大学物理静电场中的导体和电介质习题答案(精)

大学物理静电场中的导体和电介质习题答案(精)
大学物理静电场中的导体和电介质习题答案(精)

第13章静电场中的导体

和电介质

P70.

13.1 一带电量为q,半径为rA的金

属球A,与一原先不带电、内外半径分别为rB和rC的金属球壳B同心放置,如图所示,则图中P点的电场强度如何?若用导线将

A和B连接起来,则

A球的电势为多少?(设无穷远处电势为

零)

[解答]过P点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q.根据高斯定理可得E4πr2 = q/ε0,可得P点的电场强度为

E=

q4πε

0r

2

.当金属球壳内侧会感应出异种电荷-q

时,外侧将出现同种电荷q.用导线将A和B连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是rc,所以A球的电势为

U=

q4πε.

0rc

13.2 同轴电缆是由半径为R1的导体圆柱和半径为R2的同轴薄圆筒构成的,其间充满了相对介电常数为εr的均匀电介质,设沿轴线单位长度上导线的圆筒的带

电量分别为+λ和-λ,则通过介质内长为l,半径为r的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?

[解答]介质中的

电场强度和电位移是轴对称分布的.在

内外半径之间作一个半径为r、长为l的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面

包含的自由电荷,即Φd = q = λl.

设高斯面的侧面为S0,上下两底面分别为S1和S2.通过高斯面的电位移通量为Φd=??S

D?dS

=?SD?dS+?D?dS+?D?dS=2πrlD,

S1

S2

可得电位移为D = λ/2πr,其方向垂直中心轴向外.

电场强度为E = D/ε0εr = λ/2πε0εrr,方向也垂直中心轴向外.

13.3 金属

球壳原来带有电量Q,壳内外半径分别为a、b,壳内距球

心为r处有一点电

荷q,求球心o的电

势为多少?

图14.3

[解答]点电荷q在内壳上感应出负电荷-q,不论电荷如何分布,距离球心都为a.外壳上就有电荷q+Q,距离球为b.球心的电势是所有电荷产生的电势叠加,大小为

U1

o=

q1-q1Q+q

4πε++

0r4πε0a4πε0b

13.4 三块平行金属板A、B和C,面积都是S = 100cm2,A、B相距d1 =

2mm,A、C相距d2 = 4mm,B、C接地,A板带有正电荷q = 3×10-8C,

忽略边缘效应.求

(1)B、C

板上的电荷为多少?

图14.4

(2)A板电势为多少?

[解答](1)设A的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为

q1 = σ1S和q2 = σ2S,

在B、C板上分别感应异号电荷-q1和-q2,由电荷守恒得方程

q = q1 + q2 = σ1S + σ2S.① A、B间的场强为E1 = σ1/ε0, A、C间的场强为 E2 = σ2/ε0.

设A板与B板的电势差和A板与C板的的电势差相等,设为ΔU,则

ΔU = E1d1 = E2d2,②

即σ1d1 = σ2d2.③

解联立方程①和③得

σ1 = qd2/S(d1 + d2),

所以q1 = σ1S = qd2/(d1+d2) = 2×10-8(C);

q2 = q - q1 = 1×10-8(C).

B、C板上的电荷分别为

qB = -q1 = -2×10-8(C); qC = -q2 = -1×10-8(C). (2)两板电势差为

ΔU = E1d1 = σ1d1/ε0 = qd1d2/ε0S(d1+d2),由于k = 9×109 = 1/4πε0,所以ε0 = 10-9/36π,

因此ΔU = 144π = 452.4(V).由于B板和C板的电势为零,所以

UA = ΔU = 452.4(V).

13.5 一无限大均匀带电平面A,带

电量为q,在它的附近放一块与A平行的金属导体板B,板B有一定的厚度,如图所示.则在板B的两个表面1和2上的感应电荷分别为多少?

[解答]由于板B原来不带电,两边感应出电荷后,由电荷守恒得

q1 + q2 = 0.①

虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S,则面电荷密度分别为

σ1 = q1/S、σ2 = q2/S、σ = q/S,它们产生的场强大小分别为

E1 = σ1/ε0、E2 = σ2/ε0、E = σ/ε0.在B板内部任取一点P,其场强为零,其中1面产生的场强向右,2面和A板产生

P

的场强向左,取向右的方向

为正,可得

图14.5

E1 - E2 – E = 0,

即σ1 - σ2 –σ = 0,

或者说 q1 - q2 + q = 0.②解得电量分别为

q2 = q/2,q1 = -q2 = -q/2.

13.6 两平行金属板带有等异号电荷,若两板的电势差为

120V,两板间相距为1.2mm,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?

[解答]由于左板接

地,所以σ图14.6

1 = 0.

由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0.

由于两板带等量异号的电荷,所以

σ2 = -σ3.

两板之间的场强为

E = σ3/ε0,

而 E = U/d,所以面电荷密度分别为

σ3 = ε0E = ε0U/d = 8.84×10-7(C·m-2),σ2 = -σ3 = -8.84×10-7(C·m-2).

13.7 一球形电容器,内外球壳半径分别为R1和R2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间

电容可用公式C=4πε0R2

RR表示.

2-1

(提示:可看作两个球电容器的并联,且地球半径R>>R2)

[证明]方法一:并联电容法.在

外球外面再接一个

半径为R3大外球

壳,外壳也接地.内球壳和外球壳之间是一个电容器,电容为

C1

121=4πε0

1/R1/R=4πεRR0

1-2R2-R1

外球壳和大外球壳之间也是一个电容器,电

容为

C2=4πε1

1/R.

