第三章自然通风

第三章自然通风
第三章自然通风

第三章自然通风概述

概念:是指利用建筑物内外空气的密度差引起的热压或室外大气运动引起的风压来引进室外新鲜空气达到通风换气作用的一种通风方式。

作用:利用室内外气流交换,降低室温和排除湿气,保证房间正常气候条件与新鲜洁净的空气;房间有一定空气流动,可加强人体的对流和蒸发散热,改善人们的工作和生活条件。 特点:不需动力, 经济; 但进风不能预处理, 排风不能净化, 污染周围环境; 且通风效果不稳定。

3.1 自然通风作用原理 只要建筑开口两侧存在压力差?P ,就会有空气流过开口。

3.1.1 热压作用下的自然通风

← 热压:取决于室内外空气温差所致的空气容重差和进出气口的高度差。

1 单层建筑

△Pb-△Pa= △Pb+|△Pa |=gh(ρw-ρn)

2 多层建筑

如果是一多层建筑物,仍设室内温度高于室外温度,则室外空气从下层房间的外门窗缝隙或开启的洞口进入室内,经内门窗缝隙或开启的洞口进入楼内的垂直通道向上流动,最后经上层的内门窗缝隙或开启的洞口和外墙的窗、阳台门缝或开启的洞口排至室外。这就形成了多层建筑物在热压作用下的自然通风,也就是所谓的“烟囱效应”。

如果建筑物内没有“烟囱”(与室外有联系的竖向通道),也就没有相应的“烟囱效应”。

3.1.2 室外风压作用下的自然通风

在建筑物迎风面,气流受阻,部分动压转化为静压,静压值升高,风压为正,称为正压;在建筑物的侧面和背面由于产生局部涡流,形成负压区,静压降低,风压为负,称为负压。

由于气流的撞击作用,在迎风面形成一个滞流区,该处的静压力高于大气压力,处于正压状态。在正压区内气流呈循环流动,在地面附近气流方向与主导风向相反。在一般情况下,风向与该平面的夹角大于30°时,会形成正压区。

室外气流发生建筑绕流时,在建筑物的顶部和后侧形成弯曲循环气流。屋顶上部的涡流区称为回流空腔,建筑物背风面的涡流区称为回旋气流区。这两个区域的静压力均低于大气压力,形成负压区,我们把它们统称为空气动力阴影区。

ρμζρυυρζΔP 2ΔP 22P Δ2===ρμζμP F L ?==21则令

3.2 工业厂房自然通风的计算

3.2.1 设计性计算的步骤

自然通风设计性计算通常按下列步骤进行:

1. 计算全面换气量及排风温度

●排除车间余热量所需的全面换气量

●车间上部排风温度的确定方法有几种,目前常用的有温度梯度法和有效

热量法。

2. 确定窗孔的位置,分配各窗孔的进、排风量

3. 确定各窗孔内外压差和窗孔面积

(1) 温度梯度法:对于散热较为均匀,散热量不大的车间,室内空气温度沿高度方向的分布规律大致是一直线关系。

(2) 有效热量法(m 值法):热射流,在上升过程中不断卷入周围的空气,热射流温度逐渐下降,当热射流到达屋顶时,其中一部分又沿四周外墙向下回流而返回作业地带或在作业地带上部又重新被热射流卷入。返回作业地带的那部分循环气流,把车间

总热量的一部分又带回到作业地带而影响着作业地带的温度,这部分的热量称为有效余热量。如果车间总余热量为Q ,则有效余热量即为mQ ,m 值称为有效热量系数。

3.2.2 校核性计算的步骤

当进行校核性计算时,可按已知的进、排风窗孔面积估算出中和面的位置。

已知一单跨热车间,车间总余热量Q =210kJ/s ,m=0.4,进、排风窗均采用单层上悬窗(α=45°),F1=F3=10m2。μ1=μ3=0.52,μ2=0.56,窗孔中心高差H =10m 。夏季室外通风计算温度tw=26℃(ρw =1.181kg/m3),要求室内作业地带温度tn ≤tw +5℃,无局部排风,试确定必须的排风天窗面积F2。

解:(1)确定上部排风温度和室内平均温度

密度ρw=353/T =353/(273+26)=1.181kg/m3

设作业地带温度tn =tw +5℃=(26+5) ℃=31 ℃

上部排风温度tp=tw+(tn-tw)/m=26+(31-26)/0.4=38.5℃

密度ρp=353/T =353/(273+38.5)=1.133kg/m3

室内空气平均温度 tnp=(tn+tp)/2=(31+38.5)/2=34.8 ℃

密度ρnp=353/T =353/(273+34.8)=1.147kg/m3

(2)确定上部排风温度和室内平均温度

(3)根据公式,由进风面积F1、F3确定进风窗孔

高度中心至中和面的

)2(-+=h

t t n p α

因此,中和面至排风窗孔中心的高度为

h2=h-h1=(10-3.26)m=6.74

(4)根据公式确定必须的排风天窗面积

3.3 自然通风与建筑设计

3.3.1 建筑总平面规划

(1)建筑群的布局可从平面和空间两个方面考虑。一般建筑群的平面布局可分为:行列式、错列式、斜列式及周边式等,从通风的角度来看,错列式和斜列式较行列式和周边式好。(2)为了保证建筑的自然通风效果,建筑主要进风面一般应与夏季主导风向成60°~90°角,不宜小于45°,同时应避免大面积外墙和玻璃窗受到西晒。

(3)室外风吹过建筑物时,迎风面的正压区和背风面的负压区都会延伸一定的距离,在这个距离内,如果有其他较低矮的建筑物存在,就会受高大建筑所形成的正压区或负压区的影响。为了保证较低矮的建筑物能正常进风和排风,各建筑之间有关的尺寸应保持适当的比例。

3.3.2 建筑形式的选择

1.建筑高度对自然通风的影响

2.穿堂风

3.多层车间

4.热车间

1. 建筑高度对自然通风的影响

●自然通风的风压作用和热压作用都随着建筑物的高度的增加而增强。

●这对高层建筑物的室内通风是有利的。

●但是,高层建筑能把城市上空的高速风引向地面,产生“楼房风”的危害,这对周

边地区自然通风的稳定性和控制是不利的。

2. 穿堂风

如果迎风面和背风面的外墙开孔面积占外墙总面积1/4以上,且建筑内部阻挡较少时,室外气流横贯整个车间,形成所谓的“穿堂风”。

应用穿堂风时,应将主要热源布置在夏季主导风向的下风侧

3. 多层车间

多层车间,在工艺条件允许下热源尽量安设在上层,下层用于进风。

4. 热车间

◆为了增大进风面积,以自然通风为主的热车间应尽量采用单跨厂房。

◆在多跨厂房中应将冷、热跨间隔布置,尽量避免热跨相邻。

某铝电解车间,为了降低工作区温度,冲淡有害物浓度,厂房采用双层结构。车间的主要放热设备电解槽布置在二层,电解槽两侧的地板上,设置四排连续的进风格子板。室外新鲜空气由侧窗和地板的送风格子板直接进入工作区。这种双层建筑自然通风量大,工作区温升小,能较好的改善车间中部的劳动条件。

