冷墩冷挤压

冷墩冷挤压
冷墩冷挤压

冷镦、冷挤压基础知识介绍

[原创 7/20/2007]

冷挤压是精密塑性体积成形技术中的一个重要组成部分。冷挤压是指在冷态下将金属毛坯放入模具模腔内,在强大的压力和一定的速度作用下,迫使金属从模腔中挤出,从而获得所需形状、尺寸以及具有一定力学性能的挤压件。显然,冷挤压加工是靠模具来控制金属流动,靠金属体积的大量转移来成形零件的。

冷挤压技术是一种高精、高效、优质低耗的先进生产工艺技术,较多应用于中小型锻件规模化生产中。与热锻、温锻工艺相比,可以节材30%~50%,节能40%~80%而且能够提高锻件质量,改善作业环境。

目前,冷挤压技术已在紧固件、机械、仪表、电器、轻工、宇航、船舶、军工等工业部门中得到较为广泛的应用,已成为金属塑性体积成形技术中不可缺少的重要加工手段之一。二战后,冷挤压技术在国外工业发达国家的汽车、摩托车、家用电器等行业得到了广泛的发展应用,而新型挤压材料、模具新钢种和大吨位压力机的出现便拓展了其发展空间。日本80年代自称,其轿车生产中以锻造工艺方法生产的零件,有30%~40%是采用冷挤压工艺生产的。随着科技的进步和汽车、摩托车、家用电器等行业对产品技术要求的不断提高,冷挤压生产工艺技术己逐渐成为中小锻件精化生产的发展方向。与其他加工工艺相比冷挤压有如下优点:

1)节约原材料。冷挤压是利用金属的塑性变形来制成所需形状的零件,因而能大量减少切削加工,提高材料利用率。冷挤压的材料利用率一般可达到80%以上。

2)提高劳动生产率。用冷挤压工艺代替切削加工制造零件,能使生产率提高几倍、几十倍、甚至上百倍。

3)制件可以获得理想的表面粗糙度和尺寸精度。零件的精度可达IT7~IT8级,表面粗糙度可达R0.2~R0.6。因此,用冷挤压加工的零件一般很少再切削加工,只需在要求特别高之处进行精磨。

4)提高零件的力学性能。冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度远高于原材料的强度。此外,合理的冷挤压工艺可使零件表面形成压应力而提高疲劳强度。因此,某些原需热处理强化的零件用冷挤压工艺后可省去热处理工艺,有些零件原需要用强度高的钢材制造,用冷挤压工艺后就可用强度较低的钢材替用。

5)可加工形状复杂的,难以切削加工的零件。如异形截面、复杂内腔、内齿及表面看不见的内槽等。

6)降低零件成本。由于冷挤压工艺具有节约原材料、提高生产率、减少零件的切削加工量、可用较差的材料代用优质材料等优点,从而使零件成本大大降低。

冷挤压技术在应用中存在的难点主要有:

1)对模具要求高。冷挤压时毛坯在模具中受三向压应力而使变形抗力显著增大,这使得模具所受的应力远比一般冲压模大,冷挤压钢材时,模具所受的应力常达 2000MPa~2500MPa。例如制造一个直径38mm,壁厚5.6mm,高100mm的低碳钢杯形件为例,采用拉延方法加工时,最大变形力仅为 17t,而采用冷挤压方法加工时,则需变形力132t,这时作用在冷挤压凸模上的单位压力达2300MPa以上。模具除需要具有高强度外,还需有足够的冲击韧性和耐磨性。此外,金属毛坯在模具中强烈的塑性变形,会使模具温度升高至250℃~300℃左右,因而,模具材料需要一定的回火稳定性。由于上述情况,冷挤压模具的寿命远低于冲压模。

2)需要大吨位的压力机。由于冷挤压时毛坯的变形抗力大,需用数百吨甚至几千吨的压力机。

3)由于冷挤压的模具成本高,一般只适用于大批量生产的零件。它适宜的最小批量是5~10万件。

4)毛坯在挤压前需进行表面处理。这不但增加了工序,需占用较大的生产面积,而且难以实现生产自动化。

5)不宜用于高强度材料加工。

6)冷挤压零件的塑性、冲击韧性变差,而且零件的残余应力大,这会引起零件变形和耐腐蚀性的降低(产生应力腐蚀)

国内外冷挤压技术发展过程

现代冷挤压技术是从18世纪末开始的,法国人在法国革命时代把铅从小孔中挤出制成枪弹,开始了冷挤压。1830年在法国已经有人开始利用机械压力机,采用反挤压方法制造铅管和锡管。1906年美国为了制造黄铜的西服纽扣,已经有人取得了正挤压空心杯形坯料的专利权。1909年美国人获得专利的 Hooker法——正向冲挤法,金属流动方向与冲挤方向相同,就是在买了1906年的专利之后发展起来的,该专利中的杯形坯料,是采用拉深法制造的。第一次世界大战中,曾用Hooker法制造了黄铜弹壳,而在第二次世界大战以前的1934年,德国人就利用这种方法试制了钢弹壳,但因热胶着严重,没有成功。直到第二次世界大战中期由于采用了新的表面润滑处理方法——使工件表面形成磷酸盐薄膜,挤压方法制造钢质弹壳获得成功。自此,冷挤压技术走向实用,成为冷锻技术中应用最广泛的一种方法。

60年代,日本汽车工业的成长,为冷挤压技术的发展创造了有利的条件。从冷挤压设备上看,自从1933年,日本会田株式会社生产了日本第一台 2000kN PK型精压机(肘杆式压力机)以来,到目前为止,己生产了2000多台PK系列压力机。随着汽车工业的发展,对高精度压力机的要求愈加迫切,会田株式会社又研制成功了各种锻造压力机。同时,日本小松研制了以高精度和易于操作为目标的 LIC、LZC系列冷锻成形压力机。

从冷挤压产品上看,日本70年代成功冷挤压启动离合器齿轮、传动轴花键、交流发电机磁极铁芯。80年代,又成功冷挤大型高精度等速圆球外座圈、内座圈、十字轴、汽车差速器伞齿轮等高精零件。为日本汽车的高性能化和降低生产成本做出了很大贡献。

我国的冷挤压技术与日本的起步时间相当。70年代,我国曾在自行车、汽车电器等批量生产的产品中,推广过冷挤压生产工艺技术,也开发成功了启动齿轮的挤压成形,并投入批量生产。但由于未从根本上解决工艺、设备、材料、模具、润滑、自动化装置以及毛坯料的原始尺寸、原始状态、后处理等一系列技术问题,因而未得到较大发展。80年代,随着家电和汽车摩托车工业的迅速发展,对冷挤压工艺设备及生产技术的引进、消化、吸收,科研人员通过生产实践攻克了冷挤压技术的不少难题与此同时冷锻设备也有了较大发展。目前,我国己能用冷挤压工艺生产表壳、自行车飞轮、中轴、精锻齿轮、汽车用等速万向节、内燃机用火花塞与活塞销、汽车挺杆、照相机零件、汽车启动器定向套筒、启动齿轮等,且己达到国外同等水平。

冷挤压技术的发展趋势

1)随着能源危机的日趋严重,人们对环境质量将更加关注,加之市场竞争日益加剧,促使锻件生产向高效、高质、精化、节能节材方向发展。因此用挤压成形等工艺手段所生产的精化锻件的产量,在市场竞争中将得到较大的发展。