2-1/R3

外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R3趋于无穷大时,C2 = 4πε0R2.并联电容为 C=CR2

1+C2=4πεR10

R+4πε0R2

2-R1

=4πε2

0R2R. 2-R1

方法二:电容定义法.假设外壳带正电为q,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为

qq`4πε+

0R2

4πε=0,

0R1

因此感应电荷为

q`=-

R1

Rq. 2

根据高斯定理可得两球壳之间的场强为

E=

q`4πε2=-R1q2

,0r4πε0R2r

负号表示场强方向由外球壳指向内球壳.

取外球壳指向内球壳的一条电力线,两球壳之间的电势差为

R1

R1

U=

l=R?E?d2

R?Edr

2

R1

=

-

R1q

R?(2

4πε2

)dr 0R2r

=

R1q4πε(1-1

)=(R2-R1)qR2

0R2R1R24πε02

球面间的电容为

C=qU=4πε2

0R2

R.

2-R1

13.8 球形电容器的内、外半径分别为R1和R2,其间一半充满相对介电常量为εr的均匀电介质,求电容C为多少?

[解答]球形电容器的电容为

C=4πε1

-1/R=4πεR1R20

1/R0.

12R2-R1

对于半球来说,由于相对面积减少了一

半,所以电容也减少一半:

Cπε0R1R2

1=

2R.

2-R1

当电容器中充满介质时,电容为:

C2πε0εrR1R2

2=

RR.

2-1

由于内球是一极,外球是一极,所以两个电容器并联:

C=C2πε0(1+εr)R1R2

1+C2=

R.

2-R1

13.9 设板面积为S的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d1和d2,求电容器的电容.

[解答]假设在

两介质的介面插入一薄导体,可知两个电容器串联,电

容分别为

C1 = ε1S/d1和C2 = ε2S/d2.总电容的倒数为

1=1+1

=d1+d2=ε2d1+ε1d2CCε,1C2ε1Sε2Sε12S

总电容为C=ε1ε2S

ε.

2d1+ε1d2

13.10 圆柱形电容器是由半径为R1的导线和与它同轴的内半径为R2的导体圆筒构成的,其长为l,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:

(1)两极的电势差U;

(2)介质中的电场强度E、电位移D;(3)电容C,它是真空时电容的多少倍?

[解答]介质中

的电场强度和电位移是轴对称分布

的.在内外半径之

间作一个半径为r、

长为l的圆柱形高

斯面,侧面为S0,上下两底面分别为

S1和S2.通过高斯面的电位移通量为

Φd=??S

D?dS

=?SD?dS+?D?dS+1

?SD?dS=2πrlD,

S2

高斯面包围的自由电荷为q = λl,根据介质中的高斯定理Φd = q,可得电位为 D = λ/2πr,方向垂直中心轴向外.

电场强度为E = D/ε = λ/2πεr,方向也垂直中心轴向外.

取一条电力线为积分路径,电势差为

R2

U=?E?dl=?Edr?λ

L

L

=

dR1

2πεrr =

λ

2πεlnR2R. 1

电容为 C=

q2πεl

U=

ln(R. 2/R1)

在真空时的电容为

Cq

2πε0l0=

U=

ln(R, 2/R1)

所以倍数为C/C0 = ε/ε0.

13.11 在半径为R1的金属球外还有一层半径为R2的均匀介质,相对介电常量为εr.设金属球带电Q0,求:

(1)介质层内、外D、E、P的分布;(2)介质层内、外表面的极化电荷面密度.

[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r的球形高斯面,通过高斯面的电位移通量为

Φd=蜒?SD?dS=

?

S

DdS=4πr2D

高斯面包围的自由电荷为q = Q0,根据介质中的高斯定理Φd = q,可得电位为D = Q0/4πr2,方向沿着径向.用矢量表示为

D = Q0r/4πr3.

电场强度为

E = D/ε0εr = Q0r/4πε0εrr3,方向沿着径向.

由于D = ε0E + P,所以 P = D - ε0E = (1-

1

ε)

Q0r

r

4πr

3

.在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以

D = Q0r/4πr3,

E = Q0r/4πε0r3,P = 0.(2)在介质层内靠近金属球处,自由电荷Q0产生的场为

E0 = Q0r/4πε0r3;

极化电荷q1`产生的场强为

E` = q1`r/4πε0r3;

总场强为E = Q0r/4πε0εrr3.由于 E = E0 + E`,

解得极化电荷为q`=(11ε-1)Q0,

r

介质层内表面的极化电荷面密度为

`q`σ1

=14πR2=(1

-1)

Q0.1εr4πR2

1在介质层外表面,极化电荷为

q``2=-q1,

面密度为

σ`q`212

=4πR2=(1-ε)Q0

2

.2r4πR2

13.12 两个电容器电容之比C1:C2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?

[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q2/2C,得静电能之比为

W1:W2 = C2:C1 = 2:1.两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU2/2,得静电能之比为

W1:W2 = C1:C2 = 1:2. 13.13 一平行板电容器板面积为S,板间距离为d,接在电源上维持其电压为U.将一块厚度为d相对介电常量为εr的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?

[解答]平行板电容器的电容为

C = ε0S/d,

当面积减少一半时,电容为C1 = ε0S/2d;另一半插入电介质时,电容为C2 =

ε0εrS/2d.

两个电容器并联,总电容为

C = C1 + C2 = (1 + εr)ε0S/2d,

静电能为

W = CU2/2 = (1 + εr)ε0SU2/4d. 13.14 一平行板电容器板面积为S,板间距离为d,两板竖直放着.若电容器两板

充电到电压为U时,断开电源,使电容器的一半浸在相对介电常量为εr的液体中.求:

(1)电容器的电容C;

(2)浸入液体后电容器的静电能;(3)极板上的自由电荷面密度.