3.3.3 工艺布置

以热压为主进行自然通风的厂房,应尽量将散热设备布置在天窗下方。

散热量大的热源应尽量布置在厂房外面,夏季主导风向的下风侧。布置在室内的热源,应采取有效的隔热措施。

当热源靠近生产厂房一侧的外墙布置,而且外墙与热源间无工作点时,热源应尽量布置在该侧外墙的两个进风口之间。

热车间的热源布置

3.3.4 避风天窗及风帽的设计

定义:为了不发生倒灌,可以在天窗上增设挡风板,或者采取其它措施,保证天窗排风口在任何风向下都处于负压区,这种天窗称为避风天窗。

类型:

1、避风天窗: 目前常用的避风天窗有以下几种形式:

矩形天窗下沉式天窗曲(折)线型天窗

2、避风风帽: 在普通风帽的外围增设一周挡风圈。风帽的作用在于使排风口处和风道内产生负压,防止室外倒灌和防止雨水或污物进入风道或室内。

基于BIM模型的室内自然通风模拟研究

基于BIM模型的室内自然通风模拟研究 摘要:本文以杭州某办公楼典型层为例,结合BIM模型与CFD风模拟技术探索 在室内自然通风模拟中的应用。基于BIM技术,利用Revit architecture 软件建立 建筑模型,并导入到风环境模拟软件Phoenics完成项目的室内通风模拟分析,为 建筑设计的“绿色探索”注入高科技力量。 关键词:BIM技术,Phoenics,室内自然通风 一、引言 随着人们对健康、舒适、节能、绿色室内环境的追求,居住环境的品味不断 升高,为满足人体热舒适的要求,对室内空气品质、气流组织要求将越来越高。 自然通风是一种利用室内新鲜空气来改善室内空气品质的被动式通风技术。众多 国内外优秀的建筑都采用此项技术作为其亮点之一,自然通风不仅能满足过渡季 室内通风换气的要求,同时也可大幅度降低机械通风设备的能耗。通过BIM模型,采用数值预测和评价的方法,则是一种更为有效的方法,将越来越被人们所重视。 本文通过杭州某办公楼典型层为例,基于BIM技术完成室内自然通风节能设计,为建筑设计的“绿色探索”注入高科技力量。利用BIM技术在建筑空间设计方 面的优势进行优化设计,为今后室内空间的建筑发展,建筑室内空间的设计提供 了极大的保障[1]。 二、案例概况 1.建筑简介 项目建设地点位于浙江省杭州市,建筑总建筑面积约51000m2,地上15层,建筑性质为办公楼,模拟选取该楼中的典型层(5F),通过BIM建模并运用风模 拟软件Phoenics对该办公楼的室内通风特性进行模拟分析。 2.三维建筑信息模型 基于BIM技术的设计可直接呈现出可视化的三维模拟模型,根据该办公楼典 型层的建筑图纸建立BIM的几何模型,如图1所示。 图1 Revit中的三维建筑信息模型(典型层) 3、模型的数据交换 Revit Architecture 与建筑环境软件之间的数据交换主要通过两种文件格式进行:gbXML格式或者DXF格式文件[2]。 gbXML格式的文件是以空间为基础的模型,房间的围护结构包含屋顶、内墙 和外墙楼板和板、窗、门及洞口,都是以面的形式简化表达的,并没有厚度,而 且没有构建的细部。而非房间围护结构的部分则是通过以外部平面的形式表达的,这些外部平面模型可能在数据传递的过程中丢失一部分。而DXF文件是详细的 3D模型,建筑构建都是有厚度的。同gbXML文件相比,DXF文件因为其建筑构 件有厚度,分析的结果显示效果会更好一些,故本文研究的BIM与风模拟软件Phoenics的应用是通过DXF的数据交换,交换后的模型如图2所示。 图2 Phoenics中室内自然通风采用的模型图(典型层) 三、室内自然通风模拟分析 基于BIM技术,利用Revit architecture 软件建立建筑模型,并导入到风环境 模拟软件Phoenics,进行该办公楼典型层的室内自然通风模拟分析,计算采用标 准k-ε模型[3]。根据《中国建筑热环境分析专用气象数据集》[4]及《民用建筑

室内自然通风模拟分析报告

XX办公组团项目 ——室内自然通风模拟分析报告提供:XX建筑设计研究院有限公司

声明: 1、本报告无咨询单位签字盖章无效; 2、本报告涂改、复印均无效; 3、本报告仅对本项目有效。 项目名称:XX办公组团项目 委托单位:XX建筑设计研究院有限公司报告编写人: 校对人: 审核人: 报告日期: 2014年10月20日

目录 目录............................................ 错误!未定义书签。 1模拟概述.................................... 错误!未定义书签。 项目概况 ........................................ 错误!未定义书签。 气候概况 ........................................ 错误!未定义书签。 通风原理 ........................................ 错误!未定义书签。 参考依据 ........................................ 错误!未定义书签。 评价标准 ........................................ 错误!未定义书签。 绿建标准 .................................... 错误!未定义书签。 通风效果评价标准 ............................ 错误!未定义书签。2分析流程.................................... 错误!未定义书签。 评价方法 ........................................ 错误!未定义书签。 评价工具 .................................... 错误!未定义书签。 评价方法 .................................... 错误!未定义书签。 几何模型 ........................................ 错误!未定义书签。 图纸分析 .................................... 错误!未定义书签。 模型观察 .................................... 错误!未定义书签。 网格划分 ........................................ 错误!未定义书签。 网格密度 .................................... 错误!未定义书签。 网格质量 .................................... 错误!未定义书签。 湍流模型 ........................................ 错误!未定义书签。 边界条件 ........................................ 错误!未定义书签。 数学模型 ........................................ 错误!未定义书签。 求解方法 ........................................ 错误!未定义书签。 算法说明 .................................... 错误!未定义书签。 差分格式 .................................... 错误!未定义书签。 模拟工况 ........................................ 错误!未定义书签。 室外结果分析 ................................ 错误!未定义书签。 门窗风压表 .................................. 错误!未定义书签。3结果分析.................................... 错误!未定义书签。 换气次数表 ...................................... 错误!未定义书签。 通风开口面积 .................................... 错误!未定义书签。 气流组织分析 .................................... 错误!未定义书签。4结论建议.................................... 错误!未定义书签。

