.11.15 3.3生物安全柜 生物安全柜按《生物安全实验室建筑技术规》GB50346-2011监测,静态洁净度检测结果符合GB50457-2008对100级洁净度要求。 生物安全柜沉降菌监测记录 2015.11.15 4 试验方案 按《中国药典》2015年版第四部:(通则1105)非无菌产品微生物限度检查:微生物计数法、(通则1106)非无菌产品微生物限度检查:控制菌检查法、(通则1107)非无菌药品微生物限度标准及(通则1121)抑菌效力检查法规定,本品微生物限度标准为:1g供试品中,需氧菌总数不得过1000cfu,霉菌和酵母菌总数不得过100cfu,大肠埃希菌不得检出。

无菌检验方法验证方案

浙江红雨医药用品有限公司 无菌检验方法 验证方案 验证方案申请人: 日期: 年月日验证方案审核人: 日期: 年月日验证方案审批人: 日期: 年月日

1. 概述: 无菌检查法是为了检查药典要求无菌的医疗器械产品是否无菌而建立的检查法,是作为批准无菌产品放行的检验或监督部门对无菌产品质量监督中的一个重要项目。它是根据用于实验的培养基中是否有微生物生长来判定样品的无菌性,液体培养基变浑浊一般表明样品受微生物的污染。基于微生物污染的不均匀性,使无菌检查法结果的可信度受许多因素制约,如抑菌因素、检查法、检验量、检查用的培养基质量、操作环境、无菌技术等。检验方法的验证是现代质量保证体系中关系到质控技术、方法、手段的科学性、准确性的重要组成部分,是保证检验结果的公正、科学、准确的基础。 2. 验证目的: 验证所采用的方法和条件是否适合于供试品的无菌检查。即确认供试品在该检验量、该检验条件下无抑菌活性或其抑菌活性以被充分消除到可以忽略不计。 3. 验证范围: 适用于创可贴无菌检查法的验证。 4.验证人员及职责 5. 文件准备和培训 检查验证所需的各类文件资料,应齐全;相关的文件草案是否已具备。 6. 验证条件 6.1. 仪表量器经过校验合格,且在有效期内。 6.2. 供试品:随机抽取浙江红雨医药有司生产的3个批次医用无菌创可贴

6.3. 培养基及试剂: 6.3.1. 试剂试液: 0.9%氯化钠、氯化钠—蛋白胨缓冲液,配制记录见附件1 6.3.2. 培养基 硫乙醇酸盐流体培养基生产厂家:杭州微生物试剂有限公司批号:20140221-00 改良马丁培养基生产厂家:杭州微生物试剂有限公司批号:20131118-00 营养琼脂培养基生产厂家:杭州微生物试剂有限公司批号:20150428-03 改良马丁琼脂培养基生产厂家:杭州微生物试剂有限公司批号:20140322-00 蛋白胨生产厂家:杭州微生物试剂有限公司批号:20140417-00 培养基配制记录见附件2。 6.4. 验证用菌株: 金黄色葡萄球菌【CMCC(B)26003】 铜绿假单胞菌【CMCC(B)10104】 枯草芽孢杆菌【CMCC(B)63501】 生孢梭菌【CMCC(B)64941】 白色念珠菌【CMCC(F)98001】 黑曲霉【CMCC(F)98003】 标准菌株购自:浙江省食品药品检验研究中心 各验证用菌种传代记录见附件3。 6.5. 无菌检验仪器及相关设备: 压力蒸汽灭菌器 型号:YXQ-LS-50S11 生产厂家:上海博讯仪器有限公司 校验日期:2015-05-25 有效期:2016-05-24 生化培养箱(细菌培养) 型号:SPX-250 生产厂家:金坛市富华仪器有限公司 校验日期:2015-05-25 有效期:2016-05-24 生化培养箱(霉菌培养) 型号:SPX-250B 生产厂家:金坛市富华仪器有限公司 校验日期:2015-05-25 有效期:2016-05-24

