线性规划练习题含答案

线性规划练习题含答案
线性规划练习题含答案

线性规划练习题含答案一、选择题

1.已知不等式组

2,

1,

y x

y kx

x

≤-+

?

?

≥+

?

?≥

?

所表示的平面区域为面积等于1的三角形,则实数k的值为

A.-1 B.

1 2 -

C.

1

2

D.1

【答案】B

【解析】略作出不等式组表示的可行域如右图所示阴影部分,由于AOB

?的面积为2, AOC

?的面积为1,所以当直线y=kx+1过点A(2,0),B(0,1)时符合要求,此时

1

2

k=-,故选B。

2.定义

()

()

max{,}

a a b

a b

b a b

??

=?

<

??

,已知实数y

x,满足1

,1≤

≤y

x,设{}

max,2

z x y x y

=+-,则z的取值范围是()

A、?

?

?

??

?

-2,

2

3

B、?

?

?

??

?

2,

2

3

C、?

?

?

??

?

3,

2

3

D、?

?

?

??

?

-3,

2

3

【答案】D

【解析】{}

,2,20

max,2

2,22,20

x y x y x y x y x y

z x y x y

x y x y x y x y x y

++≥-+-≤

??

=+-==

??

-+<--->

??

当z=x+y时,对应的点落在直线x-2y=0的左上方,此时

3

2

2

z

-≤≤;当z=2x-y时,对应的点落在直线x-2y=0的右下方,

3

3

2

z

-≤≤

3.若实数x ,y 满足??

?

??≤+≥≥,

1234,0,

0y x y x 则13++=x y z 的取值范围是( )

A . )

7,4

3( B .??????5,32 C .??

????7,3

2

D .??

????7,4

3

【答案】D

【解析】作出如右图所示的可行域,由于13

++=x y z 的几何意义是可行域内的点P(x,y)与点(-1,-3)连续的斜率,数形结合,可知3

3

,,7,[,7]4

4

PA PB PA PB k z k k k z ≤≤=

=∴∈Q ,应选D

4.设,x y ∈R 且满足1230x x y y x ≥??

-+≥??≥?

,则2z x y =+的最小值等于 ( )

A. 2

B. 3

C.5

D. 9

【答案】B

【解析】解:因为设,x y ∈R 且满足满足1

230

x x y y x ≥??

-+≥??≥?

故其可行域为

当直线Z=x+2y 过点(1,1)时,z=x+2y 取最小值3, 故选B

5.若实数,满足条件则的最大值为( )

(A ) (B ) (C ) (D ) 【答案】A

【解析】作出如右图所示的可行域,当直线z=2x-y 过点A 时,Z 取得最大值.因为A(3,-3),所以Z max =23(3)9?--=,故选A.

x y 0,30,03,x y x y x +≥??

-+≥??≤≤?

2x y -9303-

6.设变量x ,y 满足约束条件??

?

??≥+≤+≥-120y x a y x y x ,若目标函数z=2x+6y 的最小值为2,则a =

A .1

B .2

C .3

D .4 【答案】A

【解析】解:由已知条件可以得到可行域,,要是目标函数的最小值为2,则需要满足直线过x 2y 1+=与x+y=a 的交点时取得。则为(2a-1,1-a ),代入目标函数z=2x+6y 中,求解得到a=1.

7.实数y x ,满足不等式组20

206318x y x y x y -≥??

+-≥??+≤?

,且()0z ax y a =+> 取最小值的最优解有无穷多个, 则实数a 的取值是

( )

A .4

5

-

B .1

C .2

D .无法确定

【答案】B

【解析】解:如图所示

要是目标函数取得最小值的最优解有无穷多个,则令ax+y=0,并平移过点C 24(,)33

,(可行域最左侧的点)的边界重合即可。注意到a>0,只能与AC 重合,所以a=1

8.已知点集,,点集所表示的平面

区域与点集所表示的平面区域的边界的交点为.若点在点集所表示的平面区域内(不在边界上),则△的面积的最大值是

A. B. C. D.

【答案】

B

{}22

(,)48160A x y x y x y =+--+≤{}

(,)4,B x y y x m m 是常数=≥-+A B ,M N (,4)D m A DMN 12224

【解析】解:

因为点集A 表示的为圆心为(2,4),半径为2的圆,而点集B 表示为绝对值函数表示的区域则利用数形结合思想,我们可以求解得到。

【题

型】选择题

9.在平面直角坐标系中,若不等式组101010x y x ax y +-≥??

-≤??-+≥?

(α为常数)所表示的平面区域内的面积等于2,则a 的值为( )

A . -5

B .1

C . 2

D . 3 【答案】D 【解析】解:

当a<0时,不等式表示的平满区域如图中的M ,一个无限的角形区域,面积不可能为2,故只能a 0≥,此时不等式表示的区域为如图中的N ,区域为三角形区域,若这个三角形的面积为2,则AB=4,即点B (1,4),代入y=ax+1,得a=3 10.已知方程:220x ax b ++= (,)a R b R ∈∈,其一根在区间(0,1)内,另一根在区间(1,2)内,则22(3)z a b =++的取值范围为 A. 2(

B. 1

(,4)2

C. (1,2)

D. (1,4) 【答案】B 【解析】解:

222f (x)x ax 2b,f (0)0

f (1)0,f (3)0b 0,a 2b 10,2a 2b 40a b z (a 3)b -1

z 2

解:设由图像可知,三者同时成立,求解得到由线性规划知识画出可行域,以为横轴,为纵轴,再以为目标,几何意义为区域内的点到(3,0)的距离的平方,当a=-1,b=0时,z 最大为4,当点到直线a+2b+1=02的距离为

最小为,由题目,不能去边界2=++><>>++<++>=++

11.的取值范围是则满足约束条件变量1

2

2,012430,++=≤-+≥≥??

