基因工程及其在大肠杆菌生产人干扰素中的应用

基因工程及其在大肠杆菌生产人干扰素中的应用
基因工程及其在大肠杆菌生产人干扰素中的应用

基因工程及其在大肠杆菌生产人干扰素中的应用

一、课程设计目的

了解工业生产中的新型育种技术并比较不同育种技术的优势;

学习理解基因工程育种技术及其操作原理;

研究基因工程育种技术在人干扰素生产中的创新。

二、课程设计题目描述与要求

本文介绍一种二十世纪七十年代发展起来的一种新型生物技术——基因工程,介绍其在育种中的应用。文中重点介绍了基因工程育种的一般步骤,以及近年来出现的运用基因工程进行定向育种的主要新技术:基因的定点突变,易错PCR,DAN重排及基因组重排。之后,应用基因工程育种技术重组大肠杆菌BL21(pBAI)生产人干扰素a2b, 通过优化补料分批培养时葡萄糖的流加策略,提高了hIFNa2b的表达量和表达速率。不同的葡萄糖流加方式有各自的优点,采用恒速流加葡萄糖的方式,hIFNa2b的表达量达到6 540 mg/L,高于目前已知文献中hIFNa2b的最高表达量5 200 mg/L。

三、课程设计报告内容

引言

基因工程是二十世纪七十年代发展起来的一种新型生物技术,其发展从根本上改变了生物技术的研究和开发应用模式。1972年美国的Berg和Jackson等人将猿猴病毒基因组SV 40DNA、λ噬菌体基因以及大肠杆菌半乳糖操纵子在体外重组获得成功。翌年,美国斯坦佛大学的Cohen和Boyer等人在体外构建出含有四环素和链霉素连个抗性基因的重组质粒分子,将之导入大肠杆菌后,该重组质粒得以稳定复制,并赋予受体细胞相应的抗生素抗性,由此宣告了基因工程的诞生。在二十世纪八十年代以来,随着大批大批成果的出现及应用,基因工程带来了一场新的革命。

利用这些技术,可以直接地、有针对性地在DNA分子水平上改造生物的遗传性状。通过转入外源基因,微生物和动、植物细胞可以产生出自身原来没有的蛋白质。同样,利用重组DNA技术,也可以使一些原来存在量极低但有重要工业或医学用途的小分子(抗生素)或蛋白质之外的大分子物质得以大量生产。特别是随着重组DNA技术的完善和发展,以基因水平为核心的现代分子定向育种技术越来越受到工业微生物育种学家的关注,并展示了良好的应用前景。

1、基因工程育种

基因工程育种是在基因水平上,运用人为方法将所需的某一供体生物的遗传物质提取出来,在离体条件下用适当的工具酶进行切割后,与载体连接,然后导入另一细胞,使外源遗传物质在其中进行正常复制和表达引,与前几种育种技术相比,基因工程育种技术是人们在分子生物学指导下的一种自觉的、能像工程一样可预先设计和控制的育种新技术,它可实现超远缘杂交,因而是最新最有前途的一种育种新技术。基因工程技术的全部过程一般包括目的基因DNA片段的取得、DNA片段与基因载体的体外连接、外源基因转入宿主细胞和目标基因的表达等主要环节。

1.1 基因工程育种的一般步骤是:

(1)目的基因的获得:一般通过化学合成法、物理化学法(包括密度梯度离心法、单链酶法、分子杂交法)、鸟枪无性繁殖法、酶促合成法(逆转录法)、Norther

杂交分析法、cDNA文库筛选法、杂交筛选法、编码序列富集(磁珠捕获)、产物导向法、Nod连接片段筛选法、外显子捕获法及外显子扩增法、剪接位点筛选法、作图克隆法、杂交细胞克隆法、消减杂交法、相同序列克隆法、差异显示逆转录PCR法、显微克隆与微克隆法和插入诱变法等方法获得目的基因。

(2)载体的选择:基因工程载体主要是质粒和病毒,载体一般为环状DNA,其要求有自我复制能力、分子小、拷贝数多、易连接和易筛选等特点。

(3)重组子体外构建:主要方法有粘性末端连接法、平端连接法、人工接头连接法和同聚物加尾连接法。

(4)重组载体导入受体细胞:其主要途径有转化、转导、显微注射、电穿孔法、快速冷冻法和炭化纤维介导法等。

(5)重组体筛选和鉴定:以合适的筛选方法选择具有最佳性能的突变重组子,重组体筛选和鉴定主要通过表型法、DNA鉴定筛选法,选择性载体筛选法、分子杂交选择法、免疫学方法和mRNA翻译检测法等方法来实现。

1.2 运用基因工程进行定向育种的新技术

1.2.1 基因的定点突变

定点突变(site—specific mutagenesis或site—directed mutagenesis)是指在目的DNA片断(例如:一个基因)的指定位点引入特定的碱基对的技术,其包括寡核苷酸介导的定点突变、盒式诱变以及以PCR为基础的定点突变。近十年来,定点突变技术获得了长足的发展,并且在此基础上又发展了很多新技术。例如:重叠延伸PCR法(Overlap Extension PCR简称EO—PCR)、大引物PCR法(Megaprimer PCR)、一步重叠延伸PCR(One—stepOverlap Extension PCR,简称OOE.PCR)、单管大引物PCR(Single—tube Megaprimer PCR)、快速定点诱变法、多位点环状诱变法TAMS(Targeted Amplification of Mutant Strand)定点诱变技术。在这些技术中,单管大引物PCRTAMS定点诱变技术最为简单和适用,并得到广泛的应用。

单管大引物PCR Picard等和HKe等分别建立了单管大引物PCR法。该法省去了传统上以PCR为基础的定点突变中第1轮PCR产物的纯化过程,实现了在同一管中先后进行2轮PCR反应的定点突变目标。在上述2组研究者建立的方法中,后者提出的方案更加巧妙、简单(图1)。其只需设计Tm值不同的2个侧引物,在第1

轮PCR反应中用Tm值低的侧引物(F1)和诱变引物,在较低的退火温度下进行扩增反应,产生大引物;然后再加入Tm值高的侧引物(F2),在较高的退火温度下进行第2轮反应,扩增出含突变位点的整个DNA产物。Ke等在此方法中还提出了2条更为细致、有效的改进措施,使PCR产物的最终产量和纯度均有所提高。这2条改进措施为:(1)在第1轮PCR反应中,诱变引物的浓度仅为侧引物的1%,以减少诱变引物在第2轮PCR中的干扰作用;(2)在第l轮PCR反应后,亦即第2轮PCR反应前,增加5个循环的不对称扩增,这有利于提高其后的扩增效率。这种单管大引物法的优点是:实现了在同一管中先后进行2轮PCR反应,大幅简化了操作步骤,并且省时、省力。在对多个样品进行操作时,该方法的优点更为突出。在以PCR为基础的诱变方法中,该法是引入单位点突变最简单、最经济的方法。

图1 单管大引物PCR过程

Figure 1 The process of Single·tube megaprimer PCR

TAMS定点诱变技术 2003年,Young等报道了一种有目的地扩增突变链的定点诱变技术(Targeted amplification of mutant strand,TAMS)。该技术能够一次引入多个位点的突变,并且能够有目的地扩增突变链,从而使突变效率几乎达到100%。该方法主要分3步(图2):(1)线性单链DNA模板的制备:通过线性PCR 制备单链DNA模板;(2)突变链的合成:该步骤需用2个锚锭引物(即Anchor5和Anchor3)和多个诱变引物(Mut1和Mut2)。(3)有目的地扩增突变链:设计扩增引物(PCR5和PCR3),使其3′端碱基分别与锚锭引物引入的突变碱基配对,扩增引物

只能退火到突变链而不是亲本链。在多位点的突变试验中,TAMS诱变技术应该是首选方法。

定点突变技术已在蛋白质的结构和功能改造上取得了很大成功。例如,利用定点突变改变酪氨酰-tRNA合成酶的活性中心,从而使酶活力提高了50倍;此外,在T4溶菌酶中加入二硫键,显著提高了该酶的稳定性。