轻芳烃装置工艺流程简述

辽宁亿方石油化工有限公司 10万吨/年轻芳烃装置工艺流程简述来自罐区原料油经泵加压后,送至原料预处理单元进行换热、加热后进入原料精馏塔进行精馏分离。分离出的重组分作为燃料油产品送至产品罐区;分离出的轻组分作为凝稀油送至改质单元,进入改质原料缓冲罐D-101,凝稀油用泵经加压后与来自罐区的碳四混合后进入原料/反应产物换热器(E-101A)换热,然后进入反应进料加热炉(F-101A)加热至280~415℃进入反应器(R-101A)反应。反应产物与反应原料经原料/反应产物换热器(E-101A)换热后,经反应产物空冷器(A-101A)和反应产物水冷器(E-102A)进一步冷却至40℃左右,进入产品分离罐(D-102)进行气液分离。 分离后的气相物流进入富气压缩机入口分液罐(D-103),然后经富气压缩机(K-101)增压,进入吸收解吸塔(T-101),以回收干气中携带的液化气等;液相物流用稳定塔进料泵(P-102A/B)加压,经塔进出料换热器(E-105A/B)和稳定塔底汽油换热,与吸收解吸塔底的富吸收液混合进入稳定塔(T-102)。 液化气和汽油产品在稳定塔中进行分离。塔顶液化气经塔回流泵(P-105A/B)增压后,一部分返回塔顶用作回流,一部分经碱洗、水洗脱硫化氢后送出装置;塔底汽油产品和塔进料换热后,再经稳定汽油冷却器(E-108)冷却至40℃后,一部分作为汽油产品送出装置,一部分经吸收油泵(P-104A/B)增压,返回吸收解吸塔塔顶作为吸收油。 随着反应的进行,催化剂上的结焦量会逐步增加,当一条反应系统的催化剂失活后,需将此反应系统切入再生系统,进行催化剂的烧焦再生处理。将另一条反应线切入系统进行正常生产。

多环芳烃检测,多环芳烃检测报告

多环芳烃检测,多环芳烃检测报告 1,多环芳烃: 是指具有两个或两个以上苯的一类有机化合物。多环芳烃是分 子中含有两个以上苯环的碳氢化合物,包括萘、蒽、菲、芘等150 余种化合物。 2,来源与接触机会:食品中含有一定朝气多环芳烃,其主要来源为,在食品的加工过程中,特别在烟熏、火烤或烘焦过程中滴在为上的油脂也能热聚产生 苯并[a]芘,有人认为这是烤制食品中苯并[a]芘的主要来源。贮存过程中窗口或包装纸,含有不纯的油脂浸出溶剂提取的油脂中含有一定量的多环芳烃;在沥表路上凉晒粮食被沥青污染。大气、水和土壤等环境中的多环芳烃可以使粮食、 水果和蔬菜受到污染。 3,自然环境中多环芳烃的含量极微.主要来源于森林火灾和火山爆发.在为人 类的生产和生活环境中,煤矿、木柴、烟叶以及汽油、柴油、重油等各种石油馏份燃烧,烹调幅烟,以及废弃物等均可造成环境中多环芳烃的污染。此外,煤 的汽化和液化过程、石油的裂解过程均可产生多环芳烃。四环以下分子量较的 多环芳烃多以蒸气态存在,而分子量较大的则被吸附在颗粒物表面,尤其是在 小于5μM 的颗粒上,可以进入肺的深部。空气中的颗粒可以在空气中悬浮几天到几周,从而形成远距离转移。已知城市的气溶胶和烟尘中还含有硝基和羟基 硝基多环芳烃,具有具直接的突变作用,不需要以过代谢活化,其,其致突变 性比无硝基的多环芳烃更强。 4,预防和防治措施: 燃料必须燃烧充分,可减少多环芳烃的生成量。室内加强通风换气,降低室内的多环芳烃含量。生产性无机粉法主要引起以肺组织纤维 化为主的全身性疾病,尘肺和粉尘沉着症等疾病。有机粉尘可以引起支气管哮喘、棉尘症、职业性过悔性肺炎、非特异性阻塞性肺病等。有些粉尘例如金属 尘(镍、铬、砷、)和石棉等可以引起肺部。粉尘作用于呼吸道黏膜,初为毛细 血管扩张和在量分泌黏液等机能亢进等表现,这是保护性反应,随后形成肥大 性改变,终可由于营养不足形成萎缩性改变。经常接触粉尘还可以引起皮肤、