国家体育场项目自然通风效果模拟分析

国家体育场项目自然通风效果模拟分析 ——清华大学陈玖玖李先庭中国建筑设计研究院丁高李莹 工程概况 国家体育场坐落在北京奥林匹克公园中心区南部,俗称“鸟巢”,是北京2008年奥运会的主会场,承担开幕式、闭幕式和田径、足球决赛等活动和赛事。国家体育场占地20.4万平方米,建筑面积25.8万平方米,长333m,宽298m,高69m。其中地下3层,地上7层。 国家体育场观众席的通风设计采用自然通风方式,体现了“绿色奥运、科技奥运、人文奥运”的宗旨。除3、4层以外的区域,包括观众席等处都充分利用场地的出入通道作为自然通风的进风口。由于国家体育场采用的是自然通风,因而在保证热安全的情况下,体育场的正常使用和观众区的热舒适是最需关注的问题。 本文的目标是,针对国家体育场建筑结构的特点,运用计算流体力学(CFD)模拟的手段,对其在典型夏季条件下的比赛区和观众区的自然通风效果(气流速度和温度)进行模拟分析,得到各处的温度、速度等相关的数值模拟结果;并对以上计算结果采用热安全性和热舒适性两种指标对国家体育场自然通风的效果进 行分析和评价。 在本次分析中,采用的商用CFD计算程序是PHOENICS。 物理模型及计算 首先对国家体育场进行了物理建模。设定计算区域为440m×360m×90m的方型区域,将体育场置于计算区域中心。为了模拟自然通风下体育场内部的气流组织,将计算区域的各个面均设为相对压力为0Pa的边界,通过体育场内的人员和灯光发热与外部产生热压,从而形成空气流动。因为模拟的是2008年奥运会开幕式当晚的自然通风效果,因而,我们把计算区域的各个面和场外空间的空气温度设为25℃。本文只考虑纯热压下自然通风的不利工况。 由于国家体育场的外形及其内部结构情况非常复杂,所以必须其进行简化。体育场外部结构在对自然通风口无阻挡的情况下,可以不予考虑。看台部分按照实际情况简化成为上、中、下三层,在忽略其形状上的细节后,以简单的圆和直线组合成计算用的模型,其XYZ方向的尺寸为342.7m×266m×46.5m。第一层和第二层看台之间的空间是流动的最主要入口。外围三、四层为设有恒温空调的封闭区域,在模型简化的过程中以一个24℃恒温的圆环代替;对于第三层看台的马鞍形形状用平面代替,忽略了看台表面的座椅以及阶梯,统一处理成平面。看台上的各个出入口均按照实际的尺寸给出,忽略出口处的形状细节。体育场顶部的形状采用简单的圆和直线组合而成,忽略其马鞍形的形状,根据其顶部的通透面积占整个面积的比例,建模时将顶部部分面积挖空,成为空气流动的通道。图1为简化后国家体育场的物理模型。 同时,我们将整个看台上部垂直高度2m内的空间作为热源区域,包括观众发热720万W和灯光照明辐射热50万W,热量均匀分布;比赛区域内设定50万W的热源作为开幕式时人员发热量,热源在XY方向的尺寸为130m×95m。

室内自然通风模拟分析报告

通锦·国际新城三期项目 4号楼 ——室内自然通风模拟分析报告提供:深圳市筑道建筑工程设计有限公司成都分公司

声明: 1、本报告无咨询单位签字盖章无效; 2、本报告涂改、复印均无效; 3、本报告仅对本项目有效。 项目名称:通锦·国际新城三期项目(通锦·国际嘉园) 委托单位:深圳市筑道建筑工程设计有限公司成都分公司报告编写人: 校对人: 审核人: 报告日期:2016年1月6日

目录 目录 (3) 1模拟概述 (3) 1.1项目概况 (4) 1.2气候概况 (5) 1.3参考依据 (6) 1.4评价标准 (6) 1.4.1绿建标准 (6) 1.4.2通风效果评价标准 (7) 2分析流程 (7) 2.1评价方法 (7) 2.1.1评价工具 (7) 2.1.2评价方法 (7) 2.2几何模型 (8) 2.2.1图纸分析 (8) 2.2.2网格质量 (9) 2.3湍流模型 (9) 2.4边界条件 (9) 2.5数学模型 (9) 2.6求解方法 (11) 2.6.1算法说明 (11) 2.6.2差分格式 (11) 2.7模拟工况 (11) 2.7.1室外结果分析 (11) 2.7.2门窗风压表 (13) 3结果分析 (14) 3.1换气次数表 (15) 3.2气流组织分析 (17) 4结论建议 (19) 1 模拟概述

1.1 项目概况 1、工程名称:通锦?国际新城三期项目 2、建设单位:四川路桥通锦房地产开发有限公司 3、建设用地:该项目位于四川省达州市,位于四川省东北部,重庆以北,是由原达川地 区更名建立的一个地级市,总面积16591平方千米。 达州市辖1个市辖区、5个县、1个县级市,有大面积的园林,是四川省的人口大市、农业大市、工业重镇,素有着中国气都和中国苎麻之乡的“川东明珠”美誉。达州地理坐标为北纬30 o75′-32 o07′,东经106 o94′-108 o06′,属亚热带湿润季风气候类型,冬暖夏凉。达州地势东北高,西南低,北部山体切割剧烈,山势陡峭,形成中、低山地地貌单元; 图1达州市通锦·国际新城三期项目总平面 本项目位于达州中南部,地势较为平缓,形成平等谷底地貌单元。