[解答](1)如前所述,两电容器并联的电容为

C = (1 + εr)ε0S/2d.(2)电容器充电前的电容为C0 = ε0S/d,充电后所带电量为Q = C0U.当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为

W = Q2/2C = C02U2/2C = ε0SU2/(1 + εr)d.(3)电容器的一半浸入介质后,真空的一半的电容为C1 = ε0S/2d;

介质中的一半的电容为C2 = ε0εrS/2d.设两半的所带自由电荷分别为Q1和

Q2,则

Q1 + Q2 = Q.①由于C = Q/U,所以

U = Q1/C1 = Q2/C2.②解联立方程得

QC1Q

0U1=

CC+C=

C, 121+2/C1

真空中一半电容器的自由电荷面密度为

σQ1

C0U2ε0U1=

2S/2=(1+CC=

.2/1)S(1+εr)d

同理,介质中一半电容器的自由电荷面密度为

σC0U2ε0εrU

2=

2(C=

.1/C2+1)S(1+εr)d

13.15 平行板电容器极板面积为200cm2,板间距离为1.0mm,电容器内有一块1.0mm厚的玻璃板(εr = 5).将电容器与300V的电源相连.求:

(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?

(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少?

[解答]平行板电容器的电容为

C0 = ε0εrS/d,

静电能为 W0 = C0U2/2.玻璃板抽出之后的电容为

C = ε0S/d.

(1)保持电压不变抽出玻璃板,静电能为 W = CU2/2,电能器能量变化为

ΔW = W - W0 = (C - C0)U2/2 = (1 - εr)ε0SU2/2d = -3.18×10-5(J).(2)充电后所带电量为 Q = C0U,保持电量不变抽出玻璃板,静电能为

W = Q2/2C,

电能器能量变化为

?W=W-WC0C0U2

0=(C-1)

2

=(εεrSU2

r-1)

ε02d

= 1.59×10-4(J).

13.16 设圆柱形电容器的内、外圆筒半径分别为a、b.试证明电容器能量的一半

储存在半径R=

[解答]设圆柱形电容器电荷线密度为λ,场强为E = λ/2πε0r,能量密度为 w = ε0E2/2,体积元为dV = 2πrldr,能量元为 dW = wdV.

在半径a到R的圆柱体储存的能量为

W=?wdV=?

ε0

V

V

2

E2dV

R

=?λ2lλ2la

4πεdr=lnR.

0r4πε0a当R = b时,能量为

Wλ2lb1=4πεln;

0a

当R=

Wλ2lλ2lb

2=4πε=ln,

08πε0a

所以W2 = W1/2,即电容器能量的一半储存

在半径R=

13.17 两个同轴的圆柱面,长度均为l,半径分别为a、b,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q)时,求:

(1)在半径为r(a < r < b)、厚度为dr、长度为l的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?

(2)电介质中总能量是多少(由积分算出)?

(3)由电容器能量公式推算出圆柱形电容器的电容公式?

[解答](1)圆柱形内柱面的电荷线密度为λ = Q/l,

根据介质是高斯定理,可知电位移为D = λ/2πr = Q/2πrl,

场强为E = D/ε = Q/2πεrl,能量密度为w = D·E/2 = DE/2 = Q2/8π2εr2l2.

薄壳的体积为dV = 2πrldr,能量为dW = wdV = Q2dr/4πεlr.

(2)电介质中总能量为

b

W=?dW=?Q2Q2b

a

4πεlrdr=4πεllna.

V(3)由公式W = Q2/2C得电容为

C=Q22πεl

2W=

ln(b/a)

13.18 两个电容器,分别标明为200PF/500V和300PF/900V.把它们串联起来,等效电容多大?如果两端加上1000V电压,是否会被击穿?

[解答]当两个电容串联时,由公式

111C2+C=C1

C+C=

, 12C1C2

得 C=

C1C2

C=120PF.

1+C2

加上U = 1000V的电压后,带电量为

Q = CU,

第一个电容器两端的电压为

U1 = Q/C1 = CU/C1 = 600(V);

第二个电容器两端的电压为

U2 = Q/C2 = CU/C2 = 400(V).

由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.

静电场中的导体和电介质习题详解

习题二 一、选择题 1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。 设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q Q E U r r εε= = ππ; (B )01 0, 4Q E U r ε==π; (C )00, 4Q E U r ε==π; (D )020, 4Q E U r ε== π。 答案:D 解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得 00 0202 Q Q Q Q U r r r r εεεε-= + += 4π4π4π4π 2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。设地的电势为零,则球上的感应电荷q '为[ ] (A )0; (B )2 q ; (C )2q -; (D )q -。 答案:C 解:导体球接地,球心处电势为零,即000044q q U d R πεπε'=+ =(球面上所有感应电荷到 球心的距离相等,均为R ),由此解得2 R q q q d '=-=-。 3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2 200,44r Q Q E D r r εεε= =ππ; (B )22 ,44r Q Q E D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )22 00,44Q Q E D r r εε==ππ。 答案:C