无菌检查方法验证告报告2015

编号:FAL-YZ-003.1 无菌检查方法 验证报告 科技发展有限公司

目录

无菌检查方法验证报告 1.目的 通过对培养基无菌性检查、灵敏度检查,对产品的无菌检查方法适用性进行试验,证明该方法适用于产品无菌检查日常检测。 2.范围 适用于本公司产品的无菌检查方法的建立和确认。 3.依据 中国药典(2015年版) GB/T14233.2-2005 医用输液、输血、注射器具检验方法第2部分:生物学实验方法 4. 职责权限 5. 验证方法 实验前的准备 a仪器设备

b操作环境 微生物限度检查应在环境洁净度10000 级下的局部洁净度100 级的单向流空气区域内进行。检验全过程必须严格遵守无菌操作,防止再污染。单向流空气区域、工作台面及环境应定期按《医药工业洁净室(区)悬浮粒子、浮游菌和沉降菌的测试方法》的现行国家标准进行洁净度验证。 c稀释液和试剂:PH7.0无菌氯化钠-蛋白胨缓冲液 d器具无菌注射器仪液器YT-603集菌仪

5.1培养基的适用性检查 无菌检查用的硫乙醇酸盐流体培养基及胰胳大豆胨肉汤培养基等应符合培养基的无菌性检查及灵敏度检查的要求。本检查可在供试品的无菌检查前或与供试品的无菌检查同时进行。 培养基:硫乙醇酸盐批号20140408 生产厂家:青岛日水生物技术有限公司 胰胳大豆胨肉汤培养基批号20151023 生产厂家:青岛尼赛欣合生物技术有限公司 5.1.1无菌性检查:每批培养基随机取不少于5 支(瓶),培养14 天,应无菌生长。 5.1.2灵敏度检查 菌种:培养基灵敏度检查所用的菌株传代次数不得超过5 代(从菌种保存中心获得的冷冻干燥菌种为第0 代),试验用菌种应采用适宜的菌种保存技术进行保存,以保证试验菌株的生物学特性。 金黄色葡萄球菌(Staphylococcus aureus)〔CMCC(B) 26 003〕 铜绿假单胞菌(Pseudomonas aeruginosa) 〔CMCC(B) 10 104〕 枯草芽孢杆菌(Bacillus subtilis)〔CMCC(B)63 501〕 生孢梭菌(Clostridium sporogenes)〔CMCC(B) 64 941〕 白色念珠菌(Candida albicans)〔CMCC(F) 98 001〕 黑曲霉(Aspergillus niger) 〔CMCC(F) 98 003〕 5.1.3菌液制备