自然通风综述

建筑自然通风的研究与应用现状 (姓名:学号:) 摘要:在建筑能耗越来越大的今天,自然通风是重要的绿色建筑被动式设计策略,对于节能减排,提高建筑环境舒适度和改善室内空气品质等方面具有至关作用。本文主要针对自然通风的特点和原理、自然通风的影响因素以及目前自然通风的研究方法进行具体总结,最后在目前自然通风的研究现状下,写出自己以后对自然通风更深一步研究想法。 关键字:建筑能耗,自然通风,特点和原理,影响因素,研究方法,研究想法 0引言 改革开放以来,人们的生活水平在不断的提高,居住环境条件也在不断的改善,因此,建筑能耗也越来越大。在一些发达国家,建筑能耗占社会总能耗的比例为30%~40%,这其中又以暖通空调能耗所占的比例最高。在我国,近十年来建筑能耗总量正以惊人的速度在增长。2001年,社会总能耗中的27.6%是建筑能耗,现在这个比例差不多达到30%。据预测,当2020年时,这个比例将达到35%,而建筑能耗中的60%~70%将是空调系统的能耗。为了降低能耗,许多建筑采取了减少通风量,尤其是减少新风量并增加房间密闭性等措施,再加上运行管理不善及室内建筑装饰材料散发的挥发性有机混合物的增加,导致室内空气质量恶化,使人感到精神的压抑和烦躁,甚至会导致一系列健康问题,如“病态建筑综合症”。自然通风作为一种节能的通风技术,一种有效的被动式制冷手段,它利用可再生能源(风能)来降低室内温度,带走室内湿气,降低了不可再生能源的消耗,有利于减少建筑能耗,它是建筑节能领域里最廉价的技术措施之一。因为室内四季的负荷变化受室外气候条件的影响很大,因此在很多情况下,采用合理的通风技术既可以满足室内人员对舒适度的要求,又减少空调系统的运行时间。做到建筑与景观发展,自然与人和谐共生的境界。 1 自然通风的特点及原理 1.1自然通风的特点 自然通风是一种比较经济的通风方式。它不消耗动力,也可获得较大的通风换气量,简单易行,节约能源,有利于环境保护,被广泛应用于工业和民用建筑中。国内外对自然通风的概念或描述不尽相同,但总体来说,所谓自然通风,其共同的特点是依靠室外风力造成的风压和室内外空气温度差造成的热压使空气流动,以达到提供给室内新鲜空气,稀释室内气味和污染物,除去余热和余湿的目的。在建筑物中应用自然通风技术,主要包括以下优点①节能②排除室内废气污染物,消除余

论建筑设计中的自然通风

论建筑设计中的自然通风 李 涛 韦 佳 (东南大学建筑学院 南京 210096) 摘 要:在能源消耗与日俱增和世界资源日益匮乏的今天,风力资源的利用,越来越得到人们的关注。依据自然通风的原理,通过分析国内外著名生态建筑中所采用的自然通风技术,比较了其各具特色的通风技术,着重论述了建筑物中设置中庭与风塔对于加强通风效果的作用。然后结合国情,提出了一些对于风能利用方面的、具有可操作性的通风处理方法,目的是针对建筑设计实践中的自然通风问题起到实际指导意义。 关键词:自然通风 风压 热压 中庭 风塔 NATURAL VENTI LATION IN ARCHITECTURAL DESIGN Li Tao Wei Jia (Architectural College of S outheast University Nanjing 210096) Abstract:As present energy consumption multiplies daily and world resources are gradually deficient,wind power resources step by step gain public attention1According to natural ventilation principle,analyses the use of technologies is analyzed and their qualities are compared,which are used for outstanding domestic and foreign ecological architectures1It is also discussed the set up of atrium and wind ventilator in buildings with regard to strengthen ventilation effects1Link to domestic conditions,at last some operable ventilation-management methods based on wind energy utility’s aspect are proposed,aiming at giving practical guide to natural ventilation problems in architectural designs1 K eyw ords:natural ventilation wind-induced pressurization thermal pressure 风,是人类古老的朋友。远古时期,先民们就在生活实践中摸索出各种方法来充分利用风能使生活环境变得更为舒适,同时又避免风的不利影响。长久以来,人们积累了丰富的经验,不同地理和气候条件都有自己的一套相应的通风措施,利用风来使室内变得凉爽和舒适。从中国传统勘舆中的“藏风聚气”到古代中东地区招风塔和招风斗,都充分体现了各国人民在利用自然风方面的聪明才智。然而,令人惋惜的是自工业革命后,随着科技的日新月异,这方面的许多传统技术逐渐被人们抛之脑后。直到能源消耗与日俱增、世界资源日益匮乏的今天,生态技术在建筑设计中的应用越来越受到重视,人们才开始重新研究如何利用风来取得降低能耗的效果,同时更大限度地为人们提供健康舒适的室内环境。 1 自然通风 建筑内部的通风条件是决定人们健康、舒畅的重要因素之一。它通过空气更新和气流的生理作用对人体的生物感受起到直接的影响作用,并通过对室内气温、湿度及内表面温度的影响而起到间接的影响作用[1]。通常认为,自然通风的作用具有三种不同的功能[2]:第一,健康通风,即保证室内空气质量IAQ;第二,热舒适通风,即增加体内散热,以及防止由皮肤潮湿引起的不舒适以改善热舒适条件;第三,降温通风,即当室内气温高于室外的气温时,使建筑构件降温。据测定,室内外温差大时,开窗10~15分钟可完全换气一次;温差小时,大约半小时可交换一次。 自然通风最基本的动力为风压和热压。通常的作法为利用建筑物外表面的风压,利用室内的热压,以及风压与热压相结合。 111 利用风压实现自然通风 第一作者:李 涛 女 1979年出生 硕士研究生 收稿日期:2005-11-20 所谓风压,是指空气流受到阻挡时产生的静压。当风吹向建筑物正面时候,受到建筑物表面的阻挡而在迎风面上静压增高,产生正压区,气流再向上偏转,同时绕过建筑物各侧面及背面,在这些面上产生 79 Industrial Construction Vol.36,Supplement,2006 工业建筑 2006年第36卷增刊

Airpak中文学习案例(含软件操作步骤)-CFD模拟教程-自然通风室内环境模拟

Airpak软件中文学习案例(含软件详细操作步骤)建筑边庭对室内环境的影响-CFD模拟分析

目录 01篇建模问题 (3) 1.1模拟概况 (3) 1.2简化模型 (5) 1.3用airpak建模 (5) 1.4airpak建模步骤 (6) 02篇网格生成篇 (9) 2.1网格生成详细步骤 (9) 2.2网格检查 (11) 03篇条件设置 (12) 3.1边界条件设置 (12) 3.2初始参数设置 (15) 3.3残差和计算参数设置 (16) 04篇模拟后处理 (17) 05篇边庭模拟小结 (21)