大学物理 习题分析与解答

第八章 恒定磁场 8-1 均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为[ ]。 (A) B r 22π (B) B r 2π (C) 0 (D) 无法确定 分析与解 根据高斯定理,磁感线是闭合曲线,穿过圆平面的磁通量与穿过半球面的磁通量相等。正确答案为(B )。 8-2 下列说法正确的是[ ]。 (A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零 (D) 磁感强度沿闭合回路的积分不为零时,回路上任意点的磁感强度必定为零 分析与解 由磁场中的安培环路定理,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和一定为零。正确答案为(B )。 8-3 磁场中的安培环路定理∑?=μ=?n L I 1i i 0d l B 说明稳恒电流的磁场是[ ]。 (A) 无源场 (B) 有旋场 (C) 无旋场 (D) 有源场

分析与解 磁场的高斯定理与安培环路定理是磁场性质的重要表述,在恒定磁场中B 的环流一般不为零,所以磁场是涡旋场;而在恒定磁场中,通过任意闭合曲面的磁通量必为零,所以磁场是无源场;静电场中E 的环流等于零,故静电场为保守场;而静电场中,通过任意闭合面的电通量可以不为零,故静电场为有源场。正确答案为(B )。 8-4 一半圆形闭合平面线圈,半径为R ,通有电流I ,放在磁感强度为B 的均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[ ]。 (A) B R I 2π (B) B R I 221π (C) B R I 24 1π (D) 0 分析与解 对一匝通电平面线圈,在磁场中所受的磁力矩可表示为B e M ?=n IS ,而且对任意形状的平面线圈都是适用的。正确答案为(B )。 8-5 一长直螺线管是由直径d =0.2mm 的漆包线密绕而成。当它通以I =0.5A 的电流时,其内部的磁感强度B =_____________。(忽略绝缘层厚度,μ0=4π×10-7N/A 2) 分析与解 根据磁场中的安培环路定理可求得长直螺线管内部的磁感强度大小为nI B 0μ=,方向由右螺旋关系确定。正确答安为(T 1014.33-?)。 8-6 如图所示,载流导线在平面内分布,电流为I ,则在圆心O 点处的磁感强度大小为_____________,方向为 _____________ 。 分析与解 根据圆形电流和长直电 流的磁感强度公式,并作矢量叠加,可得圆心O 点的总

第13章静电场中的导体和电介质

思考题 13-1 尖端放电的物理实质是什么? 答: 尖端放电的物理实质,是尖端处的强电场致使附近的空气分子电离,电离所产生的带电粒子在电场的作用下急剧运动和相互碰撞,碰撞又使更多的空气分子电离,并非尖端所带的电荷直接释放到空间去。 13-2 将一个带电+q 半径为R B 的大导体球B 移近一个半径为R A 而不带电的小导体球A ,试判断下列说法是否正确?并说明理由。 (1) B 球电势高于A 球。 答: 正确。不带电的导体球A 在带电+q 的导体球B 的电场中,将有感应电荷分布于表面。另外,定性画出电场线,在静电场的电力线方向上电势逐点降低,又由图看出电场线自导体球B 指向导体球A ,故B 球电势高于A 球。 (2) 以无限远为电势零点,A 球的电势: V A < 0 答: 不正确。若以无穷远处为电势零点V ∞=0,从图可知A 球的电力线伸向无穷远处。所以,V A >0。 13-3 怎样能使导体净电荷为零 ,而其电势不为零? 答:将不带电的绝缘导体(与地绝缘并与其它任何带电体绝缘)置于某电场中,则该导体有∑=0q 而导体的电势V ≠0 。 图13-37 均匀带电球体的电场能

13-4 怎样理解静电平衡时导体内部各点的场强为零? 答: 必须注意以下两点: (1) 这里的“点”是指导体内的宏观点,即无限小体积元。对于微观点,例如导体中某电子或某原子核附近的一个几何点,场强一般不为零; (2) 静电平衡的这一条件,只有在导体内部的电荷除静电场力以外不受其他力(如“化学力”)的情况下才能成立。 13-5 怎样理解导体表面附近的场强与表面上对应点的电荷面密度成正比? 答: 不应产生这样的误解:导体表面附近一点的场强,只是由该点的一个面电荷元S ?σ产生的。实际上这个场强是导体表面上全部电荷所贡献的合场强。如果场中不止一个导体,则这个场强应是所有导体表面上的全部电荷的总贡献。 13-6 为什么不能使一个物体无限制地带电? 答: 所谓一个物体带电,就是指它因失去电子而有多余的净的正电荷或因获得电子而有多余的负的净电荷。当物体带电时,在其周围空间产生电场,其电场强度随物体带电量的增加而增大。带电体附近的大气中总是存在着少量游离的电子和离子,这些游离的电子和离子在其强电场作用下,获得足够的能量,使它们和中性分子碰撞时产生碰撞电离,从而不断产生新的电子和离子,这种电子和离子的形成过程如雪崩一样地发展下去,导致带电物体附近的大气被击穿。在带电体带电的作用下,碰撞电离产生的、与带电体电荷异号的电荷来到带电体上,使带电体的电量减少。所以一个物体不能无限制地带电。如尖端放电现象。 13-7 感应电荷的大小和分布怎样确定? 答: 当施感电荷Q 接近于一导体时,导体上出现等量异号的感应电荷±q ′。其分布一方面与导体的表面形状有关,另一方面与施感电荷

