一般形式三角函数教案

一般形式三角函数教案
一般形式三角函数教案

龙文教育一对一个性化教案

学生姓名教师

姓名

授课

日期

月日

授课

时段

课题一般三角函数)

sin(?

+

ω

=x

A

y的图象

重点难点参数?

ω、

A对函数)

sin(?

+

ω

=x

A

y图象的影响

由x

y sin

=的图象得到函数)

(

)

sin(R

x

k

x

A

y∈

+

?

+

ω

=的图象的方法

教学步

骤及教学内容回顾上节所学内容,引入新课。

一、复习提问:

1.如何由x

y sin

=的图象得到函数)

sin(?

+

ω

=x

A

y的图象2.如何用五点法作)

sin(?

+

ω

=x

A

y的图象

3.?

ω、

A对函数)

sin(?

+

ω

=x

A

y图象的影响作用

二、函数[)0

,0

(,)

,0

),

sin(>

ω

>

+∞

?

+

ω

=A

x

x

A

y其中的物理意义:函数表示一个振动量时:

A:这个量振动时离开平衡位置的最大距离,称为“振幅”

T:

ω

π

=

2

T往复振动一次所需的时间,称为“周期”

f:

π

ω

=

=

2

1

T

f单位时间内往返振动的次数,称为“频率”

?

+

ωx:称为相位

?:x = 0时的相位,称为“初相”

例1:函数)2

||,0,0(),sin(π<

?>ω>?+ω=A x A y 的最小值是-2,其图象最

高点与最低点横坐标差是3π,又:图象过点(0,1),求函数解析式。

解:易知:A = 2 半周期π=32

T ∴T = 6π 即

π

π62 从而:3

1=

ω

设:)3

1sin(2?+=x y 令x = 0 有1sin 2=?

又:2

||π<

? ∴6

π=? ∴所求函数解析式为)

6

3

1sin(

2π+

=x y

例2:设用五点法作出函数)4

2cos(3π-

=x y 的图象,

问:这个图象可由x y cos =的图象经过如何变换得到? 解:

4

2π-

x

2π π

23π 2π

x

8

π 8

8

5π 8

8

)42cos(3π-

x

3 0 -3 0 3

例3:函数f (x )的横坐标伸长为原来的2倍,再向左平移

2

π个单位所得的曲线是

x y sin 2

1=

的图象,试求)(x f y =的解析式。

解:将x y sin 2

1=

的图象向右平移2

π个单位得:)

2

sin(21π-

=

x y

即x

y cos 2

1-

=的图象再将横坐标压缩到原来的2

1

得:x

y 2cos 21-

=

x

x f y 2cos 21)(-==∴

三、 总结归纳 四、 作业

教务处检查签字:

日期:年月日

课后评价一、学生对于本次课的评价

○特别满意○满意○一般○差

二、教师评定

1、学生上次作业评价:

○好○较好○一般○差

2、学生本次上课情况评价:

○好○较好○一般○差

作业

布置

教师

留言

教师签字:

家长

意见

家长签字:

日期:年月日

利用三角函数测高

利用三角函数测高导学案 班级:九年级学生姓名:使用时间:11月28日 【学习目标】1.能够利用三角函数测一些实际物体的高度 2.体会数学来源于生活又服务于生活. 【重点】能够利用三角函数测一些实际物体的高度 【难点】能够利用三角函数测一些实际物体的高度 【学法指导】合作交流,自主探究 【课时安排】 1 课时总第7课时 相关知识回顾: 1.直角三角形ABC 中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢? (1)边角之间关系: (2)三边之间关系: (3)锐角之间关系: 2. 解直角三角形时,必须已知几个元素,才能求得其余元素呢? 预习要求: 通过预习初步了解本节知识点,并根据个人能力初步完善探究案。学科组长组检查组内各对子预习完成情况。一、情景引入: 请同学们欣赏下列图片,你们能测量出它们的高度吗? 二、PPT出示教学目标。 三、第一次“先学后教”——如何测量倾斜角 测量方法:使用测倾器测量倾斜角的步骤如下: 1.把支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻线重合,这时度盘的顶线PQ在水平位置. 2.转动度盘,使度盘的直径对准目标M,记下此时铅垂线所指的度数. 四、第二次“先学后教”——测量底部可以到达的物体的高度 (概念指导:所谓“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体底部之间的距离) 测量方法:如图,要测量物体MN的高度,可以按下列步骤进行: 预习案——课前自主学习 探究案——课中合作探究 人贵有志,学贵有恒。 学者如禾如稻,不学者如蒿如草。