2)汽车向轻型化、高速度、平稳性方向发展,对锻件的尺寸精度、重量精度及力学性能等都提出了较高的要求。如轿车发动机用连杆锻件除对大小头之间的误差有要求外,对每件的重量误差也要求不大于八克。新产品的高要求,将促进精化生产工

艺的发展。

3)专业化、规模化的组织生产仍是冷挤压生产的发展方向和趋势。在法国,以挤压成形工艺生产锻件的专业厂家1991-1994年全员劳动生产率,即每人生产挤压件的产量及产值,均高于一般生产模锻件或者自由锻件的厂家。以1994年为例,专业厂家挤压件人均产量为 51024KG,创产值775688法郎。而同期一般性生产模锻件的厂家,其人均产量仅为39344KG,产值592384

法郎,仅相当于挤压件专业生产厂家的77.1%和76.37%。自由锻件生产厂与之相比则更低。

4) 挤压专机将成为一种发展趋势。随着中小型锻件的精化生产发展及冷挤压、温挤压工艺的推广应用,多工位冷挤压压力机、精压机及针对某种锻件而设计制造的专机会得到大力发展。

冷温挤压的定义和分类

挤压是迫使金屑块料产生塑性流动,通过凸模与凹模间的间隙或凹模出口,制造空心或断面比毛坯断面要小的零件的一种工艺方法。如果毛坯不经加热就进行挤压,便称为冷挤压。冷挤压是无切屑、少切屑零件加工工艺之一,所以是金屑塑性加工中一种先进的工艺方法。如果将毛坯加热到再结晶温度以下的温度进行挤压,便称为温挤压。温挤压仍具有少无切屑的优点。

根据挤压时金属流动方向与凸模运动方向之间的关系,

常用的挤压方法可以分为以下几类。

(一)正挤压挤压时,金属的流动方向与凸横的运动方向相一致。正挤压又分为实心件正挤压空心件正挤压两种。正挤压法可以制造各种形状的实心件和空心件,如螺钉、心轴、管子和弹壳等。

(二)反挤压挤压时,金屑的流动方向与凸模的运动方向相反,反挤压法可以制造各种断面形状的杯形件,如仪表罩壳、万向节轴承套等。

(三)复合挤压挤压时,毛坯一部分金属流动方向与凸模的运动方向相同,而另一部分金屑流动方向则与凸模的运动方向相反,复合挤压法可以制造双杯类零件,也可以制造杯杆类零件和杆杆类零件。

(四)减径挤压变形程度较小的一种变态正挤压法,毛坯断面仅作轻度缩减。主要用于制造直径相差不大的阶梯轴类零件以及作为深孔杯形件的修整工序。

以上几种挤压的共同特点是:金屑流动方向都与凸模轴线平行,因此可统称为轴向挤压法。另外还有径向挤压和镦挤法。

冷挤压的主要矛盾

冷挤压是在金属冷态下,而且是在强烈的三向压应力状态下变形的,因此变形抗力较大,如以制造一个直径38mm、厚5.6mm、高100mm的杯形低碳钢零件为例,采用深拉伸方法加工。最后一次拉伸工序仅需变形力170KN而采用冷挤压加工则需变形力1320KN。这时作用在凸模上的单位压力达到 2300MP以上,相当于大气压力的23000倍。

由于变形抗力高,所以就导致以下的缺点:

(1)模具易磨损,易破坏、因此要求模具材料好。目前一般模具钢,其许用应力最大只能达2500MPa,最好的模具钢也不超过3000MPa。为了解决冷挤压的主要矛盾,就得采取各种技术措施,在尽力降低冷挤压材料变形抗力的同时,设法提高模具的承受能力。以利于冷挤压生产的顺利进行。

2)对挤压设备要求较高,吨位要大。除了要求挤压设备应有较大的强度以外,还要求有较好的刚度。此外.还要求设备具有良好的精度并具有可靠的保险装置。

冷挤压和温挤压的比较:

冷挤压虽有很多优点,但变形抗力大,就限制了零件的尺寸,同时也限制了变形抗力大的材料采用冷挤压工艺。

热挤压成形法,虽然可以使材料变形抗力变小,但由于加热,产生氧化、脱碳及热膨胀等问题,降低了产品的尺寸精度和表面质量,因而一般都需要经过大量的切削加工,才能作为最后产品。

温挤压是将毛坯加热到金属再结晶温度以下某个适当的温度进行挤压。由于金属加热,毛坯的变形抗力减小.成形容易,压力机的吨位也可以减小,而且模具的寿命延长。但与热挤压不同,因为在低温范围内加热,氧化、脱碳的可能性小,产品的机械性能与冷挤压的产品也差别不大。特别是在室温下难加工的材料,例如析出硬化相的不锈钢、高碳钢、含铬量高的—些钢、高温合金等,在温挤压时可能变成可以加工或容易加工。

温挤压不仅适用于变形抗力高的难加工材料,就是对于冷挤压适宜的低碳钢,也适合作为温挤压的对象,因为温挤压有便于组织连续生产的优点。在冷挤压时,包括冷挤压低碳钢在内,一般在加工前要进行预先软化退火,在各道冷挤压工序之间也要进行退火处理。在冷挤压以前要进行钝化处理。这就使得组织连续生产产生困难。温挤压时可以不进行预先软化退火和各工序之间的退火,也可以不进行表面处理,这就使得组织连续生产成为可能.至少可以减少许多辅助工序*

温挤压可以采用大的变形量,这样就可以减少工序数目。模具费用也可以大为减少,而且不需要刚性极高的高价锻压设备,可以来用通用锻压设备,所以虽然温挤压需要加热金属,但是总的加工费用还是比较便宜,待别是在制造工序复杂的非轴对称的异形部件时,温挤压尤可发挥它的作用。

目前,温挤压采用的润滑剂还不能完全令人满意。同时,也还缺乏加工方面的一些实际数据,还有许多技术问题有待解决。

花键轴规格表

花键轴规格表 内花键:6×23H7×26H10×6H11,GB/T1144—2001。 外花键:6×23f7×26a11×6d10,GB/T1144—2001。 花键副:6×23H7/f7×26H10/a11×6H11/d10 GB/T1144—2001。 在机械制图中,花键的键齿作图比较繁琐。为提高制图效率,许多国家都制订了花键画法标准,国际上也制订有ISO标准。中国机械制图国家标准规定:对于矩形花键,其外花键在平行于轴线的投影面的视图中,大径用粗实线、小径用细实线绘制。 扩展资料: 花键的工作长度的终止端和尾部长度的末端均用细实线绘制。对于渐开线花键,画法基本上与矩形花键相同,但需用点划线画出其分度圆和分度线 花键的齿数较多,总接触面积较大,因而可承受较大的载荷;轴上零件与轴的对中性好,这对高速及精密机器很重要;导向性好,这对动