大学物理下答案习题14

习题14 14.1 选择题 (1)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹[ ] (A) 对应的衍射角变小. (B) 对应的衍射角变大. (C) 对应的衍射角也不变. (D) 光强也不变. [答案:B] (2)波长nm (1nm=10-9m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d=12mm,则凸透镜的焦距是[ ] (A)2m. (B)1m. (C)0.5m. (D)0.2m. (E)0.1m [答案:B] (3)波长为的单色光垂直入射于光栅常数为d、缝宽为a、总缝数为N的光栅上.取k=0,±1,±2....,则决定出现主极大的衍射角的公式可写成[ ] (A) N a sin=k. (B) a sin=k. (C) N d sin=k. (D) d sin=k. [答案:D] (4)设光栅平面、透镜均与屏幕平行。则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级次k [ ] (A)变小。 (B)变大。 (C)不变。 (D)的改变无法确定。 [答案:B] (5)在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为[ ] (A) a=0.5b (B) a=b (C) a=2b (D)a=3b [答案:B] 14.2 填空题 (1)将波长为的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为,则缝的宽度等于________________. λθ] [答案:/sin (2)波长为的单色光垂直入射在缝宽a=4 的单缝上.对应于衍射角=30°,单缝处的波面可划分为______________个半波带。 [答案:4] (3)在夫琅禾费单缝衍射实验中,当缝宽变窄,则衍射条纹变;当入射波长变长时,则衍射条纹变。(填疏或密) [答案:变疏,变疏]

电场中的导体练习题(附答案)

三、电场中的导体练习题 一、选择题 1.用一根跟毛皮摩擦过的硬橡胶棒,靠近不带电验电器的金属小球a(图1),然后用手指瞬间接触一下金属杆c后拿开橡胶棒,这时验电器小球A和金箔b的带电情况是[ ] A.a带正电,b带负电 B.a带负电,b带正电 C.a、b均带正电 D.a、b均带负电 E.a、b均不带电 2.在绝缘板上放有一个不带电的金箔验电器A和一个带正电荷的空腔导体B,下列实验方法中能使验电器箔片张开的是[ ] A.用取电棒(带绝缘柄的导体棒)先跟B的内壁接触一下后再跟A接触 B.用取电棒先跟B的外壁接触一下后再跟A接触 C.用绝缘导线把验电器跟取电棒的导体部分相连,再把取电棒与B的内壁接触 D.使验电器A靠近B 3.在一个导体球壳内放一个电量为+Q的点电荷,用E p表示球壳外任一点的场强,则[ ] A.当+Q在球壳中央时,E p=0 B.不论+Q在球壳内何处,E p一定为零 C.只有当+Q在球心且球壳接地时,E p=0 D.只要球壳接地,不论+Q在球壳内何处,E p一定为零 4.一个不带电的空心金属球,在它的球心处放一个正点荷,其电场分布是图2中的哪一个[ ] 5.一带正电的绝缘金属球壳A,顶部开孔,有两只带正电的金属球B、C用金属导线连接,让B球置于球壳A的空腔中与内表面接触后又提起到图3位置,C球放A球壳外离A球较远,待静电平衡后,正确的说法是[ ]

A.B、C球都带电 B.B球不带电,C球带电 C.让C球接地后,B球带负电 D.C球接地后,A球壳空腔中场强为零 6.如图4所示,把一个架在绝缘支架上的枕形导体放在正电荷形成的电场中,导体处于静电平衡时,下叙说法正确的是[ ] A.A、B两点场强相等,且都为零 B.A、B两点的场强不相等 D.当电键K闭合时,电子从大地沿导线向导体移动. 二、填空题 7.如图5所示,导体棒AB靠近带正电的导体Q放置.用手接触B端,移去手指再移去Q,AB带何种电荷______.若手的接触点改在A端,情况又如何______.

大学物理之习题答案

单元一 简谐振动 一、 选择、填空题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? 【 C 】 (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为π3 4 ,则t=0时,质点的位置在: 【 D 】 (A) 过A 21x = 处,向负方向运动; (B) 过A 21 x =处,向正方向运动; (C) 过A 21x -=处,向负方向运动;(D) 过A 2 1 x -=处,向正方向运动。 3. 将单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止释放任其振动,从放手开始计时,若用余弦函数表示运动方程,则该单摆的初相为: 【 B 】 (A) θ; (B) 0; (C)π/2; (D) -θ 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: 【 B 】 (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: 【 C 】 (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; ) 4(填空选择) 5(填空选择

第6章 静电场中导体和电介质

第6章 静电场中的导体与电介质 一、选择题 1. 当一个导体带电时, 下列陈述中正确的是 (A) 表面上电荷密度较大处电势较高 (B) 表面上曲率较大处电势较高 (C) 表面上每点的电势均相等 (D) 导体内有电力线穿过 [ ] 2. 关于带电导体球中的场强和电势, 下列叙述中正确的是 (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C) 导体内的电势与导体表面的电势相等 (D) 导体内的场强大小和电势均是不为零的常数 [ ] 3. 当一个带电导体达到静电平衡时 (A) 导体内任一点与其表面上任一点的电势差为零 (B) 表面曲率较大处电势较高 (C) 导体内部的电势比导体表面的电势高 (D) 表面上电荷密度较大处电势较高 [ ] 4. 一个带正电的小球放入一个带等量异号电荷、半径为R 的球壳中,如图1所示.在距球心为r (R r <)处的电场与放入小球前相比将 (A) 放入前后场强相同 (B) 放入小球后场强增加 (C) 因两者电荷异号, 故场强减小 (D) 无法判定 [ ] 5. 设无穷远处电势为零, 半径为R 的导体球带电后其电势为V , 则球外离球心距离为r 处的电场强度大小为 (A) 23R V r (B) V r (C) 2RV r (D) V R [ ] 6. 有两个大小不等的金属球, 其大球半径是小球半径的两倍, 小球带有正电荷.当用金属细线连接两金属球后 (A) 大球电势是小球电势的两倍 (B) 大球电势是小球电势的一半 (C) 所有电荷流向大球 (D) 两球电势相等 [ ] 7. 在某静电场中作一封闭曲面S .若有 ??=?s S D 0d ? ρ, 则S 面内必定 (A) 没有自由电荷 (B) 既无自由电荷, 也无束缚电荷 (C) 自由电荷的代数和为零 (D) 自由电荷和束缚电荷的代数和为零 [ ] 8. 有一空气球形电容器, 当使其内球半径增大到两球面间的距离为原来的一半时, 此电容器的电容为 (A) 原来的两倍 (B) 原来的一半 (C) 与原来的相同 (D) 以上答案都不对 [ ] 9. 一均匀带电Q 的球体外, 罩一个内、外半径分别为r 和R 的同心金属球壳,如图2所示.若以无限远处为电势零点, 则在金属球壳r <R '<R 的区域内 q 图1