1.在测点A处安置测倾器,测得M的仰角∠MCE=α 2.量出测点A到物体底部N的水平距离AN=l 3.量出测倾器的高度AC=a(即顶线PQ 成水平位置时它与地面的距离) 做一做:(小组展示) 根据测量数据,你能求出物体MN的高度吗?说说你的理由。 五、第三次“先学后教”——测量底部不可以到达的物体的高度 (概念指导:所谓“底部不可以到达”---就是在地面上不可以直接测得测点与被测物体之间的距离。) 测量方法:如图,要测量物体MN的高度,可以按下列步骤进行: 1.在测点A处安置测倾器,测得M的仰角∠MCE=α 2.在测点A与物体之间的B处安置测倾器(A,B与N在一条直线上,且A,B 之间的距离可以直接测得),测得M的仰角∠MCE=β 3.量出测倾器的高度AC=BD=a,以及测点A,B之间的距离AB=b. 做一做:(小组讨论解决问题) 根据测量数据,你能求出物体MN的高度吗?说说你的理由. 六、当堂检测: 1.如图,某中学在主楼的顶部和大门的上方之间挂一些彩旗.经测量,得到大门的高度是5m,大门距主楼的距离是30m,在大门处测得主楼顶部的仰角是30°,而当时侧倾器离地面1.4m,求学校主楼的高度(精确到0.01m) 2.如图,小山岗的斜坡AC的坡度是tan=3 4 ,在与山脚C距离200米的D处,测得山顶A的仰角为26. 6°,求小山岗的高AB(结果取整数,参考数据:sin26. 6°=0. 45,cos26. 6°=0.50) 七、小结:(小组内总结组内成员完成了本节的哪些学习目标) 掌握一个解题方法,比做一百道题更重要。

三角函数最值问题类型归纳

三角函数最值问题类型归纳 三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中,作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型。掌握这几种类型后,几乎所有的三角函数最值问题都可以解决。 1.y=asinx+bcosx型的函数 特点是含有正余弦函数,并且是一次式。解决此类问题的指导思想是把正、余弦函数转化为 只有一种三角函数。应用课本中现成的公式即可:y=sin(x+φ),其中tanφ=。 例1.当-≤x≤时,函数f(x)=sinx+cosx的( D ) A、最大值是1,最小值是-1 B、最大值是1,最小值是- C、最大值是2,最小值是-2 D、最大值是2,最小值是-1 分析:解析式可化为f(x)=2sin(x+),再根据x的范围来解即可。 2.y=asin2x+bsinxcosx+cos2x型的函数 特点是含有sinx, cosx的二次式,处理方式是降幂,再化为型1的形式来解。 例2.求y=sin2x+2sinxcosx+3cos2x的最小值,并求出y取最小值时的x的集合。 解:y=sin2x+2sinxcosx+3cos2x =(sin2x+cos2x)+sin2x+2cos2x =1+sin2x+1+cos2x =2+sin(2x+) 当sin(2x+)=-1时,y取最小值2-,此时x的集合{x|x=kπ-π, k∈Z}。 3.y=asin2x+bcosx+c型的函数 特点是含有sinx, cosx,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解。 例3.求函数y=cos2x-2asinx-a(a为常数)的最大值M。 解:y=1-sin2x-2asinx-a=-(sinx+a)2+a2+1-a,

中考数学锐角三角函数-经典压轴题含答案解析

中考数学锐角三角函数-经典压轴题含答案解析 一、锐角三角函数 1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40o ,从前脚落地点D 看上嘴尖A 的仰角刚好60o ,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ?≈?≈?≈,,.2 1.41,3 1.73≈≈) 【答案】AB 的长约为0.6m . 【解析】 【分析】 作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】 解:作BF CE ⊥于F , 在Rt BFC ?中, 3.20BF BC sin BCF ?∠≈=, 3.85CF BC cos BCF ?∠≈=, 在Rt ADE ?E 中, 3 1.73tan 3AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣= 由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .

【点睛】 考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键. 2.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D. (1)求证:PA是☉O的切线; (2)若=,且OC=4,求PA的长和tan D的值. 【答案】(1)证明见解析;(2)PA =3,tan D=. 【解析】 试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线; (2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值. 试题解析:(1)连接OB,则OA=OB, ∵OP⊥AB,∴AC=BC, ∴OP是AB的垂直平分线,∴PA=PB, 在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS) ∴∠PBO=∠PAO,PB=PA, ∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA, ∴PA是⊙O的切线; (2)连接BE,