01篇建模问题 1.1模拟概况 本工程是某地区一栋坐北朝南的办公楼,东侧是贯穿一层的边庭,主要功能为通风采光,南侧是一个内部走廊。办公楼一共2层,上下层都为办公室、会议厅,建筑面积大约3000平方米。室内布置主要为桌椅、空调等(实际模型详见下方图纸)。本工程主要通过CFD模拟软件Airpak对建筑边庭进行研究,分析边庭(中庭)对建筑室内的通风效果通过温度、湿度、风速、空气龄、PMV-PPD等指标参数,评价室内通风效果。本教程由百度账号:a谷雨c燕,第七代师兄,独家原创分享,未经许可不得转载。首次发布在百度文库 模拟工况为: (1)冬季无空调时,边庭对室内通风、热舒适度的影响。 (2)冬季有空调时,边庭对室内通风、热舒适度的影响。

1.2简化模型 拿到二维图纸或三维图纸后,建模的思路是先熟悉图纸,二维和三维图纸都看一遍,了解图纸中的建筑和物体的布局,其次结合CFD 模拟工况的要求,对建筑模型进行必要的简化,最后依据图纸信息进行建模。例如本工程,是一个办公楼,要做如上2个工况的模拟,拿到图纸后熟悉每个房间的布局,里面有桌椅、人体、玻璃幕墙等。对里面的人体进行舍弃,边庭处的沙土、植物对气流影响不大的也进行舍弃,最后得到一个模拟的大致布局。脑中有了这些模型后,可以自己画一下,也可以建模的时候一遍勾勒,一遍看图。 1.3用airpak建模 开始建模时,要了解各个模型的尺寸信息,长x宽x高,应该使用airpak里的那个模块比较合适。不同的模块选择对边界条件的设置要求不一样。比如有的可以使用定温条件,有的只能用传热边界条件。所以这些信息,在建模钱,心中要有数。拿本工程为例,室外墙体使用wall模块,后期可以使用定温、热流密度、W/m2等边界条件,还可以设置墙体厚度。所以作为外墙是很合适的。但是有一点需要注意,就是室内的内墙,经过模拟的多次试验,是不适合拿来做内墙的,因为生成网格的时候,无法识别wall而产生网格,最后计算的时候也有问题,所以不建议用。一般内墙我都用partitions,这样就没什么问题了。对于里面的门窗,如果是开启的可以选用opening或者vent,

谈建筑中自然通风技术的作用原理(一)

谈建筑中自然通风技术的作用原理(一) 摘要]本文首先介绍了建筑中自然通风技术的作用原理,指出了自然通风的经济效益和环境效益,进而论证了在建筑设计中如何实现自然通风,提出自然通风这项传统的技术要与建筑所处地域的自然地理气候特征相适应,并辅以实例分析了自然通风与地域气候的完美结合。旨在引起在地域建筑设计中对自然通风传统适宜技术的重视。 关键词]自然通风机理效益地域建筑设计 长久以来,自然通风做为一项传统的建筑防热技术,在世界各地的传统民居中,得到了广泛的应用。在湿热地区,人们看到的传统民居往往有这样的外表:建筑都有开阔的窗户;采用轻便的墙体;深远的挑檐;高高在上的顶棚并且设置有通风口;建筑往往架空,以避开地面的潮气和热气,采集更多的凉风——这样形象的背后,隐藏着劳动人民对利用自然通风技术的朴素观念。自然通风是一种具有很大潜力的通风方式,是人类历史上长期赖以调节室内环境的原始手段。 空调的产生,使人们可以主动地控制居住环境,而不是象以往一样被动地适应自然;空调的大量使用,使人们渐渐淡化了对自然通风的应用。而在空调技术得以普及的今天,迫于节约能源、保持良好的室内空气品质的双重压力下,全球的科学家不得不重新审视自然通风这一传统技术。在这样的背景下,把自然通风这种传统建筑生态技术重新引回现代建筑中,有着比以往更为重要的意义。 1.自然通风的理论机理 通常意义上的自然通风指的是通过有目的的开口,产生空气流动。这种流动直接受建筑外表面的压力分布和不同开口特点的影响。压力分布是动力,而各开口的特点则决定了流动阻力。就自然通风而言,建筑物内空气运动主要有两个原因:风压以及室内外空气密度差。这两种因素可以单独起作用,也可以共同起作用。 1.1风压作用下的自然通风 风的形成是由于大气中的压力差。如果风在通道上遇到了障碍物,如树和建筑物,就会产生能量的转换。动压力转变为静压力,于是迎风面上产生正压(约为风速动压力的0.5-0.8倍),而背风面上产生负压(约为风速动压力的0.3—0.4倍)。由于经过建筑物而出现的压力差促使空气从迎风面的窗缝和其他空隙流入室内,而室内空气则从背风面孔口排出,就形成了全面换气的风压自然通风。某一建筑物周围风压与该建筑的几何形状、建筑相对于风向的方位、风速和建筑周围的自然地形有关。 1.2热压作用下的自然通风 热压是室内外空气的温度差引起的,这就是所谓的“烟囱效应”。由于温度差的存在,室内外密度差产生,沿着建筑物墙面的垂直方向出现压力梯度。如果室内温度高于室外,建筑物的上部将会有较高的压力,而下部存在较低的压力。当这些位置存在孔口时,空气通过较低的开口进入,从上部流出。如果,室内温度低于室外温度,气流方向相反。热压的大小取决于两个开口处的高度差和室内外的空气密度差。而在实际中,建筑师们多采用烟囱、通风塔、天井中庭等形式,为自然通风的利用提供有利的条件,使得建筑物能够具有良好的通风效果。1.3风压和热压共同作用下的自然通风 在实际建筑中的自然通风是风压和热压共同作用的结果,只是各自的作用有强有弱。由于风压受到天气、室外风向、建筑物形状、周围环境等因素的影响,风压与热压共同作用时并不是简单的线性叠加。因此建筑师要充分考虑各种因素,使风压和热压作用相互补充,密切配合使用,实现建筑物的有效自然通风。 1.4机械辅助式自然通风 在一些大型建筑中,由于通风路径较长,流动阻力较大,,单纯依靠自然风压与热压往往不足以实现自然通风。而对于空气污染和噪声污染比较严重的城市,直接的自然通风还会将室