联接很重要;可用磨削的方法提高加工精度及联接质量;制造工艺较复杂,有时需要专门设备,成本较高。 1、碳素钢35、45、50等优质碳素结构钢因具有较高的综合力学性能,应用较多,其中以45钢用得最为广泛。为了改善其力学性能,应进行正火或调质处理。不重要或受力较小的轴,则可采用Q235、Q275等碳素结构钢。 2、合金钢合金钢具有较高的力学性能,但价格较贵,多用于有特殊要求的轴。例如采用滑动轴承的高速轴,常用20Cr、20CrMnTi等低碳合金结构钢,经渗碳淬火后可提高轴颈耐磨性;机转子轴在高温、高速和重载条件下工作,必须具有良好的高温力学性能,常采用40CrNi、38CrMoAlA等合金结构钢。轴的毛坯以锻件优先、其次是钢;尺寸较大或结构复杂者可考虑铸钢或球墨铸铁。 例如,用球墨铸铁制造曲轴、凸轮轴,具有成本低廉、吸振性较好,对应力集中的敏感性较低、强度较好等优点。轴的力学模型是梁、多数要转动,因此其应力通常是对称循环。其可能的失效形式有:疲劳断裂、过载断裂、弹性变形过大等。轴上通常要安装一些带轮毂的零件,因此大多数轴应作成阶梯轴,切削加工量大。

棘轮套冷挤压成形工艺及模具设计

棘轮套塑性成形工艺及模具设计 中文摘要:冷挤压是精密塑性体积成形技术中的一个重要组成部分。冷挤压是指在冷态下将金属毛坯放入模具模腔内,在强大的压力和一定的速度作用下,迫使金属从模腔中挤出,从而获得所需形状、尺寸以及具有一定力学性能的挤压件。显然,冷挤压加工是靠模具来控制金属流动,靠金属体积的大量转移来成形零件的。本设计介绍了棘轮套零件结构分析、挤压工艺过程、挤压设备选择、模具结构的设计、凸凹模设计、挤压件质量分析、棘轮套齿形模芯的结构、凸模加工工艺及模具各部件三维造型进行了叙述,并计算了毛坯体积、毛坯尺寸、变形程度、挤压比和挤压力。与常规的棘轮套加工工艺相比,冷挤压成形的棘轮套具有齿形强度高、齿形尺寸精度较高、表面粗糙度值低、材料利用率高、生产效率高、设备投资少等优势。 关键词:冷挤压棘轮套正挤压凸缘

Ratchet sets of plastic forming process and die design (Tongling University ,mechanical Material Forming and Control Technology ,07 mold Zhang Teng) Abstract: Volume precision plastic cold extrusion forming technology is an important component. Cold extrusion is the next in the cold metal blank into the mold cavity, the strong pressure and under a certain speed, forced metal extrusion from the mold cavity to obtain the required shape, size, and has some mechanical performance of extrusion Obviously, the cold extrusion process is to control the metal flow by mold, by transfer to a large number of metal forming volume parts.Ratchet sets introduced structure of parts, extrusion process, extrusion equipment selection, die structure design, punch and die design, extrusion quality analysis, ratchet sets of the structure of tooth punch, punch and die processing of parts, Three-dimensional modeling of the narrative, and calculate the rough size, blank size, deformation, extrusion ratio and extrusion pressure. And conventional processing technology compared to ratchet set, ratchet set of cold extrusion with gear, high strength, high precision gear size, low surface roughness, high utilization ratio, high efficiency, less investment in equipment and other advantages. key words: Cold extrusion Ratchet sets Extrusion Flange

花键轴开模冷挤压的模具

方花键轴开模冷挤压的模具设计及工艺实验研究 摘要:针对125cc摩托车变速箱的方花键主轴,讨论了花键开模挤压的模具结构特点和影响花键成形的模具回弹问题,提出在开模挤压的可成形性范围内选择入模角,可以避免挤压时出现的入模口局部镦粗现象的发生。 关键词:花键轴;开模挤压;模具;局部镦粗 一、引言 目前采用开模冷挤压的方法成形花键轴已经在国内外得到普遍重视,这种先进的工艺具有节材、优质、高效等特点。这种工艺经过不断完善和发展,必将取代传统的切削加工方法。花键开模挤压时,其模具结构及入模口形状对其成形的影响很大。另外,在开模挤压时易出现入模口处坯料局部镦粗而使挤压无法进行的问题。对于此局部镦粗问题的讨论目前尚未见到报导,在工厂多采用试错的办法通过调整模具参数来解决。本文针对上述问题进行了实验研究,提出了开模挤花键的可成形性范围,以此来衡量是否出现局部镦粗。 二、花键轴开模挤压的模具结构[1,2] 图1为实验所采用的花键轴零件图,轴两端有尺寸相同的矩形花键,中间台阶为齿轮。 图1花键轴零件图 实验中采用两道工序分别完成中间台阶的自由镦粗和两端花键的挤出,为保证上、下花键的同轴度,采用两端同时挤压的办法,模具安装在上、下模板间先采用导柱、导套一级导向,再利用上下模套的模口二级导向,这样来保证成形时的导向精度。花键成形模具结构见图2。 图2花键成型模具结构 1.花键模具的结构特点 图2所示花键成形模在变形开始部位必须要求有圆角,如不设计成圆角,就会造成齿宽变狭,而且还会出现齿顶充不满的现象。此外如果每个齿的圆角不均匀,则会引起齿形误差和在挤出部分产生弯曲。花键入模口形状有三种:船头形、尖头形和梯形。三种形状中,采用尖头

冷挤压模结构设计

冷挤压模结构设计 上下模板是冷挤压压力的主要支承部分,由于冷挤压的单位压力较高,上下模板不能采用铸铁材料。上下模板加导柱、导套就组成有导向的冷挤压模架,无导柱、导套者则为无导向模架 图1为在导柱、导套导向通用反挤压模具。卸年亦有导向,其导向的基准仍为模架的导柱。反挤压时挤压件的端面往往是不平的,缺件时使凸模受力不均匀,可能造成凸模偏移而折断。缺件有强有力的导向时,提高了凸模的稳定性,这是因为卸件板与凸划亦有导向的缘故。反挤压适用模架兼作为下挤压及复合挤压使用。 图2为有导柱导套导向正挤压通用模具。 图3为镦挤复合模具。 通用反挤、正挤和镦挤复合模架中的组合凹模在相同吨位的压力机上都设计成可以互换的,提高了模具的使用范围。 模架精度可分为三级,其技术指标见表1,用于不同挤压件选用,常用的为Ⅱ级。 卸件板与顶件杆:挤压有时粘在凸模上,有时粘在凹模中,有此部件,能将打主挤压件取出。卸件板与顶件杆都是用于制件脱模的零件。 凸模与凹模垫板:通用冷挤压模具中,采用了多层垫板。为了防止高的挤压单位压力直接传递给模板而造成局部凹陷或变形,必须在凹模底端加上垫板,以便把加工压力均匀分散传递,起到缓冲作用。 凸模固定器及定位环:凸模固定器是将凸模安装在上模上,而定位环则可考虑挤压件的不同直径快速交换,提高了模具的通用性能。 凸模与凹模:冷挤压模具的工作部件,在设计时必须认真对待。应选用具一定韧性的高强度钢材制造。凸模与凹模承受了最大的冷挤压单位压力。为了加强凹模的强度,通常采用预应力组合凹模,可以用二层或三层组合而成。 表1