图2 TAMS定点诱变技术原理和操作过程

Figure 2 The principle and operation process of TAMS

1.2.2 易错PCR

DNA聚合酶在进行扩增目的DNA时会以一定的频率发生碱基错配,这一现象恰好提供了一种对特定基因进行随机诱变的可能方法。利用PCR过程中出现的碱基错配进行特定基因随机诱变的技术就称为易错PCR(Error_prone PCR,简称EP—PCR)。此方法的原理与操作如图3,其操作过程是在Taq DNA聚合酶催化的PCR反应体系中,利用Mn替代天然的辅助因子Mg,使Taq DNA聚合酶缺乏校对活性,同时使反应体系中各种dNTP的比例失衡,因此导致碱基的错配率大大增加,通常约为0.1%。另外,还可以在该反应体系中加入dITP等三磷酸脱氧核苷类似物来控制错配水平。这种方法可以将错配率最大提高至20%。孔荣等利用易错PCR使D-海因酶对底物的水解活性提高了2.4倍;黄瑛等用易错PCR使短小芽孢杆菌YZ02脂肪酶活性提高了1.31倍,Km值由8.24mmol/L降低至7.717mmol/L,在pH>8.0时的稳定性也较野生型脂肪酶有所提高。

图3 易错PCR示意图

Figure 3 Sketch of error-prone PCR

1.2.3 DAN重排

DNA重排(DNA shufling)技术是一种利用重组文库的体外定向进化技术,Stemmer 于1993年首先提出。DNA重排的基本原理是首先将同源基因(单一基因的突变体或基因家族)切成随机大小的DAN片段,然后进行PCR重聚。那些带有同源性和核苷酸序列差异的随机DAN片段在每一轮循环中互为引物和模板,经过多次PCR循环后能迅速产生大量的重组DNA,从而创造出新基因。其操作的原理和步骤如图4。

图4 DNA重排的原理及操作步骤

Figure 4 The principle and operation process of DNA shuffling Zhao等在此基础上发明了一种更加简化交叉延伸程序( STEP)(图5)。此技术是在一个PCR反应体系中以2个以上相关的DNA片段为模板进行PCR反应。引物先在一个模板链上延伸,随之进行多轮变性、短暂复性(延伸)过程。在每一轮PCR循

环中,那些部分延伸的片段可以随机地与含不同突变的模板进行杂交,使延伸继续,并由于模板转换而实现不同模板间的重组,这样重复进行直到获得全长基因片段,重组的程度可以通过调整时间和温度来控制。此方法省去了将DNA酶切成片段这一步,致使DNA重排方法进一步简化。

图5 交叉延伸程序的基本过程

Figure 5 Basic procedure of staggered extension process 近几年来,提高DNA重排技术捕获变异的能力一直是研究人员努力的方向。Ostermie等以核酸外切酶Ⅱ代替DNaseI对靶序列进行消化,发明了递减法建立杂交酶技术(ITCHY),使得非同源性序列间也能发生重排,扩大了该技术的用途。Hiraga等开发的SISDC技术在组件内部引入了限制性内切酶识别标记,用相应的限制性内切酶代替DNase I产生重排片段。Bergquist等开发的DOGS技术则是根据保守模体区序列特征设计简并引物,扩增出保守同源区后再用重排操作生成突变富集体。由于此方法是在突变耐受的保守区直接增加转辙组的几率,所以其产生的突变频率大大增加。

DNA重排的最大特点是在反复突变过程中引进了重组这一自然进化中最重要的过程,而且其对可操作的靶序列的长度没有任何要求,可以达到几万kb。通过多轮筛选或选择,可以使有益突变迅速积累,导致功能的明显提高,同时还打破了传统物种之间由于生殖隔离导致不能重组的界限。

1.2.4 基因组重排

基因组重排(genome shufling)技术是受DNA重排的启发,于2l世纪出现的全基因组改组技术。这种技术将分子定向进化的对象从单个基因扩展到整个基因组,可以在更为广泛的范围内对菌种的目的性状进行优化组合。首先,利用经典的诱变育种技术获得含有目标性状的基因组库,然后利用原生质体融合技术将这些发生正向突变的菌株的全基因组进行多轮随机重组,从而快速筛选表型得到较大改进的杂交菌种。该技术巧妙地采用了多轮循环原生质体融合技术,将各种亲本制成原生质体-融合-再生-再制成原生质体-融合-再生),即递归原生质体融合(recursive protoplast fusion)的方法。Zhang等于2002年首次报道应用基因组重排方法快速地使弗氏链霉菌(Streptomyces fradiae)产生泰乐菌素的能力得到提高。该方法以营养缺陷型为出发菌株,仅用了1年时间,通过两轮基因组改组就从24 000株菌株中分离到2组共14株泰乐菌素高产菌株,其泰乐菌素产量高于通过经典诱变育种方法所筛得的生产菌株SF21,而后者(SF21)是用经典诱变育种方法在长达20年的时间中先后筛选过约1 000 000个菌株后才获得的。由此可见,此技术大大减少了工作量,并缩短了筛选时间。四川抗菌素工业研究所的徐波等以产量性状为标记特征,应用基因组重排的方法在一年之内使替考拉宁产量提高了65.3%。

除上述技术外,近年来又出现了一些新技术,例如:部分基因片段改组、单链DNA家族改组(SSDNAs)、简并引物基因改组(DOGS)、瞬时模板的随机嵌合、单向引物的随机重组、自我复制、体外随机引发重组(RPR)、酶法体外随机-定位诱变(random—site—directed mutagenesis)、交错延伸剪接PCR等。

2、基因工程育种技术在大肠杆菌种的应用

大肠杆菌是迄今为止研究的最为详尽的原核细菌,其K-12MG1655株的4 000多kb的染色体DNA已测序完毕,全基因共含有4 405个开放阅读框,其中大部分基因的生物功能已被鉴定。作为一种成熟的基因克隆表达受体,大肠杆菌被广泛用于分子生物学研究的各个领域,如基因的分离扩增、DNA序列分析、基因的表达产物功能鉴定等。由于大肠杆菌繁殖迅速,培养代谢易于控制,大肠杆菌的分子遗传学背景已相当明了,不断完善的基因操作技术可将大肠杆菌构建成为用于异源蛋白生产的分子工厂。因此,利用DNA重组技术构建大肠杆菌工程菌,以规模化生产真核生物基因尤其是人类基因的表达产物,具有重大的经济价值。现在已

有100多种异源蛋白通过大肠杆菌基因工程菌实现了产业化,其中包括一些结构相当复杂的人体蛋白,如HAS、pro-UK、MT、M-CSF及Hb等。工业中常用于生产医药蛋白如人胰岛素、人生长激素、人干扰素、人白细胞介素和抗体。以下以生产人干扰素为例介绍其应用。

人干扰素a2b (Human Interferona2b,hIFNa2b)是由165个氨基酸组成的多肽,具有抗病毒、抗肿瘤、免疫调节、修复DNA结构损伤等作用。hIFNa2b在临床上广泛应用,对肝炎、呼吸道病毒感染、疱疹病毒感染等均具有治疗作用。大肠杆菌表达系统具有生长快速、发酵成本低、表达水平高等优点,是生产外源蛋白的理想表达体系。在大肠杆菌温度诱导表达外源蛋白的发酵过程中,如何控制升温诱导后菌体的生长,提高产物的比生产速率,是实现高密度高表达的关键。本文采用大肠杆菌BL21(pBAI)表达hIFNa2b,其表达通过温控型PL启动子调控。考察了补料方式对hIFNa2b生产速率的影响,hIFNa2b表达水平达到6 540 mg/L。

2.1 材料与方法

2.1.1 材料

菌株宿主菌E. coli BL21(DE3)[BF-dcm ompT hsdS (r-Bm-B) galλ(DE3)],重组质粒为pBAI,带有氨苄青霉素耐药性标记,hIFNa2b基因表达受λPL启动子和质粒cI857编码的蛋白调控。