???x y s y x x

y x y x ( ) A .[1,4] B .[2,8]

C .[2,10]

D .[3,9]

【答案】B

【解析】约束条件034120

x y x x y ≥≥+-≤?????

表示的区域如图,221112y y s x x ++=++=?

,1

1y x ++表示点(x ,y )与点(-1,-1)的斜率,PB 的斜率为最小值,PA 的斜率为最大值,斜率的取值范围是[1,4],1

1

2y x ++?

的取值范围是[2,8]。

12.若变量x,y 满足约束条件1325x y x x y ≥-??

≥??+≤?

则z=2x+y 的最大值为

(A )1 (B)2 (C)3 (D)4 【答案】C

【解析】:∵ 作出可行域,作出目标函数线,可得直线与 与的交点为最优解点,∴即为(1,1),

当1,1x y ==时

max 3

z =

y x =325x y +=

13.在集合}4,1,1|),{(≤+≥≥=y x y x y x A 中,y x 2+的最大值是 A 、5 B 、6 C 、7 D 、8. 【答案】C

【解析】画出不等式组表示的平面区域,可以看出,当直线2z x y =+经过点(1,3)时, 2z x y =+最大值为7,故选C. 14.设集合y x y x y x A --=1,,|),{(是三角形的三边长},则A 所表示的平面区域(不含边界的阴影部分)是( )

A B . C .

D .

【答案】A 【解析】解:

0,0,

1011由题意可知,x y x y x x y y

>??>??

-->??->?->?? 即为所求的区域A

15,变量y x ,满足40

01

+-≤??-≤??≥?

x y x y x ,则有( )

A .max min 2,0==z z

B .max min 3,0==z z

C .min min 3,1==z z 无最大值

D .max min 0,2==-z z 【答案】A

【解析】解:利用不等式组,做出可行域,然后目标函数表示的为,区域内的点,到定点(0,1),直线的斜率的取值范围,则可以利用边界点得到选项A

16..设m 为实数,若22250

{()|30}{()|25}0

x y x y x x y x y x y mx y -+??

-∈?+??+?R ,,、,≥≥≤≥,则m 的最大值是( )

A .

4

3

B .

3

4

C .23

D .32

【答案】B

17.已知点1

(,)40x x y x y ax by c ≥??

+≤??++≥?

是不等式组表示的平面区域内的一个动点,且目标函数2z x y =+的最大值为7,

最小值为1,则a b c

a

++的值为( )

A .2

B .12

C .-2

D .-1

【答案】C

18.的取值范围是则满足约束条件变量1

2

2,012430,++=≤-+≥≥??

???x y s y x x

y x y x ( ) A.[1,4]

B.[2,8]

C.[2,10]

D.[3,9]

【答案】B

19.已知变量x ,y 满足约束条件1,0,20,y x y x y -??

+??--?

≤0≥≤则24x y z =g 的最大值为

A .16

B .32

C .4

D .2

【答案】B

20.设x,y 满足约束条件??

?

??≥≤+-≥+-004320

32y y x y x ,若目标函数 by ax z +=(其中0,0>>b a )的最大值为3,则b a 21+

的最小值为 A.3

B.1

C.2

D.4

【答案】A

21.设x ,y 满足约束条件360,20,0,0,x y x y x y ì--????-+í?????

≤≥≥≥若目标函数z ax by =+(a >0,b >0)的最大值为12,则23a b +的最小值为 A .8

3

B .

256

C .

113

D . 4

【答案】B

22.设m>1,在约束条件1y x y mx x y ≥??

≤??+≤?

下,目标函数z=x+5y 的最大值为4,则m 的值为_______。

【答案】3

3.已知在平面直角坐标系xoy 上的区域D

由不等式组02x y x ?≤≤?

≤??

≤?给定。若(,)M x y 为D 上的动点,点

的坐标为

,则z OM OA =u u u u r u u u r

g

的最大值为( ) A

. B

C .4

D .3

【答案】C

24.已知点满足,点在曲线上运动,则的最小值是( )

A (,)P x y 1

110

x y x y ≤??

≤??+-≥?

Q 1(0)y x x =

A .

B .

C .

D

【答案】A

25.设不等式组所表示的平面区域是,平面区域与关于直线对称,对于中的

任意一点A 与中的任意一点B , 的最小值为( ) A .

B .

C .4

D .2

【答案】C

26.若点M (y x ,

)是平面区域?

??

??≤≤≤≤y

x y x 222

0内任意一点,点A (-1,2),则z OM OA =?u u u u r u u u r 的最小值为

A.0

B.24-

C.2-2

D.4 【答案】A 【解析】略

27.给出平面区域如图所示,其中A (1,1),B (2,5),C (4,3),若使目标函数(0)Z ax y a =->取得最大值的最优解有无穷多个,则a 的值是 A 、32

B 、1

C 、4

D 、2

3

【答案】A

二、填空题(题型注释)

28.设实数,x y 满足约束条件220

8400 , 0

x y x y x y -+≥??