图1 图2

图3

接,不允许有加工刀痕存在。对于正挤压纯铝空心件的凸模,可采用型式b设计,凸模与芯轴制作成整体。 挤压黑色金属空心件,整体式凸模就不宜采用,在凸模本体与芯轴的直径急剧过渡区就很易断裂。应当采用型式c与型式d的组合式,使凸模本体与芯轴组合而成。 组合芯轴分固定式c与活动式d。固定用于芯轴直径较大,而活动式用于芯轴直径较小的环形件。活动芯轴可随变形金属同时向下滑动一锻距离,从而改善了芯轴的受拉情况,防止芯轴被拉断。 图5为下挤压凸模顶端形状的又一种型式。此型式有下列特点: (1)端面有0.5°~1°斜角,其作用是保证凸模的稳定性。特别是毛坯二端不平时尤为重要。(2)同凹模配合的有效长度为3~5mm,而不是全直筒式的。凸模在高的单位挤压力作用下,有时会使凸模直径胀大,增加了凸模下移的阻力。仅有3~5mm有效长度,就能确保凸模的使用精度。 (3)后角3°的存在,采用小圆弧相联,具有较低的应力集中系数,保证凸模具有较高的寿命。为此,这种型式的凸模亦广为采用。 公式1 图1

毕业设计矩形花键冷挤压模具设计(开题报告)

毕业设计(论文)开题报告 题目CG125摩托车副轴 矩形花键冷挤压模具设计 指导教师系主任 时间

1、本课题的研究目的及意义 冷挤压技术是一种高精、高效、优质低耗的先进生产工艺技术,较多应用于中小型锻件规模化生产中。冷挤压就是把金属毛坯放在冷挤压模腔中,在室温下,通过压力机上固定的凸模向毛坯施加压力,使金属毛坯产生塑性变形而制得零件的加工方法。与其他加工工艺相比冷挤压有如下优点:节约原材料;提高劳动生产率;制件可以获得理想的表面粗糙度和尺寸精度;提高零件的力学性能;可加工形状复杂的,难以切削加工的零件;降低零件成本。 目前,我国已能对铅、锡,铝、铜、锌及其合金、低碳钢、中碳钢、工具钢、低合金钢与不锈钢等金属进行冷挤压,甚至对轴承钢、高碳高铝合金工具钢、高速钢等也可以进行一定变形量的冷挤压。在挤压设备方面,我国已具备设计和制造各级吨位挤压压力机的能力。除采用通用机械压力机、液压机、冷挤压力机外,还成功地采用摩擦压力机与高速高能设备进行冷挤压生产。随着科技的进步和汽车、摩托车、家用电器等行业对产品技术要求的不断提高,冷挤压生产工艺技术己逐渐成为中小锻件精化生产的发展方向。目前我国研制的冷挤压件一般尺寸精度可达7~8级,表面粗糙度一般可达R0.2~R0.6,仅次于精抛光表面。因此用冷挤压方法制造的零件,一般不需要再加工,少量的只需精加工(磨削)。 CG125摩托车系列是目前市面上流通最为广泛且需求量最大的摩托车之一,发动机作为摩托车的“心脏”,其作用不用言语,而花键轴是发动机中最为重要的零件之一,所以说花键轴的质量和生产效率很大程度上决定了摩托车的质量和生产效率。传统的机械加工也可以实现花键轴的生产,精度和强度也能够保证,但相对于冷挤压加工,机械加工的效率就显得较低了。本课题主要是根据冷挤压成形原理,并结合CG125摩托车副轴零件本身的特点设计出合理的挤压矩形花键的模架以及模具结构。故对于大幅度提高CG125摩托车副轴的生产效率,本文的设计研究还是很有价值和实际意义的。

冷挤压模具设计

第六章冷挤压模具设计 本章通过一些典型的冷挤压模具结构,介绍冷挤压模具的特点、其工作零件及其它主要零部件的设计要点及步骤等。 第一节冷挤压模具的结构及分类 一、概述 冷挤压是在常温下对金属材料进行塑性变形,其单位挤压力相当大,同时由于金属材料的激烈流动所产生的热效应可使模具工作部分温度高达200℃以上,加上剧烈的磨损和反复作用的载荷,模具的工作条件相当恶劣。因此冷挤压模具应具有以下特点: (1)模具应有足够的强度和刚度,要在冷热交变应力下正常工作; (2)模具工作部分零件材料应具有高强度、高硬度、高耐磨性,并有一定的韧性; (3)凸、凹模几何形状应合理,过渡处尽量用较大的光滑圆弧过渡,避免应力集中; (4)模具易损部分更换方便,对不同的挤压零件要有互换性和通用性; (5)为提高模具工作部分强度,凹模一般采用预应力组合凹模,凸模有时也采用组合凸模; (6)模具工作部分零件与上下模板之间一定要设置厚实的淬硬压力垫板,以扩大承压面积,减小上下模板的单位压力,防止压坏上下模板; (7)上下模板采用中碳钢经锻造或直接用钢板制成,应有足够的厚度,以保证模板具有较高的强度和刚度。 典型的冷挤压模具由以下几部分组成: 1.工作部分如凸模、凹模、顶出杆等; 2.传力部分如上、下压力垫板; 3.顶出部分如顶杆、反拉杆、顶板等; 4.卸料部分如卸料板、卸料环、拉杆、弹簧等; 5.导向部分如导柱,导套、导板、导筒等; 6.紧固部分如上、下模板、凸模固定圈、固定板、压板、模柄、螺钉等。 二、冷挤压模具分类 冷挤压模具有多种结构形式,可根据冷挤压件的形状、尺寸精度及材料来选择合适的模具结构形式。冷挤压模具可以按以下几个方面来分类。 (一)按工艺性质分类 模具按工艺性质可分为:正挤压模、反挤压模、复合挤压模、镦挤压模等。 1.正挤压模图6-1所示为实心件正挤压模。该模具更换相应的工作部分零件,可进行其它零件的正挤,也可用于反挤压、复合挤压和镦挤。顶出系统由零件1、2、3、4组成可调式拉杆,其中件3为调节螺母。旋转螺母可以调节拉杆长度,以适合不同零件挤压后的顶出。凸模6由活动护套加以保护,以增加凸模的强度和稳定性。此外,当该模具用于反挤压或复合挤压时,更换合适的护套还可以利用上模部分的打料系统进行卸料。

冷挤压成形过程的有限元分析

冷挤压成形过程的有 限元分析 姓名:某某 班级: 学号: 指导老师: 完成时间:

摘要:本文以汽车铝合金缸套作为研究对象,对其挤压成型工艺进行了有限元分析。研究不同的挤压速度对合金的等效应力、挤压力、等效塑性应变和最大剪切应力的影响。研究结果表明,在挤压过程中,挤压速度对等效塑性应变和挤压力有明显影响,并且在模具拐角处产生了应力集中。 关键字:挤压速度;有限元分析;冷挤压;铝合金缸套;挤压力。引言: 在铝合金缸套的成形工艺中,将喷射沉积成形高硅铝合金管挤压成厚壁管是关键性技术。由于工艺复杂,参数较多,使用传统实验方法,将需要大量的时间、人力、物力,从而导致成本高、制造周期厂长。采用数值模拟技术则可以很好的解决这一问题。通过数值模拟,可以对成形过程进行分析,研究不同工艺参数对成形的影响,从而确定工艺参数,继而降低生产成本,极高经济效益。在金属塑性成形的数值模拟方法上主要有上限元法(Upper Bound Method)、边界元法(Boundary Element Method)和有限元法(Finite Element Method)。上限元法常用于较为简单的准稳态变形问题;而边界元法主要用于模具设计分析和温度计算;对于大变形的体积成形,变形过程呈非稳态,形状、边界、材料性质等都会发生很大的变化,有限元法可由实验和理论方法给出的本构关系、边界条件、摩擦关系式,按变分原理推导出场方程根据离散技术建立模型,从而实现对复杂成形问题进行数值模拟、分析成形过程中应力应变分布及其变化规律,由此提供较为