三角函数经典解题方法与考点题型

三角函数经典解题方法与考点题型(教师) 1.最小正周期的确定。 例1 求函数y =s in (2co s|x |)的最小正周期。 【解】 首先,T =2π是函数的周期(事实上,因为co s(-x )=co s x ,所以cos |x |=co s x );其次,当且仅当x =k π+ 2 π 时,y =0(因为|2co s x |≤2<π), 所以若最小正周期为T 0,则T 0=m π, m ∈N +,又s in (2co s0)=s in 2≠s in (2co s π),所以T 0=2π。 过手练习 1.下列函数中,周期为 2π 的是 ( ) A .sin 2x y = B .sin 2y x = C .cos 4 x y = D .cos 4y x = 2.()cos 6f x x πω?? =- ?? ? 的最小正周期为 5 π ,其中0ω>,则ω= 3.(04全国)函数|2 sin |x y =的最小正周期是( ). 4.(1)(04北京)函数x x x f cos sin )(=的最小正周期是 . (2)(04江苏)函数)(1cos 22R x x y ∈+=的最小正周期为( ). 5.(09年广东文)函数1)4 (cos 22 -- =π x y 是 ( ) A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为 2 π的奇函数 D. 最小正周期为2π 的偶函数 6.(浙江卷2)函数的最小正周期是 . 2.三角最值问题。 例2 已知函数y =s inx +x 2cos 1+,求函数的最大值与最小值。 【解法一】 令s inx =??? ??≤≤=+ππ θθ4304 sin 2cos 1,cos 22 x , 则有y =).4 sin(2sin 2cos 2π θθθ+ =+ 因为 ππ 4304≤≤,所以ππ θπ≤+≤4 2, 所以)4 sin(0π θ+≤≤1, 所以当πθ43=,即x =2k π-2 π (k ∈Z )时,y m in =0, 当4 π θ= ,即x =2k π+ 2 π (k ∈Z )时,y m ax =2. 2 (sin cos )1y x x =++

利用三角函数测高设计

利用三角函数测高 教学内容 本节课为活动课,活动一:测量倾斜角;活动二:测量底部可以到达的物体的高度;活动三:测量底部不可以到达的物体的高度. 教学目标 1、能够设计方案、步骤,能够说明测量的理由,能够综合运用直角三角形边角关系的知识解决实际问题; 2、经历活动设计方案,自制仪器过程;通过综合运用直角三角形边角关系的知识,利用数形结合的思想解决实际问题,提高解决问题的能力; 3、通过积极参与数学活动过程,培养不怕困难的品质,发展合作意识和科学精神. 教学重点、难点 设计活动方案、自制仪器的过程及学生学习品质的培养. 教具准备 自制测倾器(或经纬仪、测角仪等)、皮尺等测量工具. 教学过程 一、提出问题,引入新课 现实生活中测量物体的高度,特别像旗杆、高楼大厦、塔等较高的不可到达的物体的高度,需要我们自己去测量,自己去制作仪器,获得数据,然后 度时,用到了哪些仪器?有何用途?如何制作一个测角仪?它 的工作原理是怎样的? 活动一:设计活动方案,自制仪器 首先我们来自制一个测倾器(或测角仪、经纬仪等).一般 的测倾器由底盘、铅锤和支杆组成.下面请同学们以组为单位,分组制作如图所示的测倾器.制作测角仪时应注意什么? 支杆的中心线、铅垂线、0刻度线要重合,否则测出的角度就不准确.度盘的顶线PQ 与支杆的中心线、铅垂线、0刻度线要互相垂直,并且度盘有一个旋转中心是铅垂线与PQ 的交点.当度盘转动时,铅垂线始终垂直向下.

一个组制作测角仪,小组内总结,讨论测角仪的使用步骤) 活动二:测量倾斜角 (1)把测角仪的支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线PQ在水平位置M,记下此时铅垂线指的度数.那么这个度数就是较高目标M的仰角. 它的依据是什么? 如图,要测点M的仰角,我们将支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线PQ在水平位置.我们转动度盘,使度盘的直径对准目标M,此时铅垂线指向一个度数.即∠BCA的度数.根据图形我们不难发现 ∠BCA+∠ECB=90°,而∠MCE+∠ECB=90°,即∠BCA、∠MCE都是∠ECB的余角,根据同角的余角相等,得∠BCA=∠MCE.因此读出∠BCA的度数,也就读出了仰角∠MCE的度数. 活动三:测量底部可以到达的物体的高度. “底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体底部之间的距离. 要测旗杆MN的高度,可按下列步骤进行:(如下图) (1)在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α. (2)量出测点A到物体底部N的水平距离AN=l. (3)量出测倾器(即测角仪)的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).根据测量数据,就能求出物体MN的高度.