--≤??≥≥?

,若目标函数9,则小值为__ ___。【解析】作出可行域,由图象可知x y

z a b

=

+过点(1,4)时有最大值149a b +=,

22

x 1

x-2y+30y x ≥??

≥??≥?

1Ω2Ω1Ω3490x y --=1Ω2Ω||AB 28

5

125

因0,0a b >>,则21141164()(4)(8)99b

a

d a b a b a b a b

=+=++=++11616(82.

)99b a a b ≥+=, 所以d 得最小值为

4

3

29.已知实数x,y 满足330101x y x y y +-≤??

-+≥??≥-?

,则z=2|x|+y 的取值范围是_________【答案】[-1,11]

【解析】作出可行域与目标函数,结合图象可得目标函数经过(0,-1)时,有最小值-1,经过点(6,-1)时有最大值11,所以取值范围是[-1,11]。

30.已知实数满足20

25020

x y x y y --≤??+-≥??-≤?

,则y

x b =的取值范围是 【答案】]2,31[

【解析】如图画出的可行域如下:

y

x b =的几何意义是可行域内的点与原点的斜率,由图可知过(1,2)有最大值212==b ,过(3,1)有最小值3

1=b .

所以y

x b =的取值范围是]2,3

1

[

31.已知实数x 、y 满足??

?

??≤≤--≥-+301,094y y x y x ,则x -3y 的最大值是 _______ .【答案】-1

【解析】条件??

?

??≤≤--≥-+3

01,

094y y x y x 表示的区域如图所示,设3z x y =-,即133z y x =-在y 轴上的截距为3z -,z 的值越

大,直线向下平移,过A 点时,z 值最大,求得A (2,1),代入得z 的最大值为-1.

32.如果实数x ,y 满足???

??≤--≥-+≥+-0520402y x y x y x ,则42++=y x z 的最大值 ___ 【答案】29

【解析】如图画出实数x ,y 满足??

?

??≤--≥-+≥+-0520402y x y x y x ,的可行域如下:

由图像可知当过点(7,9)时42++=y x z 的有最大值29.

33.若实数x 、y 满足20,

,,

x y y x y x b -≥??

≥??≥-+?

且2z x y =+的最小值为3,则实数b 的值为____.【答案】94.

【解析】由于2z x y =+最小值为3,所以最优解应为直线y=-x+b 与2x-y=0的交点.由23

20

x y x y +=??

-=?得33(,)42,代入

y=-x+b 得b=

9

4

. 34.设,x y 满足约束条件3

123

x y x y x y +??

--??-?

≥≥≤,若目标函数(0,0)x y z a b a b =+>>的最大值为10,则54a b +的最小值

为 . 【答案】8

【解析】由题意知当直线

x y

z

a b

=+经过直线x-y=-1与直线2x-y=3的交点(4,5)

时,z最得最大值10.

所以

4514511625

10,54(54)()(40)

1010

b a

a b a b

a b a b a b

+=∴+=++=++

11625

(402)8

10

b a

a b

≥+?=(当且仅当

4

,1

5

a b

==时,取“=”)

35.若实数x,y满足不等式组

30

20

350

x y

x y

x y

+≥

?

?

-≥

?

?--≤

?

,则x2+y2的最大值是____.【答案】5

【解析】解:利用不等式组,做出可行域,然后目标函数的几何意义为,区域内点到原点距离平方的最大值问题,我们结合边界点,可以解得为5

36.若非负实数,x y满足

28,

39,

x y

x y

+

?

?

+

?

则2

2x y

z+

=的最大值为 . 【答案】128;

【解析】解:由题意可作出可行域,如下图,当直线z‘=x+2y平移到过点(3,2)时,Z’最大,则此时2

2x y

z+

==128

37.设变量x,y满足约束条件

?

?

?

?

?

+

,7

,

3

,0

ay

x

x

y

x

(其中a>1).若目标函效z=x+y的最大值为4,则a的值为.【答案】2

38.已知

44

3515

1,2

x y

x y

x y

-≥-

?

?

+≤

?

?≥≥-

?

,则

2

3

2

+

+

+

x

y

x

的最大值为▲;【答案】

37

79

39.已知且,则的取值范围是_______。【答案】(3,8)

40.若变量y

x,满足约束条件

1

3215

x

y x

x y

?

?

?

?+≤

?

,则

3

log(2)

w x y

=+的最大值是【答案】2

41.设变量y

x,满足约束条件

3

1

1

x y

x y

y

+≤

?

?

-≥-

?

?≥

?

,则目标函数42

z x y

=+的最大值为______【答案】10

42.已知点A(53,5),过点A的直线:(0),

l x my n n

=+>若可行域30

x my n

x

y

≤+

?

?

?

?≥

?

的外接圆直径为20,则实数n的值14

x y

-<+<23

x y

<-<23

z x y

=-

【答案】43.在平面直角坐标系中,满足条件[][]2

2

1x y +≤的点(),x y 构成的平面区域Ω的面积为S ([][],x y 分别表示不大

于,x y 的最大整数),则S = _.【答案】5

44.设满足条件,则的最小值 【答案】

45.设实数y x ,满足约束条件36020,0,0

x y x y x y --≤??-+≥??≥≥?