自然通风技术概述

自然通风技术概述 自然通风是一种具有很大潜力的通风方式,它具有节能、改善室内热舒适性和提高室内空气品质的优点,是人类历史上长期赖以调节室内环境的原始手段。在空调技术得以普及,机械通风广泛应用的今天,迫于节约能源、保持良好的室内空气品质的双重压力下,全球的科学家开始重新审视自然通风技术。 自然通风在实现原理上有利用风压、利用热压、风压与热压相结合以及机械辅助通风等几种形式。现代人类对自然通风的利用已经不同于以前开窗、开门通风,而是综合利用室内外条件来实现。如根据建筑周围环境、建筑布局、建筑构造、太阳辐射、气候、室内热源等,来组织和诱导自然通风。在建筑构造上,通过中庭、双层幕墙、风塔、门窗、屋顶等构件的优化设计,来实现良好的自然通风效果。 采用自然通风取代空调制冷技术至少具有两方面的意义:一是实现了被动式制冷。自然通风可在不消耗不可再生能源情况下降低室内温度,改善室内热环境。二是可提供新鲜、清洁的自然空气,带走潮湿污浊的空气,有利于人体的生理和心理健康。 自然通风的实现方式 建筑中常用的自然通风实现方式主要有以下几种: 1.利用风压实现自然通风 自然通风最基本的动力是风压和热压。在具有良好的外部风环境的地区,风压可作为实现自然通风的主要手段。在我国大量的非空调建筑中,利用风压促进建筑的室内空气流通,改善室内的空气环境质量,是一种常用的建筑处理手段。风洞试验表明:当风吹向建筑时,因受到建筑的阻挡,会在建筑的迎风面产生正压力。同时,气流绕过建筑的各个侧面及背面,会在相应位置产生负压力。风压通风就是利用建筑的迎风面和背风面之间的压力差实现空气的流通。压力差的大小与建筑的形式、建筑与风的夹角以及建筑周围的环境有关。当风垂直吹向建筑的正立面时,迎风面中心处正压最大,在屋角和屋脊处负压最大。另外,伯努利流体原理显示,流动空气的压力随其速度的增加而减小,从而形成低压区。依据这种原理,可以在建筑中局部留出横向的通风通道,当风从通道吹过时,会在通道中形成负压区,从而带动周围空气的流动,这就是管式建筑的通风原理。通风

室内自然通风设计的作用与形式

室内自然通风设计的作用与形式 在会所装修设计中自然通风的动力是风和温度。冷空气比热空气密度大,结果冷空气较重,向凹地下沉;热空气较轻,向上升腾。气流通常从正压区流向负压区,气流在流动途中如遇到障碍物则会引起气流的聚集,从而在迎风侧形成气流正压区。作用在装修设计上的风压大小取决于风向、风速和会所的装修设计形状。室内外的温度不同会引起空气密度的差异,产生压力差。因此,对于每一个装修设计洞口来说,风压和热压的作用是不能直接叠加的,常常被各种不同的气流阻力相平衡。在会所装修设计中自然通风的作用主要是提供新鲜空气——稀释新陈代谢产生的CO2,有利于人的生理和心理健康;生理降温——通过空气的流动,可以提高建筑物中人体汗液的蒸发速度,在25~35℃之间,空气的对流降温是人体调节舒适度的重要途径;建筑物的夜间降温——夜晚,用室外相对湿度较低的空气替换室内相对湿度较高的空气,使建筑物降温,以减轻白天的冷负荷。 1自然通风的主要形式分为:单侧通风、穿堂风、热压通风等。1)单侧通风的开口在会所房间的同一侧,另一侧是关闭的门,它是自然通风中最简单的一种形式,局限于房间的通风≌气的交换是通过风的湍流、外部的洞口和外部气流的相互作用来完成的。因此,单侧式局部通风的驱动力小,而且变化大。22)穿堂风在会所装修设计中主要指当空气从房间一侧开口进入,从另一侧开口流出时形成的风。穿堂风取决于设计相对面开口是否充分打开,进气窗和出气窗之间的风压差大小,会所房屋内部空气流动阻力大小。房屋在通风方向的进深不能太大,一般最大有效进深大约为层高的5倍。此时驱动力主要是风压,但只要在进风口和出风口间有明显的高差,热压也有较明显的作用。大进深会所的通风效果受内部隔断和障碍物的影响,阻碍气流的运动。会所装修设计在越长、越高,进深越小,其背风面产生的涡流区越大,流场越紊乱,对减少风速、风压有利。设计的迎风面产生正压,侧面产生负压,背面产生涡流,有气压差存在就会产生空气流动,根据地区的主导风向设计合理的间距,为设计组织良好的自然通风提供了可行性—口的会所装修设计对自然通风的利用也很重要。自然通风通

一、自然通风技术的原理及应用

一、自然通风技术的原理及应用 自然通风是在压差推动下的空气流动。根据压差形成的机理,可以分为风压作用下的自然通风和热压作用下的自然通风。 图1-1示意了风压作用下自然通风的形成过程。当有风从左边吹向建筑时,建筑的迎风面将受到空气的推动作用形成正压区,推动空气从该侧进入建筑;而建筑的背风面,由于受到空气绕流影响形成负压区,吸引建筑内空气从该侧的出口流出,这样就形成了持续不断的空气流,成为风压作用下的自然通风。 图1-2示意了热压作用下的自然通风的形成过程。当室内存在热源时,室内空气将被加热,密度降低,并且向上浮动,造成建筑内上部空气压力比建筑外大,导致室内空气向外流动,同时在建筑下部,不断有空气流入,以填补上部流出的空气所让出的空间,这样形成的持续不断的空气流就是热压作用下的自然通风。 图1-1 风压作用下的自然通风图1-2 热压作用下的自然通风 根据进出口位置,自然通风可以分为单侧的自然通风和双侧的自然通风。图1-1就是双侧自然通风系统示意图,而图1-2表示的是单侧的自然通风形式。 由于自然通风系统运行的动力来自于自然界的自然过程,因此该技术自古以来就是一种免费的自然冷却技术,在旧建筑中得到广泛的应用。在空调技术和产品日益发展以后,该技术逐渐被人们所淡忘。但是,上个世纪发生的能源危机和全球环境危机后,集合低能耗、高环境价值的自然通风技术作为重要的生态建筑技术之一受到广泛关注。关于其运行机理[1]的研究和建筑设计的实践[2,3]报道非常丰富,特别是在示范性生态建筑中,自然通风更是一种重要手段。下图1和图2是上海建筑科学研究院主持设计、建设的生态示范办公

楼,图2给出了利用太阳能增强热压形成自然通风的烟囱外形图。 图1 上海辛庄生态示范办公楼全景 图2 上海辛庄生态示范办公楼自然通风烟囱然而,随着城市化进程的不断发展,城市地面交通和建筑之间的日益融合,自然通风技术能否再度成为城市生态建筑的主流则需要讨论。