可靠的主要成形参数。 ANSYS软件是由美国ANSYS公司研制、开发的大型通用有限元分析软件。该软件提供了丰富的结构单元、接触单元、热分析单元及其它特殊单元,能解决结构静力、结构动力、结构非线性、结构屈曲、疲劳与断裂力学、复合材料分析、压电分析、热分析、流体动力学、声学分析、电磁场分析、耦合场分析、优化设计等诸多问题,它广泛地应用于国防、航空航天、汽车、船舶、能源、机械电子工程等领域中,是应用最为广泛的有限元软件。此外,ANSYS具有友好的图形用户界面和强大的二次开发功能,使用方便。 冷挤压是指在冷态下将金属毛坯放入模具模腔内,在强大的压力和一定的速度作用下,迫使金属从模腔中挤出,从而获得所需形状、尺寸以及具有一定力学性能的挤压件。冷挤压技术是一种高精、高效、优质低耗的先进生产工艺技术,较多应用于中小型锻件规模化生产中。与热锻、温锻工艺相比,可以节材30%~50%,节能40%~80%而且能够提高锻件质量,改善作业环境。目前,冷挤压技术紧固件、机械、仪表、电器、轻工、宇航、船舶、军工等工业部门中得到较为广泛的应用,已成为金属塑性体积成形技术中不可缺少的重要加工手段之一。二战后,冷挤压技术在国外工业发达国家的汽车、摩托车、家用电器等行业得到了广泛的发展应用,而新型挤压材料、模具新钢种和大吨位压力机的出现便拓展了其发展空间。日

自行车花盘冷挤压模具设计(课程设计)

ANYANG INSTITUTE OF TECHNOLOGY 本科毕业论文 自行车花盘冷挤压模具设计Design for cold extruding dies of the bicycle face 2008年05月

目录 第一章自行车花盘零件图纸及要求 (1) 第二章冷挤压工艺性分析 (30) 2.1 零件冷挤压工艺性分析 (40) 2.2 许用变形程度及变形程度的计算 (40) 2.3 挤压变形力的计算 (42) 第三章冷挤压毛坯的制备 (52) 3.1毛坯形状和尺寸的确定 (42) 3.2毛坯的软化处理 (42) 3.3毛坯的表面处理和润滑 (42) 第四章冷挤压模具设计 (52) 4.1 模具结构的选择 (53) 4.2 模架的选择 (60) 4.3模具工作部分设计 (42) 4.3.1凸模设计 (42) 4.3.2凹模设计 (42) 4.4导向、顶出及紧固件设计 (42) 4.4.1导向设计 (42) 4.4.2顶出装置设计 (42) 4.4.3模具固定方法设计 (42) 4.4.2 (42) 结论 (71) 致谢 (74) 参考文献 (75)

附录3: 自行车花盘冷挤压模具设计 专业班级: 指导教师: 职称: 摘要(空1格)× ×××××××××××××××××××××××××××××××× 关键词:××× ××× ××× Design for cold extruding dies of the bicycle face Abstract (空1格)Key words ××× ××× ××× ×××

附录4: 引 言 ××××××××××××××××××××××××××××××××××××× 第一章 自行车花盘零件图纸及要求 在电子、汽车、电机、电器、仪器、仪表、家电和通讯等产品中,60%~80%的零部件都要依靠模具成形。从1997年开始,我国模具工业产值也超过了机床工业产值。模具生产技术水平的高低,已成为衡量一个国家产品制造水平高低的重要标志,在很大程度上决定着产品的质量、效益和新产品的开发能力。 作为学过《模具设计》的学生应该掌握模具设计程序、设计思路,设计方法。基于此,以生活当中自行车的花盘作为工件,结合大学所学的机械设计知识,设计出一套能挤出自行车花盘的冷挤压模具。自行车花盘的参数如下: 第二章 冷挤压工艺性分析 2.1 零件冷挤压工艺性分析 1)材料:Q215为碳素结构钢,具有良好的可冲压性能。该钢的强度与塑性配合较好,冷弯性能和焊接性能也很好。在制造机械设备时,一般采用冷弯、焊接,而不用锻造和热处 工件名称:自行车花盘 生产批量:大批量 材 料:Q215

冷挤压技术

冷挤压技术工艺与发展 班级:材加11-A2 姓名:于鸿超 学号:120113203002

冷挤压技术工艺与发展 摘要:模具是现代工业生产的主要工艺设备之一,其设计制造技术代表了一个国家的工业设计制造技术的发展水平。本文对冷冲压相关概念和技术进行了论述,明确了冲压工艺与模具制造技术的发展方向。 关键词:模具冷冲压工业设计 挤压是迫使金屑块料产生塑性流动,通过凸模与凹模间的间隙或凹模出口,制造空心或断面比毛坯断面要小的零件的一种工艺方法。如果毛坯不经加热就进行挤压,便称为冷挤压。冷挤压是无切屑、少切屑零件加工工艺之一,所以是金屑塑性加工中一种先进的工艺方法。如果将毛坯加热到再结晶温度以下的温度进行挤压,便称为温挤压。温挤压仍具有少无切屑的优点。 改革开放以来,随着国民经济的高速发展,市场对模具的需求量不断增长。近年来,模具工业一直以15%左右的增长速度快速发展,模具工业企业的所有制成分也发生了巨大变化,除了国有专业模具厂外,集体、合资、独资和私营也得到了快速发展。浙江宁波和黄岩地区的“模具之乡”;广东一些大集团公司和迅速崛起的乡镇企业,科龙、美的、康佳等集团纷纷建立了自己的模具制造中心;中外合资和外商独资的模具企业现已有几千家。 随着与国际接轨的脚步不断加快,市场竞争的日益加剧,人们已经越来越认识到产品质量、成本和新产品的开发能力的重要性。而模具制造是整个链条中最基础的要素之一,模具制造技术现已成为衡量一个国家制造业水平高低的重要标志,并在很大程度上决定企业的生存空间。 冷挤压技术发展的初期是非常缓慢的,长期以来只对几种软金属(铅和锡)进行挤压。直到19纪末20世纪初,才开始挤压较硬的有色金属(锌、铝、紫铜、黄铜等)至于钢的挤压,由于冷挤压时需要很大的压力,在当时不能解决挤压钢用的模具材料、合适的润滑剂与大吨位的压力机等问题,长时间一直认为挤压钢是十分困难甚至是不可能的。 1906年,英国人科斯利特(T.W.coslett)发现用磷酸盐处理钢件制品是一种较理想的防锈方法,但工序繁多,而经济效益又差,故未被广泛采用。不过,这种防锈法的出现却极大地激发了人们去研究更简单而有效的新方法的积极性。到后来,用自动连续装置对钢毛坯进行磷酸锌防锈处理只需要两分钟。经磷酸锌处