若目标函数(0,0)z ax by a b =+>>的最大值为12,则23

a b +的最小值

为____________【答案】256

46.设,不等式组 所表示的平面区域是.给出下列三个结论:

① 当时,的面积为; ② ,使是直角三角形区域; ③ 设点,对于有.

其中,所有正确结论的序号是______.【答案】①、③

47.已知实数y x ,满足0,

1,2210.x y x y ≥??

≤??-+≤?

若目标函数y ax z +=()0≠a 取得最小值时的最优解有无数个,则实数a 的

值为____ 【答案】1-

,x y 3

10x y y x y +≤??

≤-??≥?

22(1)x y w e ++=4e 0λ>2,0,20x x y x y λλ≤??

-≥??+≥?

W 1λ=W 30λ?>W (,)P x y P W ?∈4y

x λ

+

高考数学二轮复习专题突破训练一第2讲不等式与线性规划理含2014年高考真题

第2讲 不等式与线性规划 考情解读 1.在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题.2.多与集合、函数等知识交汇命题,以选择、填空题的形式呈现,属中档题. 1.四类不等式的解法 (1)一元二次不等式的解法 先化为一般形式ax 2 +bx +c >0(a ≠0),再求相应一元二次方程ax 2 +bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法 ①变形?f x g x >0(<0)?f (x )g (x )>0(<0); ②变形? f x g x ≥0(≤0)?f (x )g (x )≥0(≤0)且g (x )≠0. (3)简单指数不等式的解法 ①当a >1时,a f (x ) >a g (x ) ?f (x )>g (x ); ②当0a g (x ) ?f (x )1时,log a f (x )>log a g (x )?f (x )>g (x )且f (x )>0,g (x )>0; ②当0log a g (x )?f (x )0,g (x )>0. 2.五个重要不等式 (1)|a |≥0,a 2 ≥0(a ∈R ). (2)a 2 +b 2 ≥2ab (a 、b ∈R ). (3) a +b 2 ≥ab (a >0,b >0). (4)ab ≤(a +b 2)2 (a ,b ∈R ). (5) a 2+ b 22 ≥ a +b 2 ≥ab ≥ 2ab a +b (a >0,b >0). 3.二元一次不等式(组)和简单的线性规划 (1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等.

128499-管理运筹学-第二章线性规划-习题

11(2),12,14,18 习题 2-1 判断下列说法是否正确: (1) 任何线性规划问题存在并具有惟一的对偶问题; T (2) 对偶问题的对偶问题一定是原问题;T (3) 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之, 当对偶问题无可行解时,其原问题具有无界解;F (4) 若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优 解; (5) 若线性规划问题中的b i ,c j 值同时发生变化,反映到最终单纯形表中,不会出 现原问题与对偶问题均为非可行解的情况; (6) 应用对偶单纯形法计算时,若单纯形表中某一基变量x i <0,又x i 所在行的元素全 部大于或等于零,则可以判断其对偶问题具有无界解。 (7) 若某种资源的影子价格等于k ,在其他条件不变的情况下,当该种资源增加 5个单位时,相应的目标函数值将增大5k ; (8) 已知y i 为线性规划的对偶问题的最优解,若y i >0,说明在最优生产计划中第 i 种资源已经完全耗尽;若y i =0,说明在最优生产计划中的第i 种资源一定有剩余。 2-2将下述线性规划问题化成标准形式。 ????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43 214321432143214321,0,,232142224.5243max )1(x x x x x x x x x x x x x x x x st x x x x z 2-3分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基 可行解对应图解法中可行()?????≥≤≤-+-=++-+-=无约束 321 3213213 21,0,06 24 .322min 2x x x x x x x x x st x x x z 域的哪一顶点。 ()??? ??≥≤+≤++=0,8259 43.510max 12 1212121x x x x x x st x x z ()??? ??≥≤+≤++=0,242615 53.2max 22 121212 1x x x x x x st x x z 2-4已知线性规划问题,写出其对偶问题: 5 43212520202410max x x x x x z ++++=

线性规划典型例题

例1:生产计划问题 某工厂明年根据合同,每个季度末向销售公司提供产品,有关信息如下表。若当季生产的产品过多,季末有积余,则一个季度每积压一吨产品需支付存贮费O.2万元。现该厂考虑明年的最佳生产方案,使该厂在完成合同的情况下,全年的生产费用最低。试建立模型。 解: 法1 设每个季度分别生产x1,x2,x3,x4 则要满足每个季度的需求x4≥26 x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 考虑到每个季度的生产能力 0≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10 每个季度的费用为:此季度生产费用+上季度储存费用 第一季度15.0x1 第二季度14 x2 0.2(x1-20) 第三季度15.3x3+0.2(x1+ x2-40) 第四季度14.8x4+0.2(x1+ x2+ x3-70)