室内自然通风模拟分析报告模版

XX办公组团项目 ——室自然通风模拟分析报告提供:XX建筑设计研究院

声明: 1、本报告无咨询单位签字盖章无效; 2、本报告涂改、复印均无效; 3、本报告仅对本项目有效。 项目名称:XX办公组团项目 委托单位:XX建筑设计研究院 报告编写人: 校对人: 审核人: 报告日期:2014年10月20日

目录 目录 (3) 1模拟概述 (4) 1.1项目概况 (4) 1.2气候概况 (5) 1.3通风原理 (5) 1.4参考依据 (6) 1.5评价标准 (6) 1.5.1绿建标准 (6) 1.5.2通风效果评价标准 (7) 2分析流程 (7) 2.1评价方法 (7) 2.1.1评价工具 (7) 2.1.2评价方法 (7) 2.2几何模型 (8) 2.2.1图纸分析 (8) 2.2.2模型观察 (10) 2.3网格划分 (11) 2.3.1网格密度 (11) 2.3.2网格质量 (12) 2.4湍流模型 (12) 2.5边界条件 (12) 2.6数学模型 (12) 2.7求解方法 (14) 2.7.1算法说明 (14) 2.7.2差分格式 (14) 2.8模拟工况 (14) 2.8.1室外结果分析 (14) 2.8.2门窗风压表 (16) 3结果分析 (17) 3.1换气次数表 (17) 3.2通风开口面积 (20) 3.3气流组织分析 (22) 4结论建议 (24)

1 模拟概述 1.1 项目概况 XX项目位于新城中央商务区,西、南两侧邻城市主干道越王大道,永和路西望客家文化公园,东临东江,交通十分方便快捷。总用地面积为27623平方米, 总建筑面积116550.22㎡,建设容为住宅、商业、办公及其他相关配套用房。其中,办公组团位于项目南端,用地面积11118㎡,计容建筑面积46069.10㎡,容积率4.14.地上26层,一至三层裙楼为商业和银行,其余为办公室,地下两层,建造面积12401.64㎡,为地下车库和设备用房。项目总平面图如下图所示: 图1XX市XX项目总平面

国家体育场自然通风效果模拟分析全文

国家体育场自然通风效果模拟分析 摘要国家体育场是北京2008年奥运会的主会场,其比赛区和观众席采用自然通风方式。本文针对国家体育场建筑结构的特点,运用计算流体力学(CFD)模拟的手段,对其在典型夏季条件下的比赛区和观众区的自然通风效果进行模拟分析;并采用热安全性和热舒适性两种指标对国家体育场自然通风的效果进行了分析和评价。结果表明,在典型夏季条件下,国家体育场的比赛区和观众区的温度和速度可以为人员接受;从热安全角度出发,自然通风可以保证人员是安全的;从热舒适角度出发,比赛区和观众区稍嫌热,但可以接受。 关键词国家体育场自然通风数值模拟 1.引言 国家体育场坐落在北京奥林匹克公园中心区南部,俗称“鸟巢”,是北京2008年奥运会的主会场,将承担开幕式、闭幕式和田径、足球决赛等活动和赛事。国家体育场占地20.4万平方米,建筑面积25.8万平方米,长333m,宽298m,高69m。其中地下3层,地上7层。 国家体育场观众席的通风设计采用自然通风方式,体现了“绿色奥运、科技奥运、人文奥运”的宗旨。除3、4层以外的区域,包括观众席等处都充分利用场地的出入通道作为自然通风的进风口。由于国家体育场采用的是自然通风,因而在保证热安全的情况下,体育场的正常使用和观众区的热舒适是最需关注的问题。 本文的目标是,针对国家体育场建筑结构的特点,运用计算流体力学(CFD)模拟的手段,对其在典型夏季条件下的比赛区和观众区的自然通风效果(气流速度和温度)进行模拟分析,得到各处的温度、速度等相关的数值模拟结果;并对以上计算结果采用热安全性和热舒适性两种指标对国家体育场自然通风的效果进行分析和评价。 在本次分析中,采用的商用CFD计算程序是PHOENICS。 2.物理模型及计算 首先对国家体育场进行了物理建模。设定计算区域为440m×360m×90m的方型区域,将体育场置于计算区域中心。为了模拟自然通风下体育场内部的气流组织,将计算区域的各个面均设为相对压力为0Pa的边界,通过体育场内的人员和灯光发热与外部产生热压,从而形成空气流动。因为模拟的是2008年奥运会开幕式当晚的自然通风效果,因而,我们把计算区域的各个面和场外空间的空气温度设为25℃。本文只考虑纯热压下自然通风的不利工况。 由于国家体育场的外形及其内部结构情况非常复杂,所以必须其进行简化。体育场外部结构在对自然通风口无阻挡的情况下,可以不予考虑。看台部分按照实际情况简化成为上、中、下三层,在忽略其形状上的细节后,以简单的圆和直线组合成计算用的模型,其XYZ 方向的尺寸为342.7m×266m×46.5m。第一层和第二层看台之间的空间是流动的最主要入口。外围三、四层为设有恒温空调的封闭区域,在模型简化的过程中以一个24℃恒温的圆环代替;对于第三层看台的马鞍形形状用平面代替,忽略了看台表面的座椅以及阶梯,统一