花键轴规格表

内花键:6×23H7×26H10×6H11,GB/T1144—2001。 外花键:6×23f7×26a11×6d10,GB/T1144—2001。 花键副:6×23H7/f7×26H10/a11×6H11/d10 GB/T1144—2001。 在机械制图中,花键的键齿作图比较繁琐。为提高制图效率,许多国家都制订了花键画法标准,国际上也制订有ISO标准。中国机械制图国家标准规定:对于矩形花键,其外花键在平行于轴线的投影面的视图中,大径用粗实线、小径用细实线绘制。 扩展资料:

花键的工作长度的终止端和尾部长度的末端均用细实线绘制。对于渐开线花键,画法基本上与矩形花键相同,但需用点划线画出其分度圆和分度线 花键的齿数较多,总接触面积较大,因而可承受较大的载荷;轴上零件与轴的对中性好,这对高速及精密机器很重要;导向性好,这对动联接很重要;可用磨削的方法提高加工精度及联接质量;制造工艺较复杂,有时需要专门设备,成本较高。 1.矩形花键的画法 1.1外花键:在平行于花键轴线的投影面的视图中,大径用粗实线、小径用细实线绘制,在径向剖视图中画出一部分或全部齿形。 1.2内花键:在轴向剖视图中,大径及小径均用粗实线绘制,在径向部视图画出一部分或全部齿形。

1.3花键工作长度的终止端和尾部长度的末端均用细实线绘制,并与轴线垂直,尾部则画成斜线,其倾斜角度一般与轴线成30°,必要时,可按实际情况画出。 2.矩形花键长度标注 花键长度应采用下列三种形式之一标注: 标注工作长度标注工作长度及尾部长度 标注工作长度及全长

3.渐开线花键 渐开线花键的分度圆及分度线用点划线绘制。 4.花键联接 4.1 花键的联接部分在剖视图中按外花键绘制。 矩形花键

内花键冷挤压成型工艺浅论

内花键冷挤压成形工艺应用 浅析 浙江XX机电有限公司技术部 二〇一五年十月一日

目录 内容页次概述: (3) 一、冷挤压技术的发展趋势 (3) 二、充分发挥冷挤压工艺优势内花键加工难题得到解决 (3) 三、冷挤压成形模具制造难点 (4) 四、冷挤压模具制造分析研究 (4) 五、挤压件材料研究和分析 (5) 六、冷挤压工艺流程的研究和分析 (6) 七.总结 (6)

内花键冷挤压成形工艺浅析 概述: 冷挤压是精密属性体积成型技术中的一个重要组织部分。冷挤压是指在冷态下金属毛坯放入模具腔内,在强大的压力和一定的速度作用下迫使金属在模具腔中流动挤出,从而获得所需要形状、尺寸以及具有一定力学性能的挤压件。 一、冷挤压技术的发展趋势 在有关技术资料获悉,冷挤压技术早在18世纪末制造过程中就采用了这门技术。这门工艺已经在机械、仪表、电器、重轻工、军工等工业中较广泛的应用,已成为金属属性体积成形技术中不可缺少的重要加工手段之一,发达国家在轿车制造中约达到30%~40%是采用冷挤压工艺生产。我国工艺制造在60~70年代落后时期后通过改革开放期间大量的发达国家的制造业进入我国推动了我国制造业工艺水平,推动了我国在冷挤压这门工艺技术领域里发展,通过吸取国外的先进工艺使我国冷挤压生产工艺技术不断提高,逐渐成为中小锻件精化生产的发展方向。 二、充分发挥冷挤压工艺优势内花键加工难题得到解决 丰立公司是一家具备技术研究、生产、销售服务于一体的国家高新技术企业,是我国小模数锥齿轮行业的领军者;是国际知名厂商的优秀供应商;公司所生产的气动工具系列产品的机械传动结构是以齿轮传动。公司在发展过程积极的学习国内外的先进工艺技术与世界并举,研造客户需求的产品。对产品工艺设计积极采用冷挤压成型,发挥冷挤压节约原材料、提高劳动生产率、通过冷挤压的产品毛坯在少切削向不切削为目的来降低制造成本,更使产品的表面粗糙度Ra1.6~Ra0.8。公司近年快速的扩大采用冷挤压工艺赢得同行业、世界知名厂商的认可。通过这几年来,我们公司采用冷挤压工艺从筒状冷挤压扩张到齿轮坯挤压,对形状较复杂、切削加工较困难的产品,运用冷挤压工艺很容易加工成型。现已有三十余种产品采用冷挤压成形工艺,为公司生产率的提高起到很大作用。内花键是机械传动中的重要零部件,主要起连接和传动作用,广泛应用在机械制造领域,传统内花键形成方法主要有拉齿和插齿加工,起生产效率底,材料利用率底不能满足大批量生产需求。尤其是不串通盲孔内花键,无论是效率,质量都达不到用户满意。为保证内花键精度的同时提高花键的力学性能,公司采取冷挤压工艺解决

挤压成型工艺基本介绍

5 挤压成型工艺 5.1 挤压概述 定义:所谓挤压,就是对放在容器(挤压筒)内的金属锭坯从一端施加外力,强迫其从特定的模孔中流出,获得所需要的断面形状和尺寸的制品的一种塑性成型方法。 优点:: (1 )具有最强烈的三向压应力状态; (2 )生产范围广,产品规格、品种多; (3 )生产灵活性大,适合小批量生产; (4 )产品尺寸精度高,表面质量好; (5 )设备投资少,厂房面积小; (6 )易实现自动化生产。 缺点: (1 )几何废料损失大; (2 )金属流动不均匀; (3 )挤压速度低,辅助时间长; (4 )工具损耗大,成本高。 适用范围: (1)品种规格繁多,批量小; (2)复杂断面,超薄、超厚、超不对)复杂断面,超薄、超厚、超不对称; (3)低塑性、脆性材料。 5.2挤压的基本方法及特点 挤压的方法可按照不同的特征进行分类,有几十种。 最常见的有6种方法:正向挤压、反向挤压、侧向挤压、连续挤压、玻璃润滑挤压和静液挤压。 最基本的方法仍然是正向挤压(简称正挤压)和反向挤压(简称反挤压)。 如下所示为挤压的分类

a.正向挤压 b.方向挤压 c.侧向挤压 d.连续挤压 e.玻璃润滑挤压 f.静液挤压 正向挤压: 定义:金属的流动方向与挤压杆(挤压轴)的运动方向相同的挤压生产方法。 特征:变形金属与挤压筒壁之间有相对运动,二者之间有很大的滑动摩擦。引起挤压力增大;使金属变形流动不均匀,导致组织性能不均匀;限制了挤压速度提高;加速工模具的 磨损。

反向挤压: 定义:金属的流动方向与挤压杆(或模子轴)的相对运动方向相反的挤压生产方法。 特征:变形金属与挤压筒壁之间无相对运动,二者之间无外摩擦。 特点:挤压力小;金属变形流动均匀;挤压速度快。但制品表面较正挤压差;外接圆尺寸较小;设备造价较高;辅助时间较长。 5.3 热挤压、冷挤压、温挤压 5.4 挤压设备、挤压模具及设计 5.4.1 挤压设备 按传动类型分液压和机械传动两大类。 (1)机械传动挤压机又分为统机械传动挤压机和现代机械传动挤压机。 传统机械传动挤压机以前曾用于挤压钢材和冷挤压方面,现在已不采用。钢材和冷挤压方面,现在已不采用。 目前以CONFORM挤压机为代表的新一代机械传动挤压机得到了广泛应用。 (2)液压传动挤压机是当前应用最广泛的挤压设备。又分为水压机和油压机,目前应用最广泛的是油压机,但大吨位设备仍以水压机为主。 5.5挤压模设计