工厂一年的费用即为这四个季度费用之和, 得目标函数;minf=15.6 x1+14.4 x2+15.5 x3+14.8 x4-26 s.t.x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 20≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10。 法2:设第i季度生产而用于第j季度末交货的产品数量为xij吨 根据合同要求有: xll=20 x12+x22=20 x13+x23+x33=30 x14+x24+x34+x44=10 又根据每季度的生产能力有: xll+x12+x13+x14≤30 x22+x23+x24≤40 x33+x34≤20 x44≤10 第i季度生产的用于第j季度交货的每吨产品的费用cij=dj+0.2(j-i),于是,有线性规划模型。 minf=15.Oxll+15.2x12+15.4xl3+15.6xl4+14x22+14.2x23+14.4x24+15.3 x33+15.5x34+14.8x44 s.t. xll=20, x12+x22=20, x13+x23+x13=30, x14+x24+x34+x44=10, x1l+x12+x13+x14≤30, x22+x23+x24≤40, x33+x34≤20,

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1.若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A.? ? ???1,43 B.? ???? 12,43 C.? ? ???1,74 D.? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4. 综上,12<a <7 4,故选D. 2.已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A.(a -1)(b -1)<0 B.(a -1)(a -b )>0 C.(b -1)(b -a )<0 D.(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D. 3.设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞) C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3.由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33. 4. 若a ,b ,c 为实数,则下列命题为真命题的是( ) A.若a >b ,则ac 2>bc 2 B.若a <b <0,则a 2>ab >b 2

线性规划题及答案

线性规划题型及解法 一、已知线性约束条件,探求线性目标关系最值问题 2x -y _2 例1、设变量x、y满足约束条件x 一y _ _1,则z =2x ? 3y的最大值为__________ 。 x y _1 二、已知线性约束条件,探求非线性目标关系最值问题 \ >1, 例2、已知」x-y+1兰0,则x2+y2的最小值是_」“(x-1)2+(y+2『”值域? 2x - y - 2 <0 三、约束条件设计参数形式,考查目标函数最值范围问题。 Zf x _0 例3、在约束条件y_0 下,当3乞s乞5时,目标函数Z=3x?2y的最大值的变化范围是() |y x _s y 2x^4 A. [6,15] B. [7,15] C. [6,8] D. [7,8] 四、已知平面区域,逆向考查约束条件。 例4、已知双曲线x2-y2 =4的两条渐近线与直线x=3围成一个三角形区域,表示该区域的不等式组是() fx-yZ0 「x-yX0 『x-y^0 "x-y 兰0 (A) x y _ 0 (B) x y 乞0 (C) x y 乞0 (D) x y _ 0 0 _x _3 0 _x _3 0 _x _3 0 _x _3 五、已知最优解成立条件,探求目标函数参数范围问题。 (1 ::: x :「v ‘::4 例5已知变量x,y满足约束条件若目标函数ax y (其中a 0)仅在 [―2 兰x—y 兰2 点(3,1)处取得最大值,则a的取值范围为 __________ 。 六、设计线性规划,探求平面区域的面积问题 丄x y _ 2 _ 0 _ 例6在平面直角坐标系中,不等式组x_y,2_0表示的平面区域的面积是()(A)4、、2 (B)4 [八0 (C) 2.2 (D)2 七、研究线性规划中的整点最优解问题 ”5x-11y —22, 例7、某公司招收男职员x名,女职员y名,x和y须满足约束条件<2x+3yX9, 则 、2x 兰11. z =10x 10y 的最大值是(A)80 (B) 85 (C) 90 (D)95 八、比值问题 当目标函数形如z =-—a时,可把z看作是动点P x, y与定点Q b, a连线的斜率,这样目 x —b 标函数的最值就转化为PQ连线斜率的最值。 x—y+ 2W 0,V

线性规划习题附答案模板

习题 2-1 判断下列说法是否正确: (1)任何线性规划问题存在并具有惟一的对偶问题; (2)对偶问题的对偶问题一定是原问题; (3)根据对偶问题的性质, 当原问题为无界解时, 其对偶问题无可行解, 反之, 当对偶问题无可行解时, 其原问题具有无界解; (4)若线性规划的原问题有无穷多最优解, 则其对偶问题也一定具有无穷多最优解; (5)若线性规划问题中的b i, c j值同时发生变化, 反映到最终单纯形表中, 不会出现原问题与对偶问题均为非可行解的情况; (6)应用对偶单纯形法计算时, 若单纯形表中某一基变量x i<0, 又x i所在行的元素全部大于或等于零, 则能够判断其对偶问题具有无界解。 (7)若某种资源的影子价格等于k, 在其它条件不变的情况下, 当该种资源增加5个单位时, 相应的目标函数值将增大5k;

(8) 已知y i 为线性规划的对偶问题的最优解, 若y i >0, 说明在最优生产计划中第i 种资源已经完全耗尽; 若y i =0, 说明在最优生产计划中的第i 种资源一定有剩余。 2-2将下述线性规划问题化成标准形式。 ????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43 214321432143214321,0,,232142224.5243max )1(x x x x x x x x x x x x x x x x st x x x x z ()??? ??≥≤≤-+-=++-+-=无约束 321 3213213 21,0,06 24 .322min 2x x x x x x x x x st x x x z 解: (1)令'''444x x x =-, 增加松弛变量5x , 剩余变量6x , 则该问题的标准形式如下所示: ''' 12344''' 12344''' 123445''' 123446'''1234456max 342554222214..232 ,,,,,,0 z x x x x x x x x x x x x x x x x s t x x x x x x x x x x x x x =-+-+-?-+-+-=?+-+-+=??-++-+-=??≥? (2)令'z z =-, '11x x =-, '''333x x x =-, 增加松弛变量4x , 则该问题的标准形式如下所示: ''''' 1233'''' 1233'''' 12334''''12334 max 22334 ..26,,,,0z x x x x x x x x s t x x x x x x x x x x =+-+?++-=?+-++=??≥? 2-3分别用图解法和单纯形法求解下述线性规划问题, 并对照