培养基种子培养基为LB培养基(蛋白胨10 g/L,酵母抽提物5 g/L,NaCl 10 g/L),灭菌后加入100 mg/L氨苄青霉素钠。分批发酵培养基为含葡萄糖5 g/L的LB 培养基。未特别注明的补料分批发酵培养基均为含葡萄糖5 g/L的2×LB培养基(蛋白胨20 g/L,酵母抽提物10 g/L,NaCl 10 g/L),补料液为400 g/L的葡萄糖。培养基配制所用蛋白胨和酵母抽提物均为Oxoid产品,其余试剂为国产分析纯,采用去离子水配制。

2.1.2 培养方法

种子培养从-20°C保藏的甘油管中取出1ml菌液,接入装有30 ml种子培养基的250mL锥形瓶,于摇床200 r/min,30°C下培养10 h,为一级种子;将一级种子以1.5%的接种量转接至装有70 ml LB培养基的500 ml锥形瓶中,相同条件培养9 h,为二级种子。

发酵罐培养将二级种子以6%的接种量接入5 L发酵罐(RIBE-5型)中。培养

液装量为2.5 L,生长阶段控制温度30°C,表达阶段控制温度42°C,发酵过程中控制pH为7.0,通气量4 L/min,初始搅拌转速为400 r/min,发酵过程中转速逐渐提高以维持溶氧大于20%。补料分批培养过程中,初始葡萄糖耗尽后采用3种不同的葡萄糖流加方式,即恒pH流加、恒速流加、恒比供应速率流加。恒pH方式为当pH超过7.0时自动补入葡萄糖;恒速流加以5.4 g/(L·h)的速率流加葡萄糖;恒比供应速率(QG)为0.27 g/(g·h),每小时根据菌体浓度调整葡萄糖的流加速率。

2.1.3 测定方法

菌体浓度测定采用浊度法,测定波长600 nm处的光密度(OD600),根据标准曲线计算菌体干重。葡萄糖测定采用葡萄糖测定试剂盒(上海科欣生物技术研究所)测定。乙酸测定采用气相色谱法[5]。hIFNa2b的电泳测定采用三(羟甲基)甲基甘氨酸(φ=0.15)-SDS-聚丙烯酰胺三层胶系统分离目的蛋白[6],凝胶用考马斯亮蓝染色,用图像分析系统(Smart View analysis program,上海复日科技有限公司)定量。取发酵液于12 000 r/min,4°C下离心10 min,得到的菌体用Tris-HCl缓冲液(50 mmol/L, pH 7.0,4°C)洗涤,然后溶于上样缓冲液中[12mmol/L、pH 6.8 Tris-HCl,甘油(φ=0.05),SDS(7.5 g/L),巯基乙醇(φ=0.02),溴酚兰(0.5 g/L]。

2.2 结果与讨论

2.2.1 分批发酵

在5 L罐中分批培养,结果见图6和表1。培养2.5 h升温诱导,此时菌体处于对数生长期,升温对于菌体生长的影响并不显著,表达初期菌体比生长速率较升温前略有下降。分批发酵中葡萄糖耗完时,乙酸积累达到最大值1.1 g/L。hIFNa2b 的表达水平达到749 mg/L,是相同培养基条件下摇瓶培养的2.9倍。诱导后1 h,hIFNa2b比生产速率为162 mg/(g·h),生产速率为275 mg/(L·h);诱导后期比生产速率下降至95 mg/(g·h),但由于菌体浓度增大,生产速率达到363 mg/(L·h)。

图6 分批培养时菌体(◆)、葡萄糖(■)、乙酸(●)及hIFNa2b(▲)的变化曲

线

Fig.6 Profiles of dry cell weight (◆), residual glucose(■), acetic acid (●) and hIFNa2b (▲) in batch cultivation

2.2.2葡萄糖流加对于hIFNa2b生产水平的影响

要获得hIFNa2b的高体积表达水平,则需维持较高的比生产速率,并且增大

菌体密度,流加葡萄糖是一种很好的选择。

恒pH流加葡萄糖培养4 h后升温诱导表达hIFNa2b,此时残糖浓度为0.9 g/L。6 h时初始葡萄糖耗尽,溶氧迅速回升,开始用恒pH法补加葡萄糖,即pH高于设定值时蠕动泵自动加入葡萄糖溶液1 s。此补料分批发酵实验记为FB1,结果见图7和表1。升温诱导后,菌体生长明显减慢,升温后2 h菌体的比生长速率为0.425 h-1,与升温前的0.710 h-1相差很大,这与诱导时环境和细胞生理状态有关。与分批发酵相比较,升温诱导时(2.5 h)菌体处于对数生长前期,培养基中营养物质充分,而本实验中于4 h升温诱导时菌体处于对数生长后期,培养基中的营养物质已经被大量消耗,难以维持对数期的比生长速率。进入恒pH补料阶段后,菌体比生长速率下降的趋势进一步明显,发酵末期菌体比生长速率仅为0.025 h-1。

图7 恒pH补料分批培养(FB1)中菌体(◆)、葡萄糖(■)、乙酸(●)及

hIFNa2b(▲)的变化曲线

Fig.7 Profiles of dry cell weight (◆), residual glucose(■),acetic acid (●) and hIFNa2b (▲) in pH-statfed-batch cultivation (FB1) hIFNa2b表达量在11.5 h达到2 400 mg/L,是分批发酵的3. 2倍。诱导初期的2 h内,hIFNa2b比生产速率为148 mg/(g·h),生产速率高达730 mg/(L·h)。后期hIFNa2b表达速率明显减慢,发酵末期仅为10 mg/(g·h)。在恒pH补料分批培养中,

能较好地控制葡萄糖的流加,使得发酵后期没有乙酸积累。但是恒pH流加方式下的葡萄糖流加是基于有机氮源的异化代谢引起pH上升,随着培养基的氮源如氨基酸的逐渐消耗,减少了氨离子的产生,从而不易引起发酵液pH上升,导致葡萄糖补加速率的降低,使得培养过程中特别是发酵后期葡萄糖的供应不足。如图8所示,培养过程中葡萄糖流加速率rG从2.83 g/h下降到1.99g/h,葡萄糖比消耗速率QG 从0.115 g/(g·h)下降到0.087 g/(g·h),限制了hIFNa2b的表达。

与分批培养相比,虽然hIFNa2b的比生产速率有所下降,但总产量和菌体hIFNa2b含量大幅提高,说明菌体浓度升高有利于提高hIFNa2b表达水平,恒pH流加是一种操作方便的流加方式。

图8 恒pH补料分批培养(FB1)中葡萄糖浓度(■)、葡萄糖流加速率(◆)及葡

萄糖比消耗速率(▲)的变化曲线

Fig.8 Profiles of residual glucose(■), feeding rate of glu-cose (◆) and specific consumption rate of glucose(▲) in pH-stat fed-batch

cultivation (FB1)

恒速补料实验中hIFNa2b平均生产速率是恒pH补料时的1.65倍,表明葡萄糖供应的改善提高了hIFNa2b的表达水平,尽管葡萄糖的比消耗速率还是从诱导初期的0.28 g/(g·h)下降到0.21g/(g·h)。因为期望达到较高的菌体密度,所以生长期较长。诱导前培养基中营养物质消耗较多,8.5h时菌体的比生长速率已经降低到0.203 h-1,升温诱导后1 h,比生长速率更降低至0.074 h-1,营养消耗导致hIFNa2b的比生产速率仅27 mg/(g·h),大大低于恒pH补料分批培养实验FB1。通过恒速补糖方式取得了hIFNa2b非常高的表达量,但这是通过延长发酵时间和提高菌体浓度实现的,过低的比生产速率大大影响发酵生产效率。

2.3 诱导前添加有机氮源对hIFNa2b生产水平的影响

许多基因工程菌外源基因的表达显示出与生长速率相关的特性,而补料分批培养中,随着菌体浓度的提高,诱导初期的比生长速率明显下降,反映了营养的限制。因此在诱导前1.5 h补充有机氮源(酵母提取物25 g),以满足菌体生长和产物合成的需要。初始葡萄糖耗完后,采用恒比供应速率(0.27 g/(g·h))的方式补充葡萄糖,发酵过程记为FB3,结果见图9和表1。