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

三角函数经典题目(带答案)

三角函数经典题目练习 1.已知α123 1、已知角 2、P (x ,5则sin 1、已知2、函数(f 3、已知 象限1. 已知π2 2.设0≤α是 . sin αtan x 若<0___. 5 3 sin +-= m m θ,524cos +-=m m θ(πθπ<<2),则 =θ________. 1tan tan αα,是关于x 的方程2230x kx k -+-=的 个实根,且παπ2 7 3<<,则ααsin cos +的值 . 0)13(22=++-m x x 的两根为 ()πθθθ2,0,cos ,sin ∈,求(1)m =_______ (2)θθθθtan 1cos cot 1sin -+-=________. α )4 15 tan(325cos ππ-+= . θθθθcos sin cos sin -+=2,则sin(θ-5π)·sin ?? ? ??-θπ23= α终边上P (-4,3), ) 2 9sin()211cos() sin()2 cos(απαπαπαπ +---+= . 已知锐角α终边上一点P 的坐标是(2sin2,-2cos2),α= . sin163°·sin223°+sin253°·sin313°= . =-+θ θtan 1tan 1_________ tan 20tan 4020tan 40?+????= α∈(0, 2π),若sin α=5 3 ,则2cos(α+4π)= . 3 36 cos = ?? ? ??-απ,则?? ? ??+απ6 5cos =______,)6 5απ -- =_____..

【知二求多】 1、已知cos ??? ??-2βα= -54,sin ??? ? ? -2αβ=135,且 0<β<2π<α<π,则cos 2 βα+=____. 2已知tan α=43,cos(α+β)=-14 11 , α、β为锐角, 则cos β=______. 【方法套路】 1、设2 1sin sin =+βα,31 cos cos =+βα,则 )cos(βα-=___ . 2.已知ββαcos 5)2cos(8++=0,则 αβαtan )tan(+= . 3,41)sin(,31)sin(=-=+βαβα则___tan tan =βα 【给值求角】 1tan α=7 1 ,tan β=3 1,α,β均为锐角,则 α+2β= . 2、若sinA= 55,sinB=10 10,且A,B 均为钝角, 则A+B= . 【半角公式】 1α是第三象限,2524 sin - =α,则tan 2 α= . 2、已知01342 =+++a ax x (a >1)的两根为αtan , βtan ,且α,∈β ??-2 π,?? ? 2π, 则2 tan βα+=______ 3若 cos 22π2sin 4αα=- ? ?- ? ? ?,则cos sin αα+= . 4、若??????∈27,25ππα,则 ααsin 1sin 1-++= 5x 是第三象限角 x x x x x x x x cos sin 1cos sin 1cos sin 1cos sin 1-++++ ++-+=______ 【公式链】 1=+++οοοοΛ89sin 3sin 2sin 1sin 2222_______ 2sin10o sin30o sin50o sin70o=_______ 3(1+tan1o )(1+tan2o )…(1+tan45o )=_______ 六、给值求角 已知3 1 sin - =x ,写出满足下列关系x 取值集合 ] 3,5[)3()2(]2,0[)1(πππ--∈∈∈x R x x 七、函数性质 【定义域问题】 1. x x y sin 162+-=定义域为_________ 2、1)3 2tan(-- =π x y 定义域为_________ 【值域】 1、函数y =2sin ???? πx 6-π3(0≤x ≤9)的最大值与最小值之和为__________ 2、若函数g (x )=2a sin x +b 的最大值和最小值分别为6和2,则|a |+b 的值为________ 3、函数x x y sin 2sin 1+-= 的值域 4、函数x x y cos 1sin 21+-=的值域 5、函数x x y sin 2cos -=的值域 【解析式】 1、已知函数f (x )=3sin 2ωx -cos 2ωx 的图象关于直 线x =π 3 对称,其中ω∈????-12,52.函数f (x )的解析式为________. 2、已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π 2 ) 的图象在y 轴上的截距为1,在相邻两最值点(x 0, 2),??? ?x 0+32,-2(x 0>0)上f (x )分别取得最大值和最小值.则所得图像的函数解析式是________ 3.将函数sin y x =的图像上所有的点右移 10 π 个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是___________ 4、()()sin f x A x h ω?=++(0,0,)2A π ω?>>< 的图象 如图所示,求函数)(x f 的解析式;

利用三角函数测高

1.6 利用三角函数测高 1. 2. 3. 明同学填写的活动报告,请你根据有关测量数据, 求旗杆高AB(计算过程填在下表计算栏内,用计算器计算).