芳烃工艺说明

芳烃工艺说明书 1.1 主要原料 40万吨/年芳烃抽提装置,所用原料有两部分,一部分为新建80万吨/年乙烯装置的副产品加氢裂解汽油33.75万吨/年;另一部分为原20万吨/年乙烯装置生产的4#苯5.3万吨/年,共计39.05万吨/年。装置操作采用六个工况,工况1A/B:100%贫芳烃的加氢裂解汽油进料;工况2A/B:贫芳烃的加氢裂解汽油:4#苯=33.75:5.3;工况3A/B:富芳烃的加氢裂解汽油进料。工况1A、2A、3A进料中不含C+11以上的重烃,工况1B、2B、3B进料中含有C+11以上的重烃,主要原料的名称、处理量、来源、运输方式见表1.3-1~3. 表1.3-1 工况1A/B主要原料汇总表 序号原料 名称 数量原料来源输送方式及去向备注t/h 104t/a 1 贫裂解 汽油50 40 新建80万吨/年 乙烯装置 管输至抽提原料 罐 合计50 40 表1.3-2 工况 2A/B主要原料汇总表 序号原料 名称 数量原料来源输送方式及去 向 备注t/h 104t/a 1 贫裂解 汽油43.214 34.5711 新建80万吨/ 年乙烯装置 管输至抽提原 料罐

2 4#苯 6.786 5.4289 原20万吨年乙 烯装置和裂解汽油一起管输 合计50 40 表1.3-3 工况 3A/B主要原料汇总表 序号原料 名称 数量原料来源输送方式及去向备注t/h 104t/a 1 富裂解 汽油50 40 新建80万吨/年 乙烯装置 管输至抽提原料 罐 合计50 40 1.2 生产方法及生产过程 1.2.1生产方法 本设计采用际特(北京)技术有限公司开发的GT-BTX SM芳烃抽提蒸馏技术已经成功地工业化,在芳烃抽提领域中,相比于其他工艺,GT-BTX SM芳烃抽提蒸馏技术有着十分重要的意义。际特公司技术的主要特点是:其专利溶剂有着高的选择性;装置生产能力高,操作更优化,所用的设备更少。这使得工艺具有低投资,低能耗及低操作费用的特点。 1.2.2生产过程 乙烯装置来的C6-C8馏分进料用贫溶剂预热,热进料被送到抽提蒸馏塔(EDC)的中部,同时,贫溶剂到靠近EDC塔顶部的位置。在气液两相的操作中,溶剂将芳烃萃取到EDC塔釜,同时未溶解的非芳烃去塔顶部成为抽余油。抽余油蒸汽在塔顶冷凝器中冷凝。然后

多环芳烃类的测定

水质 多环芳烃类的测定 高效液相色谱法 编 制 说 明 (征求意见稿) 沈阳市环境监测中心站 2008年3月

水质 多环芳烃类的测定 高效液相色谱法 编 制 说 明 一、任务来源 2007年2月国家质检总局公布了《关于下达2007年第一批国家标准制修订项目经费的通知》(国质检财函[2007]971 号),向沈阳市环境监测中心下达了编制《水质 多环芳烃类的测定 高效液相色谱法》的项目计划。根据环境保护部科技标准司的意见,由沈阳市环境监测中心承担《水质 多环芳烃类的测定 高效液相色谱法》的编制工作。 二、编制目的和意义 多环芳烃(简称PAHs或PNA)是一类非常重要的化学三致物(致癌、致畸、致突变),因其具有生物难降解性和累积性,所以广泛存在于水体、大气、土壤、生物体等环境中。多环芳烃引起的环境污染越来越引起人们的重视,它已成为世界许多国家的优先监测物。1976年EPA列出了16项PAHs为优先控制污染物。1990年我国提出的68种水体优先控制污染物中有7种属于PAHs。 PAHs主要是在煤、石油等矿物性燃料不完全燃烧时产生的,主要的污染源是焦化、石油炼制、冶炼、塑胶、制革、造纸等工业排放的三废物质以及船舶油污、机动车尾气、香烟烟雾等等。自1775年Pott医生发现扫烟囱工人患阴囊癌至今,许多人研究了PAHs的致癌性,其中已有不少被确定或被怀疑具有致癌、致畸或致突变作用。尤其是苯并[a]芘和荧蒽是强致癌物质,严重影响人体健康,所以日益受到人们的关注。 人们对空气中多环芳烃的污染研究较多,实际上多环芳烃是水中普遍存在的污染物质,多环芳烃在不同水体中的分布取决于它们的污染源。我国原有的标准方法GB 13198-91规定了测定水体中六种特定多环芳烃的高效液相色谱法,但已不能满足当前环境监测和管理的需要。因此,修订GB 13198-91标准,将会进一步完善我国的有机污染物分析方法体系,努力使环境保护标准与环保目标相衔接。修订该标准由环境保护部科技标准司提出,由沈阳市环境监测中心站起草。 全面开展对水质中多环芳烃类的测定,将为多环芳烃类污染调查和控制研究提供基础性数据,对于国家保护环境、保障人民健康都具有重大意义。 三、编制原则和依据