图9 补料分批培养FB3中菌体(◆)、葡萄糖(■)、乙酸(●)及hIFNa2b(▲)

的变化曲线

Fig.9 Profiles of dry cell weight (◆), residual glucose(■), acetic acid (●) and hIFNa2b (▲) in fed-batch cultivation FB3 (yeast extract

was added at6.5 h)

采用恒比供应速率流加方式,葡萄糖流速根据菌体总量变化而变化,能够较好地满足细胞代谢及重组蛋白表达所需的能量需求,同时也避免了乙酸和残糖的积累,平均比生产速率为恒速流加时的2倍。可以看出,加入酵母抽提物,满足了菌体生长的需要,使得诱导前后均有较高的比生长速率,表达期平均比生长速率达到0.106 h-1。升温诱导5.5 h后,hIFNa2b表达量即达到5530mg/L,hIFNa2b最大比生产速率为124 mg/(g·h),hIFNa2b的平均生产速率大幅提高,达1 006 mg/(L·h)。分批发酵和不同补料分批发酵的实验结果归纳于表1。可以看出FB3添加的酵母提取物提供了氨基酸和核苷酸,有利于外源基因的转录和翻译,使hIFNa2b合成速率加快,hIFNa2b对于有机氮源的得率最高,是FB2的1.27倍,并且发酵周期仅13.5h,较FB2的20. 5 h大大缩短了时间,提高了hIFNa2b的生产速率,一次性添加有机氮源的操作也比较便捷,在生产上有一定的应用价值。

1) DCW at the beginning of inductionb;2) DCW at the end of culture 3) During 1 h post induction;4) Overall productivity of hIFNa2b;

5) Overall specific productivity of hIFNa2b;6) HIFNa2b yield based on total complex nitrogen sources;7) Specific hIFNa2b production

3 结论

目前hIFNα2b在临床的应用广泛,需求量大,但由于生产水平的限制,价格仍旧较高。本文通过优化补料分批培养时葡萄糖的流加策略,提高了hIFNa2b的表达量和表达速率。分批培养时乙酸积累,对hIFNa2b表达有一定抑制作用,流加葡萄糖的策略使得表达期无乙酸积累,提高了hIFNa2b的表达水平。不同的葡萄糖流加方式有各自的优点,采用恒速流加葡萄糖的方式,hIFNa2b的表达量达到6 540 mg/L,高于目前已知文献中hIFNa2b的最高表达量5 200 mg/L。恒比供应速率流加葡萄糖并在诱导前添加酵母抽提物,虽然总表达量5 530 mg/L,稍低于恒速流加方式,但是平均hIFNa2b生产速率高达1 006 mg/(L·h),是分批培养时的3.08倍,是恒速流加方式时的1.84倍,并且对有机氮源的得率提高到138 mg/g,大大缩短了发酵时间,为该表达系统的实际应用创造了条件。

参考文献:

[1] 张惠展.基因工程.上海: 华东理工大学出版社,2005,8

[2] 朱筠,李志敏,张倩,甘人宝,叶勤.重组大肠杆菌BL21(pBAI)生产人干扰素a2b.华东理

工大学学报,2008,3(2):184-188

[3] 聂明,李怀波,万佳蓉,周传云.工业微生物遗传育种的研究进展.现代食品科技,

2005,21(3):184-187

[4] 王参军,邹文艺,张玲,范清林,宋礼华. 突变人干扰素-α2b基因5′端提高其在大肠杆

菌中的表达.安徽医科大学学报,2010,45(2):149-153

[5] 代云见,王明蓉,杜天飞.微生物基因工程育种技术的研究进展.药研动态(国外医药抗

生素分册),2008,29(5):193-200

[6] 王海波,申烨华,秦芳玲等.大肠杆菌生产重组人干扰素-γ培养基的研究.西北大学学

报(自然科学版),2003,33(2):174-178

[7] 邹钟诚,侯剑英,王增学,苏冬梅.大肠杆菌发酵重组人干扰素-α2a的高密度、高表达.

微生物学杂志,1999,19(1):24-26

[8] 周鸣南,方深高,陶征宇,何丽敏.人a2b型干扰素的基因克隆及其在大肠杆菌中的表达

提高.中国医药工业杂志,1995,26(4):152-155

[9] 党建章,郑雄敏,李飞.PVA包埋产延胡索酸酶的黄色短杆菌的固定化研究.南昌大学学

报,1995,19(4):380-384

基因工程重组人干扰素概述(

根据来源、基因序列和氨基酸组成分类 I 型干扰素: IFNα、IFNβ、IFN τ、IFN ω 来源:白细胞、成纤维细胞、病毒感染的组织细胞等 功能:抗病毒感染、抗肿瘤生长 免疫调节(较弱) 其中IFN-α为多基因产物,有23种以上的亚型。 II 型干扰素:干扰素γ(IFN ) 来源:活化的T细胞和NK细胞产生 功能:免疫调节 提高单核巨噬细胞、树突状细胞的抗原提呈能力 增强Tc细胞和NK细胞的杀伤活性 抑制TH2细胞形成,下调体液免疫应答 趋化作用 抗病毒和抗肿瘤作用(次要)

2. 根据动物来源确定分类,例如人干扰素(HuIFN),小鼠干扰素(MuIFN)。 免疫调节作用表现在对宿主免疫细胞活性的影响,如对巨噬细胞、T细胞、B细胞和NK细胞等均有一定作用。 ●对巨噬细胞的作用:IFNγ可使巨噬细胞表面MHCⅡ类分子的表达 增加,增强其抗原递呈能力;此外还能增强巨噬细胞表面表达Fc 受体,促进巨噬细胞吞噬免疫复合物、抗体包被的病原体和肿瘤细胞。 ●对淋巴细胞的作用:干扰素对淋巴细胞的作用较为复杂,可受剂 量和时间等因素的影响而产生不同的效应。在抗原致敏之前使用大剂量干扰素或将干扰素与抗原同时投入会产生明显的免疫抑制作用;而低剂量干扰素或在抗原致敏之后加入干扰素则能产生免疫增强的效果。在适宜的条件下,IFNγ对B细胞和CD8+T细胞的分化有促进作用,但不能促进其增殖。IFNγ能增强TH1细胞的活性,增强细胞免疫功能;但对TH2细胞的增殖有抑制作用,因此抑制体液免疫功能。IFNγ不仅抑制TH2细胞产生IL-4,而且抑制IL-4对B细胞的作用,特别是抑制B细胞生成IgE。 ●对其它细胞的作用:IFNγ对其他细胞也有广泛影响:①刺激中性 粒细胞,增强其吞噬能力;②活化NK细胞,增强其细胞毒作用;

基因工程及其在大肠杆菌生产人干扰素中的应用

基因工程及其在大肠杆菌生产人干扰素中的应用 一、课程设计目的 了解工业生产中的新型育种技术并比较不同育种技术的优势; 学习理解基因工程育种技术及其操作原理; 研究基因工程育种技术在人干扰素生产中的创新。 二、课程设计题目描述与要求 本文介绍一种二十世纪七十年代发展起来的一种新型生物技术——基因工程,介绍其在育种中的应用。文中重点介绍了基因工程育种的一般步骤,以及近年来出现的运用基因工程进行定向育种的主要新技术:基因的定点突变,易错PCR,DAN重排及基因组重排。之后,应用基因工程育种技术重组大肠杆菌BL21(pBAI)生产人干扰素a2b, 通过优化补料分批培养时葡萄糖的流加策略,提高了hIFNa2b的表达量和表达速率。不同的葡萄糖流加方式有各自的优点,采用恒速流加葡萄糖的方式,hIFNa2b的表达量达到6 540 mg/L,高于目前已知文献中hIFNa2b的最高表达量5 200 mg/L。