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2. 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 y=-a x+z,在 y 轴上的 截距是z, b b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时, z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时, z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点 (或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C 三种 材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一求线性目标函数的最值 y≤2, 例 1 已知变量 x,y 满足约束条件 x+y≥1,则 z=3x+y 的最大值为 ( ) x-y≤1, A . 12 B .11 C .3 D .- 1 答案 B 解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点 的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z 经 y=2,x= 3,

线性规划专题

1.简单的线性规划问题应注意取点是否取得到 例1:已知实数x ,y 满足24240x y x y y -≥?? +≤??≤? ,则32z x y =-的最小值是( ) A .4 B .5 C .6 D .7 【答案】C 【解析】不等式组对应的可行域如图所示: 过()2,0时,z 取最小值为6,故选C . 2.目标函数为二次式 例2:若变量x ,y 满足1 20x x y x y ≤?? ≥??++≥?,则22z x y =+的最大值为( ) A B .7 C .9 D .10 【答案】D 【解析】目标函数22z x y =+可视为点到原点距离的平方, 所以只需求出可行域里距离原点最远的点即可,作出可行域, 线性规划专题

观察可得最远的点为()1,3B -,所以2 max 10z OB ==. 3.目标函数为分式 例3:设变量x ,y 满足约束条件22022010 x y x y x y --≤??-+≥??+-≥?,则1 1y s x +=+的取值范围是( ) A .31,2?????? B .1,12?????? C .[]1,2 D .1,22?????? 【答案】D 【解析】所求1 1 y s x += +可视为点(),x y 与定点()1,1--连线的斜率. 从而在可行域中寻找斜率的取值范围即可, 可得在()1,0处的斜率最小,即()() min 011112 k --= =--, 在()0,1处的斜率最大,为()() max 11201k --= =--,

结合图像可得1 1y s x +=+的范围为1,22?????? .故选D . 4.面积问题 例4:若不等式组03434x x y x y ≥?? +≥??+≤?所表示的平面区域被直线4y kx =+分成面积相等的两部分,则 k 的值为( ) A . 73 B . 37 C .173 - D .317 - 【答案】C 【解析】在坐标系中作出可行域, 如图所示为一个三角形,动直线4y kx =+为绕定点()0,4的一条动直线, 设直线交AC 于M ,若将三角形分为面积相等的两部分,则ABM BCM S S =△△, 观察可得两个三角形高相等,所以AM MC =,即M 为AC 中点,

高考全国卷及各省数学线性规划真题附答案.docx

2017 高考全国卷及自主招生数学高考真题 线性规划专题真题整理(附答案解析) x 3y 3, 1. ( 17 全国卷 I ,文数 )设 x ,y 满足约束条件 x y 1, 则 z=x+y 的最大值为( ) 7 y 0, A . 0 B . 1 C .2 D .3 答案: D 解析:如图,由图易知当目标函数 z x y 经过 直线 x 3 y 3 和 y 0 (即 x 轴)的交点 A(3,0) 时, z 能取到最大值,把 A(3,0) 代入 z=x+y 可得 z max 3 0 3 ,故选 D. x 2 y 1 2.(17 全国卷 I, 理数 14 题)设 x ,y 满足约束条件 2x y 1,则 z 3x 2 y 的最小值 x y 0 为 答案: 5 x 2 y 1 解析:不等式组 2x y 1 表示的平面区域如图所示。 x y 0 由 z 3x 2 y 变形得 y 3 x z 。要求 z 的最小值, 2 2 即求直线 y 3 x z 的纵截距的最大值。由右图,易知 2 2 当直线 y 3 x z 过图中点 A 时,纵截距最大。 2 2 联立方程组 2 x y 1 ,此时 z 3(1) 2 1 5 。 x 2 y 1 ,解得 A 点坐标为 ( 1,1) 故 z 3x 2 y 的最小值是 -5.

2x+3y 30 3. (17 全国卷Ⅱ,文数 7、理数 5)设 x、y 满足约束条件2x 3 y 3 0 .则z2x y的 y 30 最小值是() A.-15 C.1D9 答案: A 2x+3y 30 解析:不等式组2x 3y 30 表示的可行域如图所示, y30 易知当直线z 2x y 过到y 2 x 1与 y 3 交点 3 6 ,3 时,目标函数 z2x y 取到最小值,此时有 z min 26315 ,故所求z 最小值为15. )设,满足约束条件 3x 2 y60 的取值范围是 4. (17 全国卷Ⅲ,文数 5 x0,则 z=x-y x y y0 () A.[-3,0] B.[-3,2] C.[0,2] D.[0,3] 答案: B 解析:绘制不等式组表示的可行域,结合目标函数 的几何意义可得目标函数z x y 在直线3x 2y 60 与= - 直线 x0 (即x 轴)的交点A0,3处取得最小值, 此时 z min0 3 3。在点B2,0处取得最大值,此时 z max 2 0 2 . 故本题选择 B 选项 . 5.(17 全国卷Ⅲ,理数13)若 x,y 满足约束条件x y 0 x y 2 0 则z3x 4 y 的最小值为y 0 ________.