大学物理课后习题答案(赵近芳)下册

习题八 8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系 ? 解: 如题8-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 2 220)3 3(π4130cos π412a q q a q '=?εε 解得 q q 3 3- =' (2)与三角形边长无关. 题8-1图 题8-2图 8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2 图所示.设小球的半径和线的质量都可 解: 如题8-2图示 ?? ? ?? ===220)sin 2(π41 sin cos θεθθl q F T mg T e 解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式2 04r q E πε= ,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解 ?

解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电 荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f = 2 024d q πε,又有人 说,因为f =qE ,S q E 0ε=,所以f =S q 02 ε.试问这两种说法对吗?为什么? f 到底应等于多少 ? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε= ,另一板受它的作用 力S q S q q f 02 022εε= =,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为 r E = 302cos r p πεθ, θ E =3 04sin r p πεθ 证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量 θsin p . ∵ l r >>

电场中的导体练习题

电场中的导体练习题 第4节电场中的导体 1.导体处于静电平衡时,下列说法正确的是( ) A.导体内部没有电场 B.导体内部没有电荷,电荷只分布在导体外表面 .导体内部没有电荷的运动 D.以上说法均不对 答案:D 2.如图所示,某同学在桌上放两摞书,然后把一块洁净的玻璃板放在上面,使玻璃板离开桌面2~3,在宽约0.5的纸条上画出各种舞姿的人形,用剪刀把它们剪下,放在玻璃板下面,再用一块硬泡沫塑料在玻璃上回擦动,此时会看到小纸人翩翩起舞.下列哪种做法能使实验效果更好( ) A.将玻璃板换成钢板 B.向舞区哈一口气 .将玻璃板和地面用导线连接 D.用一根火柴把舞区烤一烤 答案:D 3.每到夏季,我省各地纷纷进入雨季,雷雨等强对流天气频繁发生.当我们遇到雷雨天气时,一定要注意避防雷电.下列说法正确的是( )

①不宜使用无防雷措施的电器或防雷措施不足的电器及水龙头 ②不要接触天线、金属门窗、建筑物外墙,远离带电设备 ③固定电话和手提电话均可正常使用 ④在旷野,应远离树木和电线杆 A.①②③B.①②④ .①③④ D.②③④ 答案:B 解析:表面具有突出尖端的导体,在尖端处的电荷分布密度很大,使得其周围电场很强,就可能使其周围的空气发生电离而引发尖端放电.固定电话和手提电话的天线处有尖端,易引发尖端放电造成人体伤害,故不能使用.4.金属球壳原带有电荷,而验电器原不带电,如图所示,现将金属球壳内表面与验电器的金属小球相连,验电器的金属箔( ) A.不会张开 B.一定会张开 .先张开后闭合 D.可能会张开 答案:B 5.(2009•长沙市一中高二检测)如图所示,棒AB 上均匀分布着正电荷,它的中点正上方有一P点,则P点的场强方向为( )

《大学物理》习题和答案

《大学物理》习题和答案 第9章热力学基础 1,选择题 2。对于物体的热力学过程,下面的陈述是正确的,即 [(A)的内能变化只取决于前两个和后两个状态。与所经历的过程无关(b)摩尔热容量的大小与物体所经历的过程无关 (C),如果单位体积所含热量越多,其温度越高 (D)上述说法是不正确的 8。理想气体的状态方程在不同的过程中可以有不同的微分表达式,那么方程 Vdp?pdV?MRdT代表[(M)(A)等温过程(b)等压过程(c)等压过程(d)任意过程 9。热力学第一定律表明 [] (A)系统对外界所做的功不能大于系统从外界吸收的热量(B)系统内能的增量等于系统从外界吸收的热量 (C)在这个过程中不可能有这样一个循环过程,外部对系统所做的功不等于从系统传递到外部的热量(d)热机的效率不等于1 13。一定量的理想气体从状态(p,V)开始,到达另一个状态(p,V)。一旦它被等温压缩到2VV,外部就开始工作;另一种是绝热压缩,即外部功w。比较这两个功值的大小是22 [] (a) a > w (b) a = w (c) a 14。1摩尔理想气体从初始状态(T1,p1,V1)等温压缩到体积V2,由外部对气体所做的功是[的](a)rt 1ln v2v(b)rt 1ln 1v1 v2(c)P1(v2?