冷挤压工艺对材料的要求

挤压技术现在已经有了很大的发展,但是,这种技术在生产上能否稳定、推广应用,模具使用寿命的长短有决定性的影响。 挤压模具材料及热处理,是为适应这一项技术的发展而逐步发展起来的。目前,模具材料可以在低合金工具钢,高碳高铬合金工具钢,高速钢,硬质合金等较为广泛的范围内选用。因此,按照冷挤压工艺特性的要求,合理选用模具材料,制定正确的热处理工艺,是保证获得具有较长使用寿命及经济合理性的重要环节。 为了合理选用模具材料,首先应对模具在挤压过程中的工作情况及所要求的性能进行分析。 一、模具在挤压过程中承受的应力 1.承受大的挤压力:金属在冷挤压时的变形抗力是很大的,如挤压低碳钢(σb=400(兆帕)反挤压的单位挤压力可达2000~3000(兆帕),当润滑和表面处理不当时,其单位挤压力甚至高达3000~3500(兆帕),这个数值已超过了一般模具钢的弹性极限,有可能使模具在挤压过程中产生微量的塑性变形,而使挤压件尺寸精度较差,严重时将发生模具的破损。 2.因偏心负荷而引起的弯曲应力:因毛坯两端不平,毛坯与凹模间隙大,模具加工及装配的同轴度偏差过大等原因,都会引起凸模承受较大的偏心弯曲应力,而导致模具早期折断。 3.连续作用的冲击力:机械式的冷挤压机,实际上是以连续的冲击式施加负荷于模具上。近年来,虽然广泛采用了液压缓冲装置,但仍不可能完全消除这种冲击负荷。对于高硬度(HRC≥60)的模具,当存在某些表面和内部缺陷时,会引起应力集中而过早脆裂。 4.模具表面磨损:模腔内的金属在强大外力作用下,产生塑性流动时,会引起模具表面的磨损。当模具表面存在贫碳、软点、组织不均匀等缺陷时,会加速模具的磨损产生模具表面早期破坏。 5.模具温度升高而加速模具的磨损:由于金属的变形与摩擦原因而产生的热,在连续生产过程中,会使模具的温度逐步上升:可能达到200℃甚至更高,对于一些模具材料,会产生回火作用,而降低模具的性能。 二、冷挤压工艺对模具材料的要求 综合前述的冷挤压模具在工作过程中所承受的负荷情况,模具材料应能满足以下几方面的基本要求。 1.具有高的强韧性:模具在挤压过程中要同时承受极大地挤压力、弯曲应力、冲击等复杂的负荷。故要求所选用的材料,经过热处理后,应具有高的强韧性。因此,模具材料应有良好的淬透性(保证模具能淬透)及均匀的组织。大块的碳化物及严重的偏折,纤维方向性和非金属夹杂等内部缺陷,都会使模具的强韧性降低,或在受负荷时引起应力集中,造成模具早期破坏。 2.足够的热稳定性:当连续生产时,模具的温升有时达到或超过200℃,这对用160~180℃作回火温度的模具材料,会使强度、硬度下降,故用于温升较高的模具材料,应具备良好的抗回火稳定性。

冷挤压工艺正挤压模具设计说明

目录 第一章冷挤压工艺的特点及模具分类 (2) 一、冷挤压工艺 (2) 二、冷挤压模具特点 (2) 三、典型的冷挤压模具组成 (3) 四、冷挤压模具分类 (3) 五、冷挤压的特点 (4) 第二章模具工作部分设计 (5) 一、冷挤压模设计要求 (5) 二、正挤压凸模 (6) 三、正挤压凹模 (7) 第三章模具组成及工作过程原理 (8) 一、自行车前钢碗正挤压模具装配图 (8) 二、工作过程 (10) 第四章听课感受及意见与建议 (11) 一、感受 (11) 二、意见和建议 (11)

参考文献 (11) 第一章冷挤压工艺的特点及模具分类 一、冷挤压工艺 冷挤压的工艺过程是:先将经处理过的毛坯料放在凹模内,借助凸模的压力使金属处于三向受压应力状态下产生塑性变形,通过凹模的下通孔或凸模与凹模的环形间隙将金属挤出。它是一种在许多行业广泛使用的金属压力加工工艺方法。 二、冷挤压模具特点 1、模具应有足够的强度和刚度,要在冷热交变应力下正常工作; 2 、模具工作部分零件材料应具有高强度、高硬度、高耐磨性,并有一定的韧性; 3、凸、凹模几何形状应合理,过渡处尽量用较大的光滑圆弧过渡,避免应力集中; 4、模具易损部分更换方便,对不同的挤压零件要有互换性和通用性; 5、为提高模具工作部分强度,凹模一般采用预应力组合凹模,凸模有时也采用组合凸模; 6、模具工作部分零件与上下模板之间一定要设置厚实的淬硬压力垫板,以扩大承压面积,减小上下模板的单位压力,防止压坏上下模板; 7、上下模板采用中碳钢经锻造或直接用钢板制成,应有足够的厚度,以保证模板具有较高的强度和刚度

、典型的冷挤压模具组成 1、工作部分如凸模、凹模、顶出杆等; 2、传力部分如上、下压力垫板; 3、顶出部分如顶杆、反拉杆、顶板等; 4、卸料部分如卸料板、卸料环、拉杆、弹簧等; 5、导向部分如导柱,导套、导板、导筒等; 6、紧固部分如上、下模板、凸模固定圈、固定板、压板、模柄、螺钉等。 在第二章内容中将主要介绍模具的工作部分的设计 四、冷挤压模具分类 根据金属被挤出的方向与凸模运动方向的关系,冷挤压一般可分为正挤压、反挤压、复合挤压三种基本方式。 1、正挤压如图1-1所示,挤压时金属流动方向与凸模流动方向相同,适用于各种形状的实心件、管件和环形件的挤压; 2、反挤压如图1-2所示,挤压时金属流动方向与凸模运动方向相反,适用于各种截面形状的杯形件的挤压; 3、复合挤如图1-3所示,挤压时,金属流动方向相对于凸模运动方向,一部分相同,另一部分相反,适用于各种复杂形状制件的挤压;改变凹模孔口或凸、凹模之间缝隙的轮廓形状,就可以挤出形状和尺寸不同的各种空心件和实心件。 cd