线性规划专题复习

第三章专题复习(2) (线性规划专题) 考点分析:求直线的方程;判断二元一次不等式表示的平面区域;函数()παα,0,tan ∈=k 的图像和性质;当直线的倾斜角变化时会求斜率的取值范围(或反之);会求二元一次不等式组表示的可行域的面积;能利用可行域列出对应的二元一次不等式组;理解含参数的直线的变化规律;理解三种最值问题的求法。 典型例题: 例1.画出下列不等式(组)表示的区域 (1).?? ???≤+>≥51y x x x y (2)022≤-x y 例2求由不等式组?? ???≥≥≤+≤+0,0625y x y x y x 确定的平面区域的面积。 例3.设y x ,满足条件?? ???≤≥+≥+-3005x y x y x ,试求下列各式的最值 考题猜想: 1.目标函数y x z -=3,将其看成直线的方程时,z 的意义是( ) A.该直线的截距 B.该直线的纵截距 C.该直线的纵截距的相反数 D.该直线的横截距 2.若2m +2n<4,则点(m ,n)必在( ) A .直线x +y -2=0的左下方 B .直线x +y -2=0的右上方 C .直线x +2y -2=0的右上方 D .直线x +2y -2=0的左下方 3.在ABC ?中,三个顶点分别是()()()0,1,2,1,4,2C B A -,点P ()y x ,在ABC ?的内部及其边界上运动,则x y -的取值范围是( ) A.[]3,1 B.[]1,3- C.[]3,1- D.[]1,3--

4.实数y x ,满足不等式组?? ???≥--≥-≥02200y x y x y 则11+-=x y w 的取值范围是( ) A.??????-31,1 B.??????-31,21 C.??????+∞-,21 D.?? ????-1,21 5.在平面直角坐标系中,若点(-2,t)在直线x -2y +4=0的上方,则t 的取值范围是( ) A .(-∞,1) B .(1,+∞) C .(-1,+∞) D .(0,1) 6.设x ,y 满足约束条件?? ???≥≥≥+-≤--0,002063y x y x y x ,若目标函数z=ax+by (a>0,b>0)的最大值为12,则 b a 32+的最小值为( ). A.625 B.38 C.311 D. 4 7.若不等式组?? ???≤+≥+≥43430y x y x x 所表示的平面区域被直线34+=kx y 分为面积相等的两部分,k 的值是 ( ) (A )37 (B ) 73 (C )34 (D )4 3 8.在平面直角坐标系中,若不等式组?? ???≥+-≤-≥-+010101y ax x y x (a 为常数)所表示的平面区域内的面 积等于2,则a 的值为( ) A. -5 B. 1 C. 2 D. 3 9.已知?? ???≤--≥-+≥+-0520402y x y x y x ,求: (1)42-+=y x z 的最大值; (2)251022+-+=y y x z 的最小值; (3)1 12++=x y z 的范围。 10.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18

高中数学线性规划经典题型

高考线性规划归类解析 一、平面区域和约束条件对应关系。 例1、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥?? +≤??≤≤? (C) 003x y x y x -≤?? +≤??≤≤? (D) 0003x y x y x -≤?? +≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围 成一个三角形区域(如图4所示)时有0 003x y x y x -≥?? +≥??≤≤? 。 点评:本题考查双曲线的渐近线方程以及线性规划问题。验证法或排除法是最效的方法。 例2:在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域的面积是() (A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域是一个三角形。容 易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为: 11 ||||42 4.22 S BC AO =?=??=从而选B。 点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。 二、已知线性约束条件,探求线性截距——加减的形式(非线性距离——平方的形式,斜率——商的形式)目标关系最值问题(重点) 例3、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则 ①y x 32+的最大值为 。(截距) 解析:如图1,画出可行域,得在直线 2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 ②则2 2 x y +的最小值是 . ③1y x =+的取值范围是 . 图1

线性规划经典例题

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、 若x 、y 满足约束条件222x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将 l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A 二、求可行域的面积 例2、不等式组260302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 ( ) A 、4 B 、1 C 、5 D 、无穷大 解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个 x y O 2 2 x=2 y =2 x + y =2 B A 2x + y – 6= 0 = 5 x +y – 3 = 0 O y x A B C M y =2

解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0) 2 (0,0)x y x y x y x y x y x y x y x y +≤≥≥??-≤≥? ? -+≤≥??--≤? 作出可行域如右图,是正方形内部(包括边界),容易得到整 点个数为13个,选D 四、求线性目标函数中参数的取值范围 例4、已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1 解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解 有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选D 五、求非线性目标函数的最值 例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥?? -+≥??--≤? ,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13,4 5 D 、 5 解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为 4 5 ,选C 六、求约束条件中参数的取值范围 例6、已知|2x -y +m|<3表示的平面区域包含点 (0,0)和(- 1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)