4.某市为促进本地经济发展,计划修建跨河大桥,需要测出河的宽度AB, 在河边一座高度为300米的山顶观测点D 处测得点A,点B 的俯角分别为α=30°,β=60°, 求河的宽度(精确到0.1米) B D A C 5.为了测量校园内一棵不可攀的树的高度, 学校数学应用实践小组做了如下的探索: 实践一:根据《自然科学》中光的反射定律,利用一面镜子和一根皮尺, 设计如图(1)的测量方案:把镜子放在离树(AB)8.7(米)的点E 处,然后沿着直线BE 后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算 树AB 的高度(精确到0.1米) 实践二:提供选用的测量工具有:①皮尺一根;②教学用三角板一副;③长为2. 5米的标杆一根;④高度为1.5米的测角仪一架,请根据你所设计的测量方案, 回答下列问题: (1)在你设计的方案中,选用的测量工具是__________. (2)在图(2)中画出你的测量方案示意图; (3)你需要测得示意图中哪些数据,并分别用a,b,c,α,β等表示测得的数据____. (4)写出求树高的算式:AB=___________. (1) (2) 6.在1:50000的地图上,查得A 点在300m 的等高线上,B 点在400m 的等高线上, 在地图上量得AB 的长为2.5cm,若要在A 、B 之间建一条索道,那么缆索至少要多长? 它的倾斜角是多少? (说明:地图上量得的AB 的长,就是A,B 两点间的水平距离AB′,由B 向过A 且平行于地面的平面作垂线,垂足为B′,连接AB′,则∠A 即是缆索的倾斜角.) 7、为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索: 实践一:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如右示意图的测量方案:把镜子放在离树(AB )8.7米的点E 处,然后沿着直线BE 后退到点D ,这是恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7米,观察者目高CD =1.6米,请你计算树(AB )的高度.(精确到0.1米)

三角函数最值问题解法归纳

三角函数最值问题—解题9法 三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,也是高中数学中经常 涉及的问题。这部分内容是一个难点,它对三角函数的恒等变形能力及综合应用要求较高。解决这一类问 题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性(如有界性等),另 一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题。下面 就介绍几种常见的求三角函数最值的方法: 一配方法 若函数表达式中只含有正弦函数或余弦函数,切它们次数是2时,一般就需要通过配方或换元将给定 的函数化归为二次函数的最值问题来处理。 例1函数的最小值为(). A. 2 B . 0 C . D . 6 [分析]本题可通过公式将函数表达式化为,因含有cosx 的二次式,可换元,令cosx=t,则配方,得, 当t=1时,即cosx=1时,,选B. 例2 求函数y=5sinx+cos2x的最值 [分析]:观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。 二引入辅助角法 例3已知函数当函数y取得最大值时,求自变量x的集合。 [分析] 此类问题为的三角函数求最值问题,它可通过降次化简整理为型求解。 解:

三利用三角函数的有界性 在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法。 例4求函数的值域 [分析] 此为型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解。或者也可先用反解法,再用三角函数的有界性去解。 解法一:原函数变形为,可直接得到:或 解法一:原函数变形为或 例5已知函数,求函数f(x)的最小正周期和最大值。 [分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式。 解: f(x)的最小正周期为,最大值为。 四引入参数法(换元法) 对于表达式中同时含有sinx+cosx,与sinxcosx的函数,运用关系式 一般都可采用换元法转化为t的二次函数去求最值,但必须要注意换元后新变量的取值范围。 例6 求函数y=sinx+cosx+sinxcosx的最大值。 [分析]解:令sinx+cosx=t,则 ,其中

北师大版1.6利用三角函数测高教案

第一章直角三角形的边角关系 1.6 利用三角函数测高 一、知识点 1. 制作测倾器并掌握测倾器测角的方法? 2. 应用直角三角形的边角关系的知识解决实际问题 二、教学目标 知识与技能: 1. 能够根据三角函数测高的原理制定测量方案,能够制作测倾器并掌握测倾器测角的方法 2. 能综合应用直角三角形的边角关系的知识解决实际问题 过程与方法: 1. 经历制作测倾器的过程,提高学生数学动手能力,并会对仪器进行调整,对测量结果进行矫正,从而使测量结果符合实际. 2. 经历策划测量方案的过程,提高数学应用能力和综合分析能力 情感态度与价值观: 能够主动积极地思考,积极地投入到数学活动中去,提高数学学习的兴趣,培养不怕困难的品质,在活动中发展合作意识和科学精神? 三、重点与难点 重点:合理制定方案,掌握用三角函数的知识计算出物体的高度 难点:制作测倾器,理解测倾器的构造原理,并对测量结果进行矫正 四、试一试测量倾斜角: 数学课上,我们用直尺测量长度,用量角器测量角度.生活中,我们是如何测量长度和角度的呢? 测量长度可以用皮尺或卷尺,测量倾斜角可以用测倾器 简单的测倾器由度盘、铅锤和支杆组成.(如图)(出示幻灯片2)