注射器有效期验证方案和报告年8月

一次性使用无菌注射器 产品有效期验证方案 文件编号:XX/JS011-C 版本号:A/0 编制:XXX 审核:XXX 批准:XXX XXXX医疗器械有限公司 二○O七年七月

一次性使用无菌注射器 产品有效期验证方案 XX/JS011-C 1 验证目的 通过对有效期3年内及有效期外1年的一次性使用无菌注射器留样产品的物理性能、化学性能、生物性能进行稳定性试验(实时老化试验),以验证本公司一次性使用无菌注射器产品的稳定性,考察制定三年有效期是否科学、合理。 2 范围 本方案适用于本公司生产的一次性使用无菌注射器产品的稳定性试验(有 效期验证)。 3 验证依据 GB 15810 一次性使用无菌注射器器第1部分:手动注射器 GB 15811 一次性使用无菌注射器针 ASTM F1980-07 无菌医疗设备包装加速老化标准指南 YZB/国 XXXX-2005一次性使用无菌注射器 4 验证程序 验证人员和职责 姓名职务部门职责 XXX检验员品质部 负责产品物理检验检验、评价,并提 供检测报告 XXX经理品质部 负责产品生物性能检验、评价,并提 供检测报告 XXX经理品质部负责组织验证工作中的留样、取样、试验的实施以及检测报告的批准,验证报告的会签 样品的准备

产品稳定性试验所用样品须是经性能检测合格的重点留样产品,留样样品数 须满足观察期产品性能检测的要求。通过对留样室选取三个不同批号的留样产 品按实时老化进行产品稳定性试验,以验证其性能是否稳定可靠,也即是验证 其是否满足YZB/国 XXXX-2005注册标准的要求。 验证项目和验证接受标准 留样产品稳定性试验应分别在有效期内第一年、第二年、第三年和有效期 外一年进行以下试验,并应符合相应的要求: 物理性能 a)外观:包装材料应无老化、变脆现象;包装应无破损、漏气现象;注射器外套透明,标尺应清晰可见,且外套内表面无明显的润滑剂凝聚;注 射针表面应清洁;活塞无泛黄现象等。 b)注射器的滑动性能、器身密合性、容量允差、残留容量、使用功能、注射针的针座与针管连接牢固度应符合YZB/国 XXXX-2005的要求。 化学性能 可萃取金属含量(金属离子) 一次性使用无菌注射器浸取液与同批空白对照液对照,铅、锌、锡、铁的 总含量应≤5 μg/mL,镉的含量应≤μg/mL。 酸碱度 一次性使用无菌注射器浸取液的pH值与同批空白对照液对照,pH值之差不得超过。 易氧化物(还原物质) 一次性使用无菌注射器浸取液与等体积的同批空白对照液相比, mol/L的高锰酸钾溶液消耗量之差应≤ mL。 生物性能 产品应无菌、无细菌内毒素。 试验方法 物理性能:外观目测,滑动性能、器身密合性、容量允差、残留容量、使用功 能、注射针的针座与针管连接牢固度按YZB/国 XXXX-2005规定的方法试验。 化学性能:按YZB/国 XXXX-2005规定的方法试验。 生物性能:按YZB/国 XXXX-2005规定的方法试验。 试验结果 将有效期内第一年、第二年、第三年和有效期外一年的样品试验结果应符 合YZB/国 XXXX-2005标准要求,试验记录应保存。 5 验证报告