三、课程设计报告内容 引言 基因工程是二十世纪七十年代发展起来的一种新型生物技术,其发展从根本上改变了生物技术的研究和开发应用模式。1972年美国的Berg和Jackson等人将猿猴病毒基因组SV 40DNA、λ噬菌体基因以及大肠杆菌半乳糖操纵子在体外重组获得成功。翌年,美国斯坦佛大学的Cohen和Boyer等人在体外构建出含有四环素和链霉素连个抗性基因的重组质粒分子,将之导入大肠杆菌后,该重组质粒得以稳定复制,并赋予受体细胞相应的抗生素抗性,由此宣告了基因工程的诞生。在二十世纪八十年代以来,随着大批大批成果的出现及应用,基因工程带来了一场新的革命。 利用这些技术,可以直接地、有针对性地在DNA分子水平上改造生物的遗传性状。通过转入外源基因,微生物和动、植物细胞可以产生出自身原来没有的蛋白质。同样,利用重组DNA技术,也可以使一些原来存在量极低但有重要工业或医学用途的小分子(抗生素)或蛋白质之外的大分子物质得以大量生产。特别是随着重组DNA技术的完善和发展,以基因水平为核心的现代分子定向育种技术越来越受到工业微生物育种学家的关注,并展示了良好的应用前景。 1、基因工程育种 基因工程育种是在基因水平上,运用人为方法将所需的某一供体生物的遗传物质提取出来,在离体条件下用适当的工具酶进行切割后,与载体连接,然后导入另一细胞,使外源遗传物质在其中进行正常复制和表达引,与前几种育种技术相比,基因工程育种技术是人们在分子生物学指导下的一种自觉的、能像工程一样可预先设计和控制的育种新技术,它可实现超远缘杂交,因而是最新最有前途的一种育种新技术。基因工程技术的全部过程一般包括目的基因DNA片段的取得、DNA片段与基因载体的体外连接、外源基因转入宿主细胞和目标基因的表达等主要环节。 1.1 基因工程育种的一般步骤是: (1)目的基因的获得:一般通过化学合成法、物理化学法(包括密度梯度离心法、单链酶法、分子杂交法)、鸟枪无性繁殖法、酶促合成法(逆转录法)、Norther

(整理)基因重组与基因工程

基因重组与基因工程 一、选择题 1.F因子从一个细胞转移至另一个细胞的基因转移过程称为:A.转化 B.转导 C.转染 D.转座 E.接合 2.通过自动获取或人为地供给外源DNA使受体细胞获得新的遗传表型,称为:A.转化 B.转导 C.转染 D.转座 E.接合 3.溶原菌是指: A.整合了噬菌体基因组的细菌 B.整合了质粒基因组的细菌 C.含有独立噬菌体基因组的细菌 D.含有独立质粒基因组的细菌 E.含有独立噬菌体和质粒基因组的细菌 4.由插入序列和转座子介导的基因移位或重排称为: A.转化 B.转导

C.转染 D.转座 E.接合 5.由整合酶催化、在两个DNA序列的特异位点间发生的整合称为:A.位点特异的重组 B.同源重组 C.基本重组 D.随机重组 E.人工重组 6.发生在同源序列间的重组称为: A.位点特异的重组 B.非位点特异的重组 C.基本重组 D.随机重组 E.人工重组 7.限制性核酸内切酶切割DNA后产生: A.5'磷酸基和3'羟基基团的末端 B.3'磷酸基和5'羟基基团的末端 C.5'磷酸基和3'磷酸基团韵末端 D.5'羟基和3'羟基基团的末端 E.以上都不是 8.可识别并切割特异DNA序列的称: A.限制性核酸外切酶 B.限制性核酸内切酶

C.非限制性核酸外切酶 D.非限制性核酸内切酶 E.DNA酶 9.限制酶的识别顺序通常是: A.聚腺苷酸 B.聚胞苷酸 C.RNA聚合酶附着点 D.回文对称序列 E.甲基化“帽”结构 10.限制酶: A.从噬菌体中提取而得 B.可将单链DNA任意切开 C.可将双链DNA任意切开 D.可将双链DNA特异切开 E.不受DNA甲基化影响. 11.限制酶的作用特性不包括: A.在对称序列处切开DNA B.同时切开双链DNA C.DNA两链的切点常在同一位点 D.酶切后的DNA片段多具有粘性互补末端 E.酶辨认的碱基一般为4—6个 12.限制酶的特点不包括: A.只识别一种核苷酸序列 B.其识别不受DNA来源的限制

大肠杆菌基因工程菌常用类型

1、大肠杆菌DH5a菌株 DH5a是世界上最常用的基因工程菌株之一。由于DH5α是DNA酶缺陷型菌株,有利于基因克隆,保存质粒,但该菌株的蛋白酶没有缺陷,表达的蛋白容易被降解,因此通常不作为表达菌株。E.coli DH5a在使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。可用于蓝白斑筛选鉴别重组菌株。 基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gyrA96,relA1 2、大肠杆菌BL21(DE3) 菌株 该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。T7噬菌体RNA聚合酶位于λ噬菌体DE3区,该区整合于BL21的染色体上。该菌适合表达非毒性蛋白。 基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3) 3、大肠杆菌BL21(DE3) pLysS菌株 该菌株含有质粒pLysS,因此具有氯霉素抗性。PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。该菌适合表达毒性蛋白和非毒性蛋白。 基因型:F-,ompThsdS(rBB-mB-),gal,dcm(DE3,pLysS,Camr 4、大肠杆菌JM109菌株 该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的LacZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株。 基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac-proAB)/F’[traD36,proAB+,lacIq,lacZΔM15] 5、大肠杆菌TOP10菌株 该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。 基因型:F- ,mcrAΔ(mrr-hsd RMS-mcrBC),φ80 ,lacZΔM15,△lacⅩ74,recA1 ,araΔ139Δ(ara-leu)7697,galU,galK,rps,(Strr) endA1,nupG 6、大肠杆菌HB101菌株 该菌株遗传性能稳定,使用方便,适用于各种基因重组实验。 基因型:supE44,hsdS20(rB-mB-),recA13,ara-14,proA2,lacY1,galK2,rpsL20,xyl-5,mtl-1,leuB6,thi-1 7.XL10-Gold菌株:所制备的感受态细胞是目前转化效率最高的感受态细胞,缺失几乎所有已知的限制酶切系统;同时缺失核酸内切酶(endA),提高了质粒DNA的产量和质量;重组酶缺陷型(recA)减少插入片段的同源重组概率,保证了插入DNA的稳定性,提高感受态转化效率及大质粒转化能力的宿主菌基因型。

最新基因重组与基因工程

基因重组与基因工程

基因重组与基因工程 一、选择题 1.F因子从一个细胞转移至另一个细胞的基因转移过程称为: A.转化 B.转导 C.转染 D.转座 E.接合 2.通过自动获取或人为地供给外源DNA使受体细胞获得新的遗传表型,称为:A.转化 B.转导 C.转染 D.转座 E.接合 3.溶原菌是指:

A.整合了噬菌体基因组的细菌 B.整合了质粒基因组的细菌 C.含有独立噬菌体基因组的细菌 D.含有独立质粒基因组的细菌 E.含有独立噬菌体和质粒基因组的细菌 4.由插入序列和转座子介导的基因移位或重排称为: A.转化 B.转导 C.转染 D.转座 E.接合 5.由整合酶催化、在两个DNA序列的特异位点间发生的整合称为:A.位点特异的重组 B.同源重组 C.基本重组 D.随机重组

E.人工重组 6.发生在同源序列间的重组称为:A.位点特异的重组 B.非位点特异的重组 C.基本重组 D.随机重组 E.人工重组 7.限制性核酸内切酶切割DNA后产生: A.5'磷酸基和3'羟基基团的末端 B.3'磷酸基和5'羟基基团的末端 C.5'磷酸基和3'磷酸基团韵末端 D.5'羟基和3'羟基基团的末端 E.以上都不是 8.可识别并切割特异DNA序列的称: A.限制性核酸外切酶 B.限制性核酸内切酶

C.非限制性核酸外切酶 D.非限制性核酸内切酶 E.DNA酶 9.限制酶的识别顺序通常是:A.聚腺苷酸 B.聚胞苷酸 C.RNA聚合酶附着点 D.回文对称序列 E.甲基化“帽”结构 10.限制酶: A.从噬菌体中提取而得B.可将单链DNA任意切开 C.可将双链DNA任意切开 D.可将双链DNA特异切开 E.不受DNA甲基化影响.11.限制酶的作用特性不包括:

仔猪大肠杆菌基因工程疫苗

仔猪大肠杆菌病基因工程灭活疫苗 K88ac-ST1-LTB) 新生仔猪大肠杆菌病是由产肠毒素性大肠埃希氏菌(Enterotoxigenic E.coli ,ETEC)引起的一种高度接触性、急性、致死性腹泻,特征是排黄色或黄白色稀粪。临床上以1? 7 日龄新生仔猪下痢为主要特征,其中1—3 日龄最多见。个别耐过仔猪经较长时间才能正常生长,但病愈存活后其生长发育和生产性能指标受到严重影响。 大肠杆菌性腹泻在我国广泛流行,新生仔猪大肠杆菌性腹泻的发病率和死亡率在不同地区各有差异,发病率为5.69%?86.5%,死亡率为17.0%?73.0% 。本病是影响养猪业发展的主要疾病之一。 产肠毒素性大肠杆菌(ETEC)有两类致病因子:一类为黏附素(或称定居因子,起吸附固定作用,主要分为K88 K99 987P、F41等,其中以心为主。另一类为肠毒素(耐热性肠毒素ST和不耐热性肠毒素LT),是直接导致腹泻的因子。细菌通过黏附素固定在肠黏膜表面,大量繁殖后产生ST与LT两种肠毒素,引起剧烈腹泻,脱水、酸中毒、低血钾等。 辽宁益康生物股份有限公司科研人员经过大量的流行病学调查,病原菌的分离鉴定,致病因子的研究,从细菌致病机理出发,成功地研发出免疫谱宽,免疫效果好,使用安全的仔猪大肠杆菌基因工程疫苗,从根本上解决了新生仔猪大肠杆菌性腹泻免疫预防这一难题,现将有关情况报告如下。 一、疫苗免疫机理 妊娠母猪临产前进行大肠杆菌基因工程灭活疫苗免疫接种,产生三种抗体(抗ST1抗 体、抗LT抗体、抗K88抗体),仔猪出生后吮食初乳,获得母源抗体产生被动免疫,从而抵抗大肠杆菌在肠道定居增殖,有效中和肠毒素,获得保护力。 二、产品特点 1、具有良好的免疫原性。 针对致泻因子耐热肠毒素(ST)、不耐热肠毒素(LT)和主要黏附因子瓯,采用基因工程技术构建的GE-3菌株,可以有效表达K88ac-ST i-LT B融合蛋白,并辅以氢氧化铝胶佐剂,在保留了K88ac和LTB 良好免疫原性基础上,赋予了ST1免疫原性。 2、构建菌株优良稳定。通过对菌株的安全性、有效性、菌种限定代次及保存条件、疫苗保存条件及保 存期等 试验,证实了该菌株是一株良好的疫苗候选株。 3、该疫苗生产工艺科学、质量稳定。通过对菌株发酵培养的培养基、诱导剂及其诱导条件、通气量及 菌液灭活等进行了筛 选和优化,确定了工业化生产工艺,并通过安全性、效力检验等试验,批次间稳定。 4、本疫苗安全性可靠、无毒副作用。采用实验动物模型接种,田间与区域本动物接种等试验进行安 全性评价,表明本疫 苗无肠毒素活性、无致病性,妊娠母猪临床母猪全部存活,均无流产、死胎和胎儿畸形等现象,分娩正常,所产仔猪生长发育良好。 5、免疫效果确实。经仔猪免疫保护试验证实,灭活疫苗免疫初产怀孕母猪两次,新生仔猪吮食一天初 乳后,用大肠杆菌强毒C83902 (K88ac+、ST+和LT+)株攻击新生仔猪,均获得了较好的免疫保护:保护率为90~97.4%,比未免疫组高16.17% ,平均日增重提高40g 。 三、安全试验、效力试验及推广应用效果情况 1安全试验 (1)倍量接种安全试验

基因重组和基因工程

第十七章基因重组和基因工程 一、单项选择题 1.限制性核酸内切酶切割DNA后产生 A. 5′磷酸基和3′羟基基团的末端 B. 5′磷酸基和3′磷酸基团的末端 C. 5′羟基和3′羟基基团的末端 D. 3′磷酸基和5′羟基基团的末端 E. 以上都不是 2. 可识别并切割特异DNA序列的酶是 A. 非限制性核酸外切酶 B. 限制性核酸内切酶 C. 限制性核酸外切酶 D. 非限制性核酸内切酶 E. DNA酶 3. 有关限制性核酸内切酶,以下哪个描述是错误的? A. 识别和切割位点通常是4~8个bp长度 B. 大多数酶的识别序列具有回文结构 C. 在识别位点切割磷酸二酯键 D. 只能识别和切割原核生物DNA分子 E. 只能切割含识别序列的双链DNA分子 4. 在重组DNA技术中催化形成重组DNA分子的酶是 A. 解链酶 B. DNA聚合酶 C. DNA连接酶 D. 内切酶 E. 拓扑酶 5. 对基因工程载体的描述,下列哪个不正确? A. 可以转入宿主细胞 B. 有限制酶的识别位点 C. 可与目的基因相连 D. 是环状DNA分子 E. 有筛选标志 6. 克隆所依赖的DNA载体的最基本性质是 A. 卡那霉素抗性 B. 青霉素抗性 C. 自我复制能力 D. 自我表达能力 E. 自我转录能力 7. 重组DNA技术中常用的质粒DNA是 A. 病毒基因组DNA的一部分 B. 细菌染色体外的独立遗传单位 C. 细菌染色体DNA的一部分 D. 真核细胞染色体外的独立遗传单位 E. 真核细胞染色体DNA的一部分 8. 下列哪种物质一般不用作基因工程的载体? A. 质粒 B. 噬菌体

C. 哺乳动物的病毒 D. 逆转录病毒DNA E. 大肠杆菌基因组 9. 关于pBR322质粒描述错误的是 A.有一些限制酶的酶切位点B.含有1个ori. C.含有来自大肠杆菌的lacZ基因片段D.含个氨卞青霉素抗性基因E.含四环素抗性基因。 10. 以mRNA为模板催化cDNA合成需要下列酶 A. RNA聚合酶 B. DNA聚合酶 C. Klenow片段 D. 逆转录酶 E. DNA酶 11. 催化聚合酶链反应需要下列酶 A. RNA聚合酶 B. DNA聚合酶 C. Taq DNA聚合酶 D. 逆转录酶 E.限制性核酸内切酶 12. 关于PCR的描述下列哪项不正确? A. 是一种酶促反应 B. 引物决定了扩增的特异性 C. 扩增产物量大 D.扩增的对象是DNA序列 E.扩增的对象是RNA序列 13. 在基因工程中,DNA重组体是指 A. 不同来源的两段DNA单链的复性 B. 目的基因与载体的连接物 C. 不同来源的DNA分子的连接物 D. 原核DNA与真核DNA的连接物 E. 两个不同的结构基因形成的连接物 14. 基因工程操作中转导是指 A. 把重组质粒导入宿主细胞 B. 把DNA重组体导入真核细胞 C. 把DNA重组体导入原核细胞 D. 把外源DNA导入宿主细胞 E. 以噬菌体或病毒为载体构建的重组DNA导入宿主细胞 15. 重组DNA的筛选与鉴定不包括哪一方法 A. 限制酶酶切图谱鉴定 B. PCR扩增鉴定 C. 显微注射 D. 蓝白筛选 E.抗药筛选