皮尺测倾器

使用测倾器测量倾斜角的步骤如下(出示幻灯片3、4): 1、把支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线水平位置. 2、转动度盘,使度盘的直径对准目标M记下此时铅垂线所指的度数. 根据测量数据,你能求出目标M的仰角或俯角吗?说说你的理由. 活动内容:测倾器的使用 活动目的:培养学生的使用工具的能力? 活动的注意事项:展示样品,让学生亲身使用 五、掌握测量物体高度的原理 活动内容:活动一:测量底部可以到达的物体的高度 所谓“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体的底部之间的距离 分组活动、小组合作: 1、你们能设计一个方案测量底部可以到达的物体的高度吗? 2、需要用到哪些工具?(工具尽可能简单、尽可能少) 3、需要测量哪些数据?(数据尽可能方便、尽可能少) 4、根据测量数据,如何计算物体的高度? 全班交流研讨,确定方案: 如图,要测量物体MN的高度,可按下列步骤进行(出示幻灯片5、6): PQ在

2020年高中数学三角函数的最值问题必修4

三角形中的最值问题 山东莘县观城中学 郭银生 解三角形问题,可以较好地考察三角函数的诱导公式,恒等变换,边角转化等知识点,是三角,函数,解析几何和不等式的知识的交汇点,在高考中容易出综合题,其中,三角形中的最值问题又是一个重点。其实,这一部分的最值问题解决的方法只有两种,建立目标函数后,可以利用重要不等式解决,也可以利用三角函数的有界性。下面举例说明: 例1.要是斜边一定的直角三角形周长最大,它的一个锐角应是( ) A .∏ /4 B. ∏/3 C. ∏/6 D.正弦值是1/3的锐角 解:解法1.(三角函数的有界性)设斜边为c ,其一个锐角是α,周长是L,则两个直角边是csinα 和ccosα, 故 L =c+csinα +ccosα =c+1.414csin(α+∏ /4 ) ∵0<α<∏/2 ∴当α+∏ /4 =∏/2时,Lmax=c+1.414c 故选A 解法2.设两条直角边为a,b,周长为L ,则斜边c=22b a +是定值。 L=a+b+2 2b a +≤) +(222b a +22b a +=(2+1) 22b a +(当且仅当a=b 时取等号) 即三角形是等腰直角三角形,周长取得最大值时,其一个锐角是∏ /4 从而选A. 例2.已知直角三角形周长是1,其面积的最大值为 . 方法Ⅰ.(三角函数的有界性) 设该直角三角形的斜边是c ,一个锐角是A ,面积是S ,则两条直角边是csinA 和ccosA ,根据题意 csinA+ccosA+c=1,即c=A A sin sin 11++ ① S=21csinA*ccosA=41sin2A ≤4 1 (当且仅当A=∏/4时取等号)

高中数学三角函数经典练习题专题训练(含答案)

高中数高中数学三角函数经典练习题专题训练 姓名班级学号得分 说明: 1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分100分。考试时间90分钟。 2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。考试结束后,只收第Ⅱ卷 第Ⅰ卷(选择题) 一.单选题(每题3分,共60分) 1.已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则ω,φ的值分别为() A.2,-B.2,-C.4,-D.4, 2.下列说法正确的个数是() ①小于90°的角是锐角;

②钝角一定大于第一象限角; ③第二象限的角一定大于第一象限的角; ④始边与终边重合的角为0°. A.0B.1C.2D.3 3.若0<y<x<,且tan2x=3tan(x-y),则x+y的可能取值是()A.B.C.D. 4.已知函数y=tan(ωx)(ω>0)的最小正周期为2π,则函数y=ωcosx的值域是()A.[-2,2]B.[-1,1]C.[-,]D.[-,] 5.在△ABC中,sin2=(a、b、c分别为角A、B、C的对应边),则△ABC的形状为() A.正三角形B.直角三角形 C.等腰直角三角形D.等腰三角形 6.已知函数f(x)=cosxsin2x,下列结论中错误的是() A.f(x)既是偶函数又是周期函数 B.f(x)最大值是1 C.f(x)的图象关于点(,0)对称 D.f(x)的图象关于直线x=π对称 7.sin55°sin65°-cos55°cos65°值为() A.B.C.-D.- 8.若角α终边上一点的坐标为(1,-1),则角α为() A.2kπ+B.2kπ-C.kπ+D.kπ-,其中k∈Z

2021届新高考数学二轮 培优点7 三角函数中的范围、最值问题(原卷版)

培优点7 三角函数中的范围、最值问题 【方法总结】 以三角函数为背景的范围与最值问题是高考的热点,对问题的准确理解和灵活转化是解题的关键. 【典例】1 (1)若函数y =sin 2x +acos x +58a -32在? ?????0,π2上的最大值是1,则实数a 的值为________. (2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若3acos C +b =0,则tan B 的最大值是________. 【典例】2 (1)(2020·烟台模拟)将函数f(x)=cos x 的图象向右平移2π3 个单位长度,再将各点的横坐标变为原来的1ω(ω>0),得到函数g(x)的图象,若g(x)在??????0,π2上的值域为???? ??-12,1,则ω的取值范围为( ) A.??????43,83 B.??????13,53 C.??????43,+∞ D.???? ??83,+∞ (2)若将函数f(x)=sin ? ????2x +π4的图象向右平移φ个单位长度,所得图象关于y 轴对称,则φ的最小正值是________. 【方法总结】 (1)求解三角函数的范围或最值的关键在于根据题目条件和函数形式选择适当的工具:三角函数的有界性,基本不等式,二次函数等. (2)求解和三角函数性质有关的范围、最值问题,要结合三角函数的图象. 【拓展训练】