QG-JC-115.D1 纺织品 多环芳烃的测定检验细则

纺织品多环芳烃的测定检验方法细则 1. 概述 本检测方法细则根据本实验室仪器的实际配置情况及现有的检测能力进行编写,参照GB/T 28189-2011 《纺织品多环芳烃的测定》中规定的测定方法,适用于本实验室使用气相色谱-质谱联用仪测定各种类型的纺织品中多环芳烃的含量。 2. 适用范围 本检测方法细则适用于各种类型的纺织品中多环芳烃含量的测定。 3. 检验依据 GB/T 28189-2011 纺织品多环芳烃的测定 4. 实验原理 在超声波作用下,用正己烷+丙酮(1+1,体积比)萃取出试样中的多环芳烃,萃取液经硅胶固相萃取柱净化后,浓缩、定容,用气相色谱-质谱仪(GC-MS)测定,外标法定量。 5. 试剂及材料 5.1 正己烷:色谱纯 5.2 丙酮:色谱纯 5.3 二氯甲烷:色谱纯 5.4 正己烷+丙酮(1+1,体积比) 5.5 正己烷+二氯甲烷(3+2,体积比) 5.6 硅胶固相萃取柱 5.7 0.25μm有机滤膜 5.8 16种多环芳烃混标储备液:2000mg/L,直接购买。 6. 仪器 6.1 气相色谱-质谱联用仪(GC-MS) 6.2 分析天平:精确至0.1mg 6.3 旋转蒸发仪 6.4 氮吹仪 6.5 可控温的超声波发生器 6.6 100mL平底烧瓶 6.7 40mL带螺纹盖的玻璃瓶 6.8 0.25μm有机滤膜 7. 样品准备 取代表性样品,将样品剪成约5mm×5mm的小片,混匀。 8. 实验步骤 8.1 提取

称量:用分析天平称取约1.0g (精确至0.0001g )试样,置于40mL 带螺纹盖的玻璃瓶中。 萃取:加入正己烷+丙酮(1+1,体积比),密封,在60℃水浴的超声波发生器中萃取30min ,冷却至室温,将萃取液转移到100mL 平底烧瓶中,;再加入30mL 正己烷+丙酮(1+1,体积比)重复以上步骤一次,合并提取液。 浓缩:在35℃下,用旋转蒸发仪将烧瓶中的萃取液浓缩至近干。加入2mL 正己烷溶解样液,待净化用。 8.2 净化和定容 将上述处理后的样液转移至固相萃取柱中,控制流速为0.5滴/s ,再加入5mL 正己烷洗涤烧瓶,将洗涤液转至硅胶小柱,弃掉以上洗脱液。然后用5mL 正己烷+二氯甲烷(3+2,体积比)进行淋洗,收集淋洗液。用氮吹仪缓慢吹至近干,加正己烷定容至2mL ,用有机滤膜将样液过滤至进样小瓶中,供GC-MS 分析测试。 9. 校准 用0.05mg/L 多环芳烃混标工作液进行校准,若为阳性样品,则根据样液中被测物质含量情况,选定浓度相近的标准工作溶液与样液等体积穿插进样,必要时对样液进行适当稀释。 10. GC-MS 分析条件 仪器名称:GC-MS ,型号:安捷伦7890A/5975C ; 色谱柱:毛细管柱,DB-5ms ,30m×0.25mm×0.25μm ; 载气:氦气,纯度≥99.999%; 载气流速:1mL/min ; 进样口温度:280℃; 进样量:1μL;进样方式:不分流; 质谱接口温度:280℃; 离子源:EI 源,离子源温度:300℃,四级杆温度:150℃; 柱温程序: 。 质量扫描方式:总离子流色谱图(TIC )定性,质量扫描范围:m/z=50u ~350u 选择离子(SIM )定量。16种多环芳烃的定量参数见表1。 5℃/min 50℃(1min ) 25℃/min 200℃ 8℃/min 250℃ 310℃(2min )