冻干基因工程α1b干扰素使用说明书

冻干基因工程α1b干扰素使用说明书 本品系用健康人白细胞中获得的α1b干扰素基因组建杂交质粒,转化大肠杆菌,使之高效表达人α1b干扰素,经高度纯化后冻干制成。本品为微黄色疏松体,每支含α1b干扰素10μg、20μg或30μg,相当于用MDBK/EMC系统测定的效价100万单位,200万单位和300万单位,用于慢性乙型肝炎、丙型肝炎及毛细胞白血病的治疗。 用法 每支用灭菌注射用水1ml溶解,肌内或皮下注射,不得静脉注射,建议晚上给药。剂量及疗程推荐如下: 毛细胞白血病:40~60μg,每天注射一次,连续用药6个月以上。可根据病情适当调整,缓解后可改为隔天注射1次。 慢性乙型肝炎:40μg(20~60μg),每天注射一次,或在用药4周后改为每周3次,连续治疗3个月或更长。 副反应 最常见的副反应为发热和疲劳,常在开始用药阶段出现,多数为低热(38℃以下),一般为一过性。其他副反应有头痛、肌痛、关节痛、食欲不振、恶心等。

常见的化验异常是颗粒白细胞减少和血小板减少,停药后可恢复。 如出现上述患者不能忍受的严重副反应,应减少剂量或停药,并进行对症治疗。 禁忌证 1.已知对干扰素制品过敏者; 2.有心绞痛、心肌梗塞病史以及其他严重心血管病史者; 3.有其他严重疾病,不能耐受本品之副反应者; 4.癫痫和其他中枢神经系统功能紊乱者。 注意事项 1.凡有明显过敏体质,特别是对抗生素有过敏者,本品应慎用,必须使用时应先用本品作皮肤试验(1:100稀释,皮内注射),阴性者方可使用。在使用过程中如发生过敏反应应立即停药,并给予相应治疗。 2.使用前应仔细检查安瓿,如安瓿有裂缝、破损不可使用。在加入灭菌注射用水后稍加振荡,制品应溶解良好,如有不能溶解的块状或絮状物,不可使用。 3.制品溶解后应一次用完,不得分次使用。

基因工程在疾病治疗方面的应用

浅谈基因工程药物 基因工程药物是指用现代基因重组高科技对基因进行克隆,通过重组DNA导入大肠杆菌、酵母或动物细胞成功构建工程菌株或细胞株,在工程菌株、细胞中所表达生产的新型药物包括细胞因子、多肽类激素、溶血栓药物、疫苗、抗体、反义RNA及基因治疗药物等等多种难治疾病的基因工程药物. 基因工程药物因其疗效好、应用范围广泛、副作用小的特点成为新药研究开发的新宠。也是发展最迅速和最活跃的领域。自1982年美国Lilly公司上市了第一个基因工程产品——人胰岛素以来,至今已有基因工程药物大约140多种上市,尚处于临床试验或申报阶段的基因工程药物有500多种。当传统制药业的增长速度减慢时,基因工程制药正在加速发展,全世界基因工程药物持续6年销售额增长率都在l5%~33%,基因工程制药已成为制药业的一个新亮点[1-2]。 一.目前药物治疗的主要类型 1.胰岛素至今仍是临床上治疗糖尿病最有效的方法。 过去,胰岛素主要从猪等大家畜胰腺中提取。从一头猪的胰腺中只能提取出300单位胰岛素,而一个病人每天就需要40单位胰岛素,因此远远不能满足需要。 基因工程技术一问世,科学家就想到利用该技术来解决胰岛素药源不足的问题。他们首先要找到胰岛素基因,在人的胰岛细胞里有一段特定结构的DNA 分子指挥着胰岛素的合成,然后又找到在人的大肠里存在对人体无害的大肠杆菌。把人的胰岛素基因转入到大肠杆菌的细胞中,随着大肠杆菌的繁殖,胰岛素基因也一代代的遗传下去。大肠杆菌繁殖速度相当快,大约20分钟就能繁殖一代,把它放到大型的发酵罐里进行人工培养,就可以大量繁殖,并且生产出大量人的胰岛素。 1981年,基因重组人胰岛素产品正式投入市场,大肠杆菌成了名副其实的生产胰岛素的“活工厂”,胰岛素供不应求的问题彻底解决了 胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。将合成的胰岛素基因导入大肠杆菌,每2000L培养液就能产生100g胰岛素!大规模工业化生产不但解决了这种比黄金还贵的药品产量问题 2.干扰素: 是哺乳动物细胞在诱导下产生的一种淋巴因子,能够加强巨噬细胞的吞噬作用和对癌细胞的杀伤作用,抑制病毒在细胞内的增殖,用于肿瘤和其他病毒病的治疗。基因工程干扰素干扰素治疗病毒感染简直是“万能灵药”!过去从人血中提取,

基因工程和基因重组

第十四章基因重组与基因工程 内容提要: 细菌的基因转移包括接合作用、转化作用、转导作用等。当细胞与细胞或细菌通过菌毛相互接触时,质粒DNA从一个细胞转移至另一个细胞,这种类型的DNA转移称为接合作用。通过自动获取或人为的供给外源DNA,使细胞或培养的受体细胞获得新的遗传表型,这就是转化作用。由病毒携带将宿主DNA片段从一个细胞转移至另一细胞的现象或机制,称为转导作用。在接合、转化、转导或转座过程中,不同DNA分子间发生的共价连接即为重组。 重组DNA技术是在人们对自然界基因转移和重组的认识基础上创立的新技术。为研究基因的结构与功能,从构建的基因组DNA文库或cDNA文库分离、扩增某一感兴趣的基因就是基因克隆或分子克隆,又称重组DNA技术。一个完整的基因克隆过程应包括:1.分,即目的基因的获取及基因载体的选择。目的基因指科学家感兴趣的外源基因,其来源有几种途径:化学合成、PCR技术、基因组文库或cDNA文库中获得。载体是目的基因的携带者,常用的载体有质粒、噬菌体等。2.切,即限制性核酸内切酶的应用。限制性内切酶是识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶,是实现重组DNA技术的重要的工具酶。3.接,即将目的基因与载体连接形成重组体(或重组DNA)。4.转,即将重组体导入宿主菌(或细胞),根据采用的载体性质不同,将重组体导入宿主菌的方法有转化、转染及感染。5.筛,即重组体的筛选与鉴定,将重组体导入宿主菌后,通过适当形式的培养板生长即可获得一定的抗药菌落。利用原位杂交,和Southern印迹或免疫学方法对抗药菌落进行筛选,获得含目的基因的转化子菌落,再经扩增、分离重组DNA获得基因克隆。重组DNA 技术在疾病基因的发现,表达有药用价值的蛋白质,DNA诊断及疾病的预防等方面具有广泛应用价值,并促进了当代分子医学的诞生和发展。 一、选择题 【A型题】 1.下列DNA序列属于回文结构的是() A.ATGCCG TACGGC B.GAA TTC CTTAAG C.GGCCGG CCGGCC D.TCTGAC AGACTG E.CTAGGG GA TCCC 2.DNA经限制性内切核酸酶切割后,断端易于首尾相接,自行成环。这是因为存在着() A.钝性末端B.平端C.粘性末端D.5’端E.3’端 3.限制性内切核酸酶的通常识别序列是() A.粘性末端B.聚腺苷酸 C.回文对称序列D.RNA聚合酶附着点E.甲基化“帽”结构 4.pBR322是()

基因工程制备干扰素

第I 页共11 页 毕业论文(设计) 题目浅谈基因工程生产人干扰素 姓名乔雪姣学号11111807 专业微生物技术及应用 指导教师鞠守勇职称讲师 中国·武汉 二○一二年十一月