V1(D)p2v 2?P1V1 20。两种具有相同物质含量的理想气体,一种是单原子分子气体,另一种是双原子分子气体, 通过等静压从相同状态升压到两倍于原始压力。在这个过程中,两种气体[(A)从外部吸收相同量的热量和内部能量增量,(b)从外部吸收相同量的热量和内部能量增量是不同的,(c)从外部吸收相同量的热量和内部能量增量是不同的,(d)从外部吸收相同量的热量和内部能量增量是相同的。这两个气缸充满相同的理想气体,并具有相同的初始状态。在等压过程之后,一个钢瓶内的气体压力增加了一倍,另一个钢瓶内的气体温度也增加了一倍。在这个过程中,这两种气体从[以外吸收的热量相同(A)不同(b),前者吸收的热量更多(c)不同。后一种情况吸收更多热量(d)热量吸收量无法确定 25。这两个气缸充满相同的理想气体,并具有相同的初始状态。等温膨胀后,一个钢瓶的体积膨胀是原来的两倍,另一个钢瓶的气体压力降低到原来的一半。在其变化过程中,两种气体所做的外部功是[] (A)相同(b)不同,前者所做的功更大(c)不同。在后一种情况下,完成的工作量很大(d)完成的工作量无法确定 27。理想的单原子分子气体在273 K和1atm下占据22.4升的体积。将这种气体绝热压缩到16.8升需要做多少功? [](a)330j(b)680j(c)719j(d)223j 28。一定量的理想气体分别经历等压、等压和绝热过程后,其内能从E1变为E2。在以上三个过程中,

大学物理(上)练习题及答案详解

大学物理学(上)练习题 第一编 力 学 第一章 质点的运动 1.一质点在平面上作一般曲线运动,其瞬时速度为,v 瞬时速率为v ,平均速率为,v 平均 速度为v ,它们之间如下的关系中必定正确的是 (A) v v ≠,v v ≠; (B) v v =,v v ≠; (C) v v =,v v =; (C) v v ≠,v v = [ ] 2.一质点的运动方程为2 6x t t =-(SI),则在t 由0到4s 的时间间隔内,质点位移的大小为 ,质点走过的路程为 。 3.一质点沿x 轴作直线运动,在t 时刻的坐标为23 4.52x t t =-(SI )。试求:质点在 (1)第2秒内的平均速度; (2)第2秒末的瞬时速度; (3)第2秒内运动的路程。 4.灯距地面的高度为1h ,若身高为2h 的人在灯下以匀速率 v 沿水平直线行走,如图所示,则他的头顶在地上的影子M 点沿地 面移动的速率M v = 。 5.质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式 (1) dv a dt =, (2)dr v dt =, (3)ds v dt =, (4)||t dv a dt =. (A )只有(1)、(4)是对的; (B )只有(2)、(4)是对的; (C )只有(2)是对的; (D )只有(3)是对的. [ ] 6.对于沿曲线运动的物体,以下几种说法中哪一种是正确的。 (A )切向加速度必不为零; (B )法向加速度必不为零(拐点处除外); (C )由于速度沿切线方向;法向分速度必为零,因此法向加速度必为零; (D )若物体作匀速率运动,其总加速度必为零; (E )若物体的加速度a 为恒矢量,它一定作匀变速率运动. [ ] 7.在半径为R 的圆周上运动的质点,其速率与时间的关系为2 v ct =(c 为常数),则从 0t =到t 时刻质点走过的路程()s t = ;t 时刻质点的切向加速度t a = ;t 时刻质点 的法向加速度n a = 。 2 h M 1h

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

静电场中的导体

第七章 静电场中的导体、电介质 一、选择题: 1. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ,如图所示,则板外两侧的电场强度的大小为:[ ] (A )E=0 2εσ (B )E=02εσ (C )E=0εσ (D )E=02d εσ 2. 两个同心薄金属体,半径分别为R 1和R 2(R 2>R 1),若分别带上电量为q 1和q 2的电荷,则两者的电势分别为U 1和U 2(选无穷远处为电势零点),现用导线将两球壳相连接,则它们的电势为[ ] (A )U 1 (B )U 2 (C )U 1+U 2 (D )2 1 (U 1+U 2) 3.如图所示,一封闭的导体壳A 内有两个导体B 和C ,A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是[ ] (A )U A =U B =U C (B )U B > U A =U C (C )U B >U C >U A (D )U B >U A >U C 4.一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ,则板的两侧离板的距离均为h 的两点a 、b 之间的电势差为: [ ] (A )零 (B )02εσ (C )0εσh (D )0 2εσh 5. 当一个带电导体达到静电平衡时: [ ] (A) 表面上电荷密度转大处电势较高

(B) 表面曲率较大处电势。 (C)导体内部的电势比导体表面的电势高。 (D)导体内任一点与其表面上任一点的电势差等于零。 6. 如图示为一均匀带电球体,总电量为+Q ,其外部同心地罩一内、 外半径分别为r 1、r 2的金属球壳、设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: [ ] (A )E= r Q U r Q 02 04,4πεπε= (B )E=0, 1 04r Q πε (C )E=0, r Q 04πε (D )E=0,2 04r Q πε 7. 设有一个带正电的导体球壳,若球壳内充满电介质,球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;若球壳内、外均为真空时,壳外一点的场强大小和电势用E 2、U 2表示,则两种情况下,壳外同一处的场强大小和电势大小的关系为: [ ] (A )E 1=E 2, U 1=U 2 (B )E 1=E 2, U 1>U 2 (C )E 1>E 2, U 1>U 2 (D )E 1