1.已知函数f(x)=2sin(ωx +φ)(ω>0)的图象关于直线x =π3 对称,且f ? ?? ??π12=0,则ω的最小值为( ) A .2 B .4 C .6 D .8 2.若函数f(x)=2sin x +cos x 在[0,α]上是增函数,则当α取最大值时,sin 2α的值等于( ) A.45 B.35 C.25 D.215 3.已知函数f(x)=2sin ? ????ωx +π6中x 在任意的15个单位长度的距离内能同时取得最大值和最小值,那么正实数ω的取值范围是________. 4.已知函数f(x)=sin ? ????ωx +π3(ω>0),若f(x)在??????0,2π3上恰有两个零点,且在???? ??-π4,π24上单调递增,则ω的取值范围是________.

高中数学(三角函数)练习题及答案

第一章 三角函数 一、选择题 1.已知 α 为第三象限角,则 2 α 所在的象限是( ). A .第一或第二象限 B .第二或第三象限 C .第一或第三象限 D .第二或第四象限 2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限 C .第一、四象限 D .第二、四象限 3.sin 3π4cos 6π5tan ??? ??3π4-=( ). A .- 4 3 3 B . 4 3 3 C .- 4 3 D . 4 3 4.已知tan θ+θtan 1 =2,则sin θ+cos θ等于( ). A .2 B .2 C .-2 D .±2 5.已知sin x +cos x =51 (0≤x <π),则tan x 的值等于( ). A .- 4 3 B .- 3 4 C . 4 3 D . 3 4 6.已知sin α >sin β,那么下列命题成立的是( ). A .若α,β 是第一象限角,则cos α >cos β B .若α,β 是第二象限角,则tan α >tan β C .若α,β 是第三象限角,则cos α >cos β D .若α,β 是第四象限角,则tan α >tan β 7.已知集合A ={α|α=2k π±3π2,k ∈Z },B ={β|β=4k π±3 π2,k ∈Z },C = {γ|γ=k π± 3 π 2,k ∈Z },则这三个集合之间的关系为( ). A .A ?B ?C B .B ?A ?C C .C ?A ?B D .B ?C ?A 8.已知cos (α+β)=1,sin α=3 1 ,则sin β 的值是( ).

1.6 利用三角函数测高 导学案

榆中五中“三导六部”课堂教学模式导学案 班级:姓名:组长: §1.6利用三角函数测高 学习目标: 1、能够根据三角函数测高的原理制定测量方案,能够制作测倾器并掌握测倾器测角的方法,能综合应用直角三角形的边角关系的知识解决实际问题. 2、经历制作测倾器的过程,提高学生数学动手能力,并会对仪器进行调整,对测量结果进行矫正,从而使测量结果符合实际;经历策划测量方案的过程,提高数学应用能力和综合分析能力. 3、能够主动积极地思考,积极地投入到数学活动中去,提高数学学习的兴趣,培养不怕困难的品质,在活动中发展合作意识和科学精神. 教学过程: 一、掌握测量物体高度的原理 活动内容: 1、物体底部可到达; (1)测量以下数值: ∠MCE=α,AN=l,AC=a (2)根据三角函数正切值的原理: 在Rt△MEC中,由tan ME CE α=得,tan ME lα =? 所以,物体高度MN=a+tan lα ?

2、物体底部不可到达. (1)测量以下数值: ∠MCE=α,∠MDE=β,AB=b ,AC=BD=a (2)根据三角函数正切值的原理: 在Rt △MEC 中,由tan ME CE α=得,tan ME CE α= 在Rt △MED 中,由tan ME DE β=得,tan ME DE β = 所以b=tan tan ME ME αβ-,则tan tan tan tan ME b αββα ?=?- 所以物体高度为MN=a+tan tan tan tan b αββα?? - 二、 实际应用 活动内容:例题1,如图,某中学在主楼的顶部和大门的上方之间挂一些彩旗,经测量,得到大门的高度是5m ,大门距主楼的距离是30m ,在大门处测得主楼顶部的仰角是30o,而当时测倾器离地面1.4m ,求学校主楼的高度.(精确到0.1米) . 例题2,河对岸的高层建筑AB ,为测量其高,在C 处由D 点用测量仪测得顶端A 的仰角为30o,向高层建筑物前进50m 到达C ′处,由D ′测得顶端A 的仰角为45o,已知测量仪CD=C ′D ′=1.2m ,求建筑物AB=的高(精确到0.1米). D A M 30o