目录 摘要 .............................................................................................................. 错误!未定义书签。关键词 ............................................................................................................ 错误!未定义书签。Abstract (3) Key words ....................................................................................................... 错误!未定义书签。前言 .. (4) 1、干扰素作用及其机理详述 (4) 1.1干扰素的种类 (5) 1.2干扰素的性质 (5) 1.3干扰素的作用.................................................................................. 错误!未定义书签。 1.3.1 干扰素的作用........................................................................... 错误!未定义书签。 1.3.2 干扰素的作用示意图................................................................. 错误!未定义书签。 1.4 干扰素的作用机理......................................................................... 错误!未定义书签。 2、基因工程 (6) 2.1 基因工程的概论 (6) 2.2 基因扩增基本过程 (6) 2.2.1基因的体内扩增 (6) 2.2.2基因的体外扩增——PCR技术 (6) 2.3 基因操作中的载体......................................................................... 错误!未定义书签。 2.3.1对载体的认识.............................................................................. 错误!未定义书签。 2.3.2大肠杆菌载体 (6) 2.3.3pBR322质粒载体的特点 (7) 2.4基因的导入 (7) 2.4.1 基因导入的概念 (8) 2.4.2基因导入的方法 (8) 2.5基因的导入后的筛选与鉴定 (8) 2.5.1筛选与鉴定的原因 (8) 2.5.2筛选与鉴定的方法 (8) 2.6目的基因的表达与鉴定 (8) 2.6.1目的基因表达与鉴定的原因 (8) 2.6.2目的基因的表达系统与鉴定方法 (8) 3.基因工程生产干扰素 (8) 3.1干扰素目的基因的分离与扩增 (10) 3.2目的基因与克隆载体进行体外重组.............................................. 错误!未定义书签。 3.3重组质粒转入大肠杆菌宿主细胞 (9) 3.4受体菌的筛选 (9) 3.5构建工程菌 (9) 3.6干扰素的提取与纯化 (10) 4.基因工程生产干扰素总结 (10) 参考文献 (10) 致谢 (11)

基因重组与基因工程《生物化学》复习提要

基因重组与基因工程 第一节 DNA的重组 自然界不同物种和个体之间的基因转移和重组是经常发生的,它是基因变异和物种演变、进化的基础。 一、同源重组 同源重组:发生在同源序列间的重组称之,又称基本重组。以E.coli的同源重组为例,了解同源重组机制的Holliday模型(1964年) 结果可产生片段重组体和拼接重组体两种重组体。 二、细菌的基因转移与重组 (一)接合作用 概念:当细胞与细胞、或细菌通过菌毛相互接触时,质粒DNA就可以从一个细胞(细菌)转移至另一细胞(细菌),此类型的DNA转移,称之。 只有某些较大的质粒,才能通过接合作用从一个细胞移至另一细胞。质粒双链DNA中的一条链就会切割、产生单链缺口,切口单链DNA通过鞭毛连接桥向另一细胞转移,随后在两细胞内分别以单链DNA为模板合成互补链。 (二)转化作用 1、概念:通过自动获取或人为地供给外源DNA,使细胞或培养的受体 细胞获得新的遗传表型,这就是转化作用。即由外来DNA引起生物类型的改变过程。 2、本质:外来DNA重组(整合)到宿主细胞内表达新的蛋白质,(经过 复制、转录、翻译)——→经过转化,遗传类型改变。 但是,由于较大的外源DNA不易透过细胞膜,因此自然界发生的转化作用效率并不高,染色体整合几率则更低。 (三)转导作用 概念:当病毒从被感染的(供体)细胞释放出来,再次感染另一(受体)细胞时,发生在供体细胞与受体细胞之间的DNA转移及基因重组即为转导作用。

常见:噬菌体感染宿主时伴随基因转移;噬菌体感染宿主有两种结局:1)溶菌生长途径——噬菌体DNA在宿主菌内迅速增殖,产生新的病毒颗粒,溶解细菌,释放新生噬菌体; 2)溶源菌生长途径——噬菌体DNA整合进宿主染色体,随宿主DNA 复制而被动复制。 三、位点特异的重组 位点特异的重组:由整合酶催化、在两个DNA序列的特异位点间发生的整合。 (一)λ噬菌体DNA的整合 (二)细菌的特异位点重组 沙门氏菌H片段倒位决定鞭毛相转变 (三)免疫球蛋白基因的重排 四、转座重组 概念:大多数基因在基因组内的位置是固定的,有些基因可以从一个位置移动到另一位置,这种由插入序列和转座子介导的基因移位或重排,称为转座。 (一)插入序列转座——两种形式 1、保守性转座:是插入序列从原位迁至新位; 2、复制性转座:是插入序列复制后,其中的一个复制本迁移至新位,另一个仍保留在原位。 (二)转座子转座 概念:转座子就是可从一个染色体位点转移至另一位点的分散的重复序列。 第二节重组DNA技术 一、重组DNA技术(或称基因工程)相关概念: 1、DNA克隆(分子克隆):应用酶学的方法,在体外将各种来源的遗传物质 (同源的或异源的、原核的或真核的、天然的或人工的DNA)与载体DNA 接合成一具有自我复制能力的DNA分子——复制子(replicon),继而通过

第二章 基因重组与基因工程

中南大学生物科学与技术学院 分子生物学研究中心 教案 授课科目: 医学分子生物学 授课内容:基因重组与基因工程 授课对象:医学五年制 授课时数:4学时 授课教师: 授课地点:湘雅医学院新教学区 授课时间: 授课教材:医学分子生物学(21世纪高等院校教材), 胡维新主编,北京:科学出版社,2007年2月,第一 版; 生物化学,周爱儒主编,人民卫生出版社,2005,第 6版 基因重组与基因工程 Genetic Recombination and Genetic Engineering 一、目的要求: 掌握:限制性核酸内切酶的概念和特点;常用克隆载体的结构特点;目的基因 的获取方法;克隆载体的选择;外源基因与载体的连接;重组DNA导入 受体菌;重组体的筛选。 熟悉:DNA聚合酶I、Klenow片段、连接酶等常用的工具酶;克隆基因的表达。了解:同源重组;重组DNA技术与医学的关系。 二、讲授重点: 重组DNA技术基本原理及操作步骤 三、讲授难点: α-互补筛选 四、教学方法:多媒体教学

五、教具:多媒体课件 六、讲授内容: 第一节DNA的重组DNA Recombination 同源重组 发生在同源序列间的重组称为同源重组(homologous recombination),又称基本重组。是最基本的DNA重组方式,通过链的断裂和再连接,在两个DNA分子同源序列间进行单链或双链片段的交换。 第二节重组DNA技术 一、重组DNA技术相关概念 (一)DNA克隆 1.克隆(clone) :来自同一始祖的相同副本或拷贝的集合。 2.获取同一拷贝的过程称为克隆化(cloning),即无性繁殖。 3.DNA克隆:应用酶学的方法,在体外将各种来源的遗传物质(同源的或异源的、原核的或真核的、天然的或人工的DNA)与载体DNA接合成一具有自我复制能力的DNA分子——复制子(replicon),继而通过转化或转染宿主细胞,筛选出含有目的基因的转化子细胞,再进行扩增提取获得大量同一DNA分子,也称基因克隆或重组DNA (recombinant DNA) 。 4.基因工程(genetic engineering) ——实现基因克隆所用的方法及相关的工作称基因工程,又称重组DNA工艺学。 (二)工具酶 1.限制性核酸内切酶(restriction enzyme) 限制性核酸内切酶是基因克隆中最重要的工具酶,主要从原核细胞中提取。它是一种核酸内切酶,能从双链DNA内部特异位点识别并且裂解磷酸二酯键。2.DNA聚合酶Ⅰ 有聚合酶活性, 3ˊ→5ˊ核酸外切酶活性, 5ˊ→3ˊ核酸外切酶活性。3.DNA聚合酶Ⅰ大片段 DNA聚合酶Ⅰ大片段(large fragment of DNA polymerase I)为DNA聚合酶I 用枯草杆菌蛋白酶(subtilisin)裂解后产生的大片段,这个片段也称为Klenow片段(Klenow fragment)。 有5ˊ→3ˊ聚合酶活性, 3ˊ→5ˊ核酸外切酶活性, 无5ˊ→3ˊ核酸外切酶活性 4.逆转录酶 是一种RNA依赖的DNA聚合酶,即以RNA为模板合成DNA,合成时需要四种脱氧核苷酸及3ˊ-OH引物,合成方向为5ˊ→3ˊ延伸,无3ˊ→5ˊ外切酶活性。广泛用于以mRNA为模板合成cDNA,构建cDNA文库。 5.T4DNA连接酶 T4 DNA连接酶催化双链DNA一端3ˊ-OH与另一双链DNA的5ˊ端磷酸根形成3ˊ→5ˊ磷酸二酯键,使具有相同粘性末端或平端的DNA两端连接起来。

相关文档
最新文档