芳烃联合装置

第二章芳烃联合装置 第一节芳烃联合装置的工艺组成及工艺原理 一、概述 芳烃联合装置由PSA制氢装置、芳烃抽提装置、苯抽提蒸馏装置、对二甲苯(PX)装置、中间原料及溶剂油罐区、化学药剂站六大部分组成。 1、PSA 制氢装置 PSA制氢装置采用西南化工研究院的PSA专利技术,利用炼油厂催化裂化干气、PX 装置释放气为原料,生产纯度99.99%的氢气。包括变温吸附单元(100#、TSA)、变压吸附单元(200#、PSA)、脱氧干燥单元(300#)三部分。 预处理单元采用变温吸附(TSA)技术,从PX释放气中脱除C5以上高碳烃、甲苯、乙苯等杂质,以获得净化的PX 释放气。基本原理是利用吸附剂对不同的吸附质的选择特性和吸附能力随温度的变化而呈现差异的特性,实现气体混合物的分离和吸附剂的再生。变压吸附技术是以吸附剂内部表面对气体分子的物理吸附为基础,利用吸附剂在相同压力下对不同组分的吸附能力不同和在不同压力下对同一组分的吸附能力不同的特性进行气体分离的。 2、芳烃抽提装置 芳烃抽提装置采用美国UOP环丁砜工艺技术,以炼油厂重整生成油为原料,主要产品为苯、甲苯、6#溶剂油、橡胶工业用溶剂油。包括重整生成油预分馏单元、环丁砜抽提单元、 B/T 精馏单元、溶剂油加氢单元四部分。 重整油中的C6、C7馏分进入抽提塔中部,与塔顶流下的溶剂(第一溶剂)进行逆向接触,抽提溶剂经抽提段和返洗段从塔底部排出,此时溶剂中已经将进料中的芳烃和少量非芳烃溶解下来(该溶剂称为富溶剂)。为了将溶解在富溶剂中的非芳烃除去,设置了汽提塔,利用组分间相对挥发度不同,非芳烃在汽提塔顶部蒸出,并循环回到抽提塔返洗段进行返洗,以除去溶解在溶剂中的重质非芳烃,减轻在后面芳烃与非芳烃的分离难度,因此可以提高产品纯度。为了保证芳烃的纯度,在汽提塔顶部引入了一股补充溶剂(第二溶剂),由于这股溶剂在较高温度下进入汽提塔,因此在塔内不消耗热量,这种方法提高了相对挥发度,也提高了芳烃与非芳烃分离的效果。 3、苯抽提蒸馏装置 苯抽提蒸馏装置采用中国石化集团公司北京石油化工科学研究院(RIPP)的萃 取蒸馏技术,生产高纯度的苯产品。包括预分馏单元、抽提蒸馏单元两部分。 预分馏塔的目的是对原料进行预处理,除去C7以上重馏分,为抽提蒸馏提供合格的C6 馏分进料。预分馏塔塔顶产品为C6馏分,送抽提蒸馏塔作为进料,塔底为C7 +重馏分,经换热 冷却后送出装置。预分馏塔重沸器热源由低压蒸汽提供,加热量由重沸器出口凝结水流量进行控制。 抽提蒸馏塔的作用是在溶剂(环丁砜和助溶剂)作用下,实现芳烃与非芳烃分离。抽提蒸馏塔塔顶产品为非芳烃,作为非芳烃副产品送出装置,塔底产物为富含苯的溶剂,送溶剂回收塔作为进料。抽提蒸馏塔重沸器热源由中压蒸汽提供,通过控制加热蒸汽量来调节热负荷,加热蒸汽

相关文档
最新文档