浅谈自然通风

一、通风简介 通风工程在我国实现四个现代化的进程中,一方面起着改善居住建筑和生产车间的空气条件,保护人民健康、提高劳动生产率的重要作用;另一方面在许多工业部门又是保证生产正常进行,提高产品质量所不可缺少的一个组成部分。通风工程在内同上基本上可分为工业通风和空气调节两个部分。全世界每年估计排入大气的粉尘约为1亿吨,硫氧化物高达1.5亿吨。这些有害物如果不进行处理,会严重污染室内外空气环境,对人民身体健康造成极大危害。例如工人长期接触、吸入SiO2粉尘后,肺部会引起弥漫性纤维化,到一定程度便会形成矽肺。大气污染的影响范围广,后果更加严重,因此,合理的组织通风,成为解决这些问题的关键。 自然通风是指利用自然手段(热压、风压等)来促进室内空气流动而进行的通风换气方式。它通过空气更新和气流的生理作用对人体的生理感受起到直接的影响作用,并通过对室内气温、湿度及维护结构内表面温度的影响而起到间接的影响作用。建筑内部的通风条件是决定人们健康、舒畅的重要因素之一。良好的通风可以吧新鲜的空气带入室内,带走进入室内的热量,还可以促进人体的汗液蒸发降温,使人感到舒适。 随着办公建筑的增多和人们对办公环境要求的提高,办公建筑的能耗也显著增多,在高档公共建筑的全年能耗中,大约50%-60%消耗于空调制冷与采暖系统,而在空调制冷这部分能耗中,大约40%-50%由外围护结构传热所消耗,30%-40%为处理新风所消耗,25%-30%为空气和水输配所消耗。自然通风相对于机械通风和空调而言,具有显著减低建筑能耗的潜力,能够保证室内空气品质的同时,降低初投资和运行费用。在室外条件满足要求的情况下(即利用自然通风完全取代空调和自然通风与空调同时使用),利用自然通风可以减少空调的运行时间或负荷强度,从而减少了空调的能耗。 二、自然通风的原理 建筑通风包括从室内排除污浊空气和向室内补充新鲜空气两部分,前者称为排风,后者称为送风。为实现排风和送风所采用的设备装置总体称为建筑通风系统。有效的 通风系统可以保证室内空气质量符合卫生标准,提高室内空气品质。按照通风系统工作动力的不同,建筑通风可分为机械通风和自然通风、机械通风依靠外部机械设备产生压力促使空气流动实现通风换气;自然通风则依靠自然压力促使空气流动实现的。自然压力主要指风压和热压,相应的自然通风分为利用风压实现的,利用热压实现和利用二者共同实现的三种类型。 (1)风压作用下的自然通风 风压是指室外气流造成室内外空气交换的一种作用压力。当室外气流和建筑物 相遇时,将发生绕流,由于建筑物的阻挡,建筑物四周空气压力发生变化:迎风面气流受阻,动压降低,静压升高,风压为正,为正压;侧面和背面静压降低,风压为负,为负压。相对于其它未受干扰的气流而言,把这种静压的升高或者降低统称为风压。正式由于正负压的存在,室外气流将从处于正压去(迎面风)的门窗孔口进出,从而实现自然通风。建筑物四周风压分布不同,迎风面和背封面的压力差也随之不同,它与建筑物的几何形状和建筑与风向夹角等因素有关。一般来说,迎风面几何中心正压最大,屋脊与屋角出负压最大。人们常说的穿堂风就是利用风压来实现建筑的通风换气。 (2)热压作用下的自然通风 自然通风的另一基本动力是建筑物内部的热压。热压是由于室外空气温度不同形成的重力压差。室内空气温度高,比重小,便会从建筑物上部的窗口排出;室外空气

自然通风若干实例浅谈

自然通风若干实例浅谈 自然通风是当今建筑普遍采取的一项改善建筑热环境、节约空调能耗的技术,有两点至关重要的意义:1)实现有效被动式制冷;2)可以提供新鲜、清洁的自然空气,有利于人的生理和心理健康。实现自然通风主要有两个途径:利用风压和热压。利用风压来实现建筑自然通风,即平常所讲的“穿堂风”。首先要求建筑有较理想的外部风环境,平均风速一般不小于3 m/s~4 m/s。其次建筑应面向夏季夜间风向,房间进深较小:一般情况下,单向自然通风的进深应小于房间净高的2倍,大致在6 m左右;双向自然通风的进深应小于房间净高的5倍,大致在12 m~15 m左右,以便易于形成穿堂风。由于自然风变化幅度较大,受周围环境影响,常在建筑周围形不成足够的风压,并且通常公共建筑进深大,如果同时处于不利朝向时,利用风压实现穿堂风常常不具备可能性。因而建筑师利用自然通风的另一种机理:通过建筑内部的热压差实现自然通风,即平常所讲的“烟囱效应”。热空气上升,从建筑上部风口排出,室外新鲜的冷空气从建筑底部或者建筑各层被吸入,从而实现通风的效果。对于高层建筑而言,由于风速随着高度增加而变大,因而实现自然通风比较容易。但是风速往往过大,窗户直接外开不仅存在安全隐患且风速过大不利于舒适度的改善。 自然通风尚有着强烈的地域性和适应性。追求大同的国际式建筑文化,是现代派建筑大师们梦寐以求的理想。但是,进入20世纪60年代以来,这种无视地域,民族和文化差异性的国际式风格引起人们的普遍反感。人们认识到传统文化的重要性,它们不仅仅是那些具有地方特色的具体形式,它们还蕴含着人们的生活习惯和生活方式,建筑的发展不能以破坏传统为代价。芬兰建筑师阿尔托(Alvar Aalto)的“人情化建筑”是早期探索建筑环境特色与建筑多元个性的典范,为后来建筑的发展提供了有益的启示。人作为建筑的主体,建筑必须要尊重人的传统,符合人的尺度,体现人的价值。在过去的几百年里,人们尊重自然,修建了许多复杂的建筑,如中东地区传统房屋上的捕风塔(Wmd Scoop)。(图2.03)1983年获国际建筑师协会将它的第一枚金质奖章授予埃及建筑师哈桑·法西(Hassan Fathy),这是该会赠与建筑师的最高荣誉。哈桑·法西一生致力于为发展中国家的贫困人口的建筑活动及研究,探索符合本土特色的建筑。他主张,以较少的投入来创造一个以提高乡村地区经济和生活质量的本土化环境。他认为“人们常常根据环境条件的不同来选择他们的居住形式,有些根据炎热选择建筑的形式,还有些依据温暖的凉爽的气候选择建筑的形式。而埃及的所有工程项目都地处热带干旱地区。因此,他们必须根据凉爽设计并建造住房”。由于法赛负责的中心村大多是公共建筑,又处在沙漠的边缘,气候炎热,他在设计中遇到的最大困难就是为大型公共建筑解决内部降温的问题。在当时埃及的经济条件下,使用空调或者电扇简直是天方夜谭。只有采用一定的建筑构造技术,才能从根本上解决大型建筑内部空间的冷却问题。在干热气候的中东地区,建筑的室内外温差极大,都采用小窗与厚重的墙体达到保温的效果。室内主要的通风工作是由捕风塔来完成的,而并不是我们熟悉的窗户。捕风塔可以捕捉到高处清洁的气流,通过一系列特殊的设计,将气流引向室内;而房屋的中庭往往建的非常高,可以将室内的热空气通过顶部传导出去。无论房间的朝向如何,捕风塔都可以从最合适的角度为房屋内部提供新鲜空气。法西在埃及新巴里斯村市场的建设过程中,运用了这种捕风塔形式,让微风进入捕风塔,通过一个盛有水和木炭的装置,经湿润、净化和降温下沉至室内,湿热空气则从穹顶上的出气孔排除,这一巧妙的设计使室内气温较室外下降l0℃。这种源于

相关文档
最新文档