八种经典线性规划例题最全总结(经典)

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 二、求可行域的面积 例2、不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为() A、4 B、1 C、5 D、无穷大 解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D

四、求线性目标函数中参数的取值范围 例4、已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a的值为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D 五、求非线性目标函数的最值 例5、已知x、y满足以下约束条件 220 240 330 x y x y x y +-≥ ? ? -+≥ ? ?--≤ ? ,则z=x2+y2的最大值和最小值分别是() A、13,1 B、13,2 C、13,4 5 D 、 5 解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方, 即为4 5 ,选 C 六、求约束条件中参数的取值范围 例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是() A、(-3,6) B、(0,6) C、(0,3) D、(-3,3) 解:|2x-y+m|<3等价于 230 230 x y m x y m -++>? ? -+- ? ? -< ? ,故0<m<3,选 C 七、比值问题

简单的线性规划 习题含答案

线性规划教案 1.若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 2.不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为 () A、4 B、1 C、5 D、无穷大解:如图,作出可行域,△ABC的面 积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选 B 3.满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥ ? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D 四、求线性目标函数中参数的取值范围 4.已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使 z=x+ay(a>0)取得最小值的最优解有无数个,则a的值 为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函 数z=x+ay(a>0)取得最小值的最优解有无数个,则将 l向右上方平移后与直线x+y=5重合,故a=1,选 D 5.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m3,第二种有56m3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产

《运筹学》习题线性规划部分练习题及答案.doc

《运筹学》线性规划部分练习题 一、思考题 1.什么是线性规划模型,在模型中各系数的经济意义是什么? 2 .线性规划问题的一般形式有何特征? 3. 建立一个实际问题的数学模型一般要几步? 4. 两个变量的线性规划问题的图解法的一般步骤是什么? 5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7?试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8?试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10. 大M法中,M的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问 题呢? 11 ?什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续 第二阶段? 二、判断下列说法是否正确。 1 .线性规划问题的最优解一定在可行域的顶点达到。 2 .线性规划的可行解集是凸集。 3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的 范围一般将扩大。 5 .线性规划问题的每一个基本解对应可行域的一个顶点。 6. 如果一个线性规划问题有可行解,那么它必有最优解。 7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与j 0对应的变量都可以被 选作换入变量。 8 .单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一 个基变量的值是负的。 9. 单纯形法计算中,选取最大正检验数k对应的变量x k作为换入变量,可使目 标函数值得到最快的减少。 10 . 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形 表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1 .某公司计划在三年的计划期内,有四个建设项目可以投资:项目I从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120%,每年又可以重新将所获本利纳入投资计划;项目n需要在第一年初投资,经过两年可收回本利150% , 又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目川需要在第二年年初投资,经过两年可收回本利160%,但用于该项目的最大投资额 不得超过15万元;项目"需要在第三年年初投资,年末可收回本利140%,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有 30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2 .某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、 100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

2017届二轮复习 简单线性规划 专题卷(全国通用)

简单线性规划 一、选择题 1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7) B .(-7,24) C .(-∞,-7)∪(24,+∞) D .(-∞,-24)∪(7,+∞) B [根据题意知(-9+2-a )·(12+12-a )<0, 即(a +7)(a -24)<0,解得-7

C .4 D .5 C [根据题意作出可行域如图阴影部分所示,平移直线y =-2x ,当直线平移到虚线处时,目标函数取得最大值,由??? 2x -y =0, x +y =3,可得A (1,2),此时2x +y 取最大值为2×1+2=4.] 4.(2017·广州综合测试(二))不等式组??? x -y ≤0, x +y ≥-2, x -2y ≥-2 的解集记为D ,若(a , b )∈D ,则z =2a -3b 的最大值是( ) A .1 B .4 C .-1 D .-4 A [由题意得a ,b 满足约束条件??? a - b ≤0, a + b ≥-2, a -2 b ≥-2, 以a 为横轴,b 为纵轴 建立平面直角坐标系,则不等式组表示的平面区域为以(-2,0),(-1,-1),(2,2)为顶点的三角形区域(包含边界), 由图易得当目标函数z =2a -3b 经过平面区域内的点(-1,-1)时,z =2a -3b 取得最大值z max =2×(-1)-3×(-1)=1,故选A.] 5.(2017·贵阳适应性考试(二))若函数y =kx 的图象上存在点(x ,y )满足约束

《运筹学》习题线性规划部分练习题及答案.doc

《运筹学》线性规划部分练习题 一、思考题 1. 什么是线性规划模型,在模型中各系数的经济意义是什么? 2. 线性规划问题的一般形式有何特征? 3. 建立一个实际问题的数学模型一般要几步? 4. 两个变量的线性规划问题的图解法的一般步骤是什么? 5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7. 试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8. 试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1. 线性规划问题的最优解一定在可行域的顶点达到。 2. 线性规划的可行解集是凸集。 3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5. 线性规划问题的每一个基本解对应可行域的一个顶点。 6. 如果一个线性规划问题有可行解,那么它必有最优解。 7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与0 >j σ对应的变量都可以被选作换入变量。 8. 单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9. 单纯形法计算中,选取最大正检验数k σ对应的变量k x 作为换入变量,可使目 标函数值得到最快的减少。 10. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1. 某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、 100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

相关文档
最新文档