初中三角函数知识点总结及典型习题(含答案)

初三下学期锐角三角函数知识点总结及典型习题 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 5、30°、45°、60°特殊角的三角函数值(重要) 6、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、的增减性: 当0°<α<90°时,tan α随α的增大而增大, 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) A 90B 90∠-?=∠?=∠+∠得由B A 邻边 A

2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角 铅垂线 水平线 视线 视线 俯角 (2)坡面的铅直高度h和水平宽度l的比叫做坡度(坡比)。用字母i表示,即 h i l =。坡度一般写成1:m 的形式,如1:5 i=等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α ==。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA、OB、OC、OD的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角。如图4,OA、OB、OC、OD的方向角分别是:北偏东30°(东北方向),南偏东45°(东南方向), 南偏西60°(西南方向),北偏西60°(西北方向)。 例1:已知在Rt ABC △中, 3 90sin 5 C A ∠== °,,则tan B的值为() A. 4 3 B. 4 5 C. 5 4 D. 3 4 【解析】本题考查三角函数的定义和勾股定理,在RTΔABC中,∠C=90°,则sin a A c =,tan b B a = 和222 a b c +=;由 3 sin 5 A=知,如果设3 a x =,则5 c x =,结合222 a b c +=得4 b x =;∴ 44 tan 33 b x B a x ===,所以选A. 例2:10 4cos30sin60(2)(20092008) - ??+--=______. 【解析】本题考查特殊角的三角函数值.零指数幂.负整数指数幂的有关运算, 10 4cos30sin60(2)20092008) - ??+--= 3313 41 2222 ?? ??+--= ? ??, 故填 3 2. : i h l = h l α

利用三角函数测高题型

利用三角函数测高题型 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

利用直角三角形测高 向阳校区 一、地位 近几年河北中考对于直角三角形的考察越来越趋于现实知识,将直角三角形求高的经常与三角函数应用联系,所以对于综合探究性题型起到敲门砖的重要作用,同时它是河北各市模拟考试的常见题型,每年都有体现,选择、填空及解答题都有涉及,对于学生有一定能力要求,所以学好这一模块有很大的现实意义。 二、基础知识: 一、如何测量倾斜角 测量倾斜角可以用测倾器。 ----简单的侧倾器由度盘、铅锤和支杆组成 二、使用测倾器测量倾斜角的步骤如下: 1、把支架竖直插入地面,使支架的中心线、铅锤线和度盘的0°刻度线重合,这时度盘的顶线PQ在水平位置。 2、转动度盘,使度盘的直径对准目标M,记下此时铅垂线所指的读数 三、测量底部可以直接到达的物体的高度。 所谓“底部可以到达”---就是在地面上可以无障碍地直接测得测点与被测物体的底部之间的距离. 四、测量底部不可以直接到达的物体的高度。 所谓“底部不可以到达”---就是在地面上不可以直接测得测点与被测物体之间的距离。 五、测高方法总结

1、凡是求高(求线段的长)的问题往往可以借助解直角三角形来解决,如果没有直角三角形可以设法去构造。 2、对于一些教复杂的问题,如果解一个直角三角形还不能使问题得以解决,可考虑解两个直角三角形。 3、如果不能直接通过解直角三角形处理问题,可以去寻找已知与未知之间的等量关系,借助解直角三角形建立方程,从而使问题得以解决。 六、反思与评价 1、充分体会将实际问题数学化的一种常用方式:即通过分析问题,建立数学模型,从而提出较为完整的测量方案和解决问题的方法。 实际问题 画图示意 已知未知 数学问题 2、解决这类测量问题往往是寻找或构造直角三角形,通过解直角三角形使问题得于解决。 三、题型 1.要测一电视塔的高度,在距电视塔80米处测得电视塔顶部的仰角为60°,则电视塔的高度为 米. 2.如图1—87所示,两建筑物的水平距离为a ,在A 点测得C 点的俯角为β,测得D 点的俯角为a ,则较低建筑物的高度为 . 3.建筑物BC 上有一旗杆AB ,由距BC 40m 的D 处观察旗杆顶部A 的仰角为50 观察底部B 的仰角为45,求旗杆的高度(精确到0.1m ). 4.如图1—88所示,在测量塔高AB 时,选择与塔底同一水平面的同一直线上的C ,D 两处,用测角仪测得塔顶A 的仰角分别是30°和60°,已知测角仪的高CE =米CD =30米,求塔高AB .(3≈ 4550 A B C D

相关文档
最新文档