花键轴加工工艺过程

任务?花键轴的加工 任务目标 1、掌握花键轴加工的方法与工艺。 2、熟悉加工花键轴的常用机床,掌握其使用方法。 3、了解花键轴的检测和验收方法。 任务描述 ●任务内容 分析花键轴的加工工艺,熟悉常用机床的使用方法及注意事项,完成花键轴的加工。 ●实施条件 卧式普通车床、卧式铣床、花键轴磨床、常用检测工具。 ●安全提示 1、所用工具应齐备、完好、安全可靠,方能开始工作; 2、操作机床时应完全遵守各种机床的安全使用规则,正确穿戴好劳动保护用品,认真仔细检查机床各部件和保护装置是否完好,确定安全可靠之后,才能开机加工;加工过程中不得离开机床,应密切注意加工情况,发现机床运转不正常时,应立即停车,请机修工检查修理;工、量具应放在安全的位置,机床运转时,不准测量工件;加工工件切削量和进刀量不宜超大,以免机床过载或梗住工件造成意外事件;高速切削时,使用防护罩,防止碎屑伤人。 3、工作完毕后,应将设备和工具的电、气、水、油源断开;应清理好工作场地卫生,将工具和零件整齐地摆放在指定的位置上。 任务实施 花键轴属于特种的轴类,常用于定中心的连接或传递转矩的传动中,是重要的机器零件之一。花键按齿形可分为矩形齿、三角形齿、梯形齿和渐开线齿等多种。加工方法主要分车、铣、磨三步。 步骤一车削 一、了解车床 车床主要用于加工各种回转表面。如内外圆柱面、圆锥面、回转体成型面、环形槽、端面及螺纹,还可进行钻孔、扩孔、铰孔、滚花等加工。 常见的卧式车床主要组成部分包括:主轴箱、刀架、尾座、进给箱、溜板箱、床身等。主要运动有:表面成形运动、进给运动及辅助运动。

图1.卧式车床外形图 二、车削步骤 花键轴的车削部分主要是进行外圆和端面的的加工,采用的方法如下: (一)安装工件和校正工件 安装工件采用三爪自定心卡盘,采用百分表校正工件。 (二)选择车刀 车外圆可用图2所示的各种车刀。直头车刀(尖刀)的形状简单,主要用于粗车外圆;弯头车刀不但可以车外圆,还可以车端面,加工台阶轴和细长轴则常用偏刀。 图2 车外圆的几种情况 (三)调整车床 车床的调整包括主轴转速和车刀的进给量。 主轴的转速根据切削速度计算选取。而切削速度的选择则和工件材料、刀具材料以及工件加工精度有关。用高速钢车刀车削时,V=0.3~1m/s,用硬质合金刀时,V=1~3m/s。车硬

冷挤压工艺 正挤压模具设计

目录第一章冷挤压工艺的特点及模具分类........................ 一、冷挤压工艺 ........................................ 二、冷挤压模具特点..................................... 三、典型的冷挤压模具组成............................... 四、冷挤压模具分类..................................... 五、冷挤压的特点 ...................................... 第二章模具工作部分设计 ................................. 一、冷挤压模设计要求................................... 二、正挤压凸模 ........................................ 三、正挤压凹模 ........................................ 第三章模具组成及工作过程原理............................ 一、自行车前钢碗正挤压模具装配图....................... 二、工作过程 .......................................... 第四章听课感受及意见与建议.............................. 一、感受 .............................................. 二、意见和建议 ........................................ 参考文献.................................................

台阶内花键套筒冷挤压工艺研究

台阶内花键套筒冷挤压工艺研究 张水忠,徐新成,廖秋慧 (上海工程技术大学,上海 200336) 摘要:分析了台阶内花键套筒的冷挤压工艺,制定出冷挤压件图,确定了挤压方案及工艺流程,对各工序变形程度进行了校核,并计算出了挤压力,同时对挤压模具的设计制造进行了简单的介绍。 关键词:冷挤压;台阶内花键;套筒;模具 中图分类号:T G376 文献标识码:B 文章编号:1001-2168(2003)10-0022-04 Anal y sis of the Col d Extrusion Technolo gy f or the Sleeves of the Inner S p l ine with Sta irs ZHAN G Shui-zhon g , XU Xi n-che n g , L IAO Qi u-hui , (Shan g hai U ni ve rsit y of En g i nee ri n g Scie nce ,Shan g hai 200336,Chi na ) Abstract :The t echnolo gy of cold e xt r usion of t he slee ves of t he i nne r s p li ne wit h s t ai rs was anal y zed. The drawi n g of t he wor k p iece f or e xt r usion was wor ked out ,t he e xt r usion 表2凹模尺寸表 mm D <8.3<10.3<12.3d <17.5 <19.5 <19.5 D <15<17<19A <9.4<11.5<13.5B <10.4 <12.5 <14.5 表1凸模尺寸表 mm 加大了,模具高度是图4所示模具的2.5倍,模具必须要在较大的机床上使用。同时零件顶出后必须先将顶出机构复位才能进行下一个零件的加工,整个操作过程多了一个动作,在大批量生产时,生产速度慢,生产成本高。而实际试模后发现,铆合过程中 加热管变形很小,几乎不变形,经试验,加大了凹模 与加热管的配合间隙(0.3mm ),取消了顶出系统。 (2)在试模过程中发现,零件铆合后出现了加热管与连接板铆合不紧,有松动的现象,而且出现问题的加热管的位置和数量随机性较大,经分析认为有以下2种原因: a )模具制造初期,凸模与凸模固定板、凹模与凹模固定板采用过盈配合,在装配过程中,凸、凹模与固定板之间可能会出现不垂直现象。 b )加热管在加工过程中可能产生壁厚不均匀或铝材有不均匀的硬质颗粒等。 改进的办法是将凸、凹模与固定板的配合改为间隙配合,使零件铆合过程中凸、凹模能根据实际情况自动调整。经改进,效果良好。 图5凸凹模零件a ———凸模 b ——— 凹模

复杂壳体冷挤压成形工艺与模具设计

1 绪论 (3) 1.1 本课题的目的和意义 (3) 1.2 本课题的主要研究内容 (4) 1.3 小结 (5) 2 复杂壳体冷挤压工艺的确定 (5) 2.1 冷挤压工艺概述 (5) 2.2挤压零件分析 (7) 3、挤压工艺分析 (9) 3.1 坯料尺寸的确定 (9) 3.2 毛坯软化处理 (10) 3.3 冷挤压毛坯表面处理与润滑 (10) 3.4变形程度计算 (13) 3.5确定挤压次数 (13) 4 挤压设备选择 (14) 4.1挤压力的确定 (14) 4.2挤压设备类型选择 (14) 4.3液压式压力机型号选择 (14) 5模具的结构型式及其主要零部件的设计 (15) 5.1冷挤压模具的结构分析 (15) 5.1.1冷挤压模具的组成部分 (16) 5.1.2对模具设计的要求 (16) 5.2冷挤压模具的结构特点 (17) 5.3 模具材料的选择 (17) 5.3.1冷挤压模具工作零件的材料要求 (17) 5.3.2冷挤模零件材料选取 (18) 5.4凸模设计 (18) 5.4.1 分流控制腔的设计 (19) 5.4.1.1 分流控制腔的结构形式及位置确定 (19) 5.4.1.2 控制腔高度尺寸(i h )的确定 (20) 5.4.2凸模的结构及尺寸 (20) 5.5凹模的设计 (21) 5.6卸料和顶出装置的设计 (23) 5.7 挤压模具模座的设计 (24) 5.7.1上模座的设计 (24) 5.7.2 下模座的设计 (26) 5.8导柱导套的设计 (27) 6、装配图 (29) 7 复杂壳体成形过程的有限元仿真 (31) 7.1有限元分析软件的背景介绍 (31) 7.1.1 DEFORM 的介绍 (31) 7.1.2 DEFORM 的功能 (32)

相关文档
最新文档