大学物理练习题 静电场中的导体

练习六 静电场中的导体 一、选择题 1. 以下说法中正确的是 (A ) 电场强度相等的地方电势一定相等。 (B ) 电势梯度绝对值大的地方场强的绝对值也一定大。 (C ) 带正电的导体上电势一定为正。 (D ) 电势为零的导体一定不带电。 2. 以下说法中正确的是 (A ) 场强大的地方电位一定高。 (B ) 带负电的物体电位一定为负。 (C ) 场强相等处电势梯度不一定相等。 (D ) 场强为零处电位不一定为零。 3. 如图所示,真空中有一点电荷Q 及空心金属球壳A ,A 处于静电平衡,球内有一点M ,球壳中有一点N ,以下说法正确的是 ?Q q (A ) E M ≠ 0,E N = 0,Q 在M 处产生电场,而在N 处不产生电场。 (B ) E M = 0,E N ≠ 0,Q 在M 处不产生电场,而在N 处产生电场。 (C ) E M = E N = 0,Q 在M 、N 处都不产生电场。 (D ) E M ≠ 0,E N ≠ 0,Q 在M 、N 处都产生电场。 (E ) E M = E N = 0,Q 在M 、N 处都产生电场。 4. 如图所示,原先不带电的金属球壳的球心处放一点电荷q 1,球 外放一点电荷q 2,设q 2、金属内表面的电荷、外表面的电荷对q 1的 作用力分别为1F v 、2F v 、3F v ,q 1受的总电场力为F v ,则 (A ) F 1 = F 2 = F 3 = F =0。 (B ) F 1 = q 1q 2/(4πε0d 2),F 2 = 0,F 3 = 0,F = F 1。 (C ) F 1 = q 1q 2/(4πε0d 2),F 2 = 0,F 3 = ? q 1 q 2 /(4πε0d 2)(即与1F v 反向),F = 0。 (D ) F 1 = q 1q 2/(4πε0d 2),与 2F v 3F v 的合力与1F v 等值反向,F = 0。 (E ) F 1= q 1q 2 /(4πε0d 2),F 2 = ? q 1q 2/(4πε0d 2)(即与1F v 反向),F 3 = 0,F = 0。 5. 如图所示,一导体球壳A ,同心地罩在一接地导体B 上,今给A 球带负电?Q ,则B 球 Q (A ) 带正电。 (B ) 带负电。 (C ) 不带电。 (D ) 上面带正电,下面带负电。 6. A 、B 是两块不带电的导体,放在一带正电导体的电场中,如图所示。设无限远处为电势零点,A 的电势为 U A ,B 的电势为U B ,则: (A ) U B > U A ≠ 0。 (B ) U B < U A = 0。 (C ) U B = U A 。 (D ) U B < U A 。 7. 半径分别为R 和r 的两个金属球,相距很远。用一根长导线将两球连接,并使它们带电。在忽略导线影响的情况下,两球表面的电荷面密度之比σR /σr 为: (A ) R /r 。

大学物理实验习题和答案

第一部分:基本实验基础 1.(直、圆)游标尺、千分尺的读数方法。 答:P46 2.物理天平 1.感量与天平灵敏度关系。天平感量或灵敏度与负载的关系。 答:感量的倒数称为天平的灵敏度。负载越大,灵敏度越低。 2.物理天平在称衡中,为什么要把横梁放下后才可以增减砝码或移动游码。 答:保护天平的刀口。 3.检流计 1.哪些用途?使用时的注意点?如何使检流计很快停止振荡? 答:用途:用于判别电路中两点是否相等或检查电路中有无微弱电流通过。 注意事项:要加限流保护电阻要保护检流计,随时准备松开按键。 很快停止振荡:短路检流计。 4.电表 量程如何选取?量程与内阻大小关系? 答:先估计待测量的大小,选稍大量程试测,再选用合适的量程。 电流表:量程越大,内阻越小。 电压表:内阻=量程×每伏欧姆数 5.万用表 不同欧姆档测同一只二极管正向电阻时,读测值差异的原因? 答:不同欧姆档,内阻不同,输出电压随负载不同而不同。 二极管是非线性器件,不同欧姆档测,加在二极管上电压不同,读测值有很大差异。 6.信号发生器 功率输出与电压输出的区别? 答:功率输出:能带负载,比如可以给扬声器加信号而发声音。 电压输出:实现电压输出,接上的负载电阻一般要大于50Ω。 比如不可以从此输出口给扬声器加信号,即带不动负载。 7.光学元件 光学表面有灰尘,可否用手帕擦试? 答:不可以 8.箱式电桥 倍率的选择方法。 答:尽量使读数的有效数字位数最大的原则选择合适的倍率。 9.逐差法 什么是逐差法,其优点? 答:把测量数据分成两组,每组相应的数据分别相减,然后取差值的平均值。 优点:每个数据都起作用,体现多次测量的优点。 10.杨氏模量实验 1.为何各长度量用不同的量具测?

大学物理课后习题答案

练习一 质点运动学 1、26t dt d +== ,61+= ,t v 261 331+=-=-? , a 241 31 331=--=- 2、020 22 12110 v Kt v Ktdt v dv t Kv dt dv t v v +=?-?=??-= 所以选(C ) 3、因为位移00==v r ?,又因为,0≠?0≠a 。所以选(B ) 4、选(C ) 5、(1)由,mva Fv P ==dt dv a =Θ,所以:dt dv mv P =,??=v t mvdv Pdt 0 积分得:m Pt v 2= (2)因为m Pt dt dx v 2==,即:dt m Pt dx t x ??=0 02,有:2 3 98t m P x = 练习二 质点运动学 (二) 1、 平抛的运动方程为 202 1gt y t v x ==,两边求导数有: gt v v v y x ==0,那么 2 220 t g v v +=, 2 22 022t g v t g dt dv a t +==, = -=22 t n a g a 2 220 0t g v gv +。 2、 2241442s /m .a ;s /m .a n n == 3、 (B ) 4、 (A ) 练习三 质点运动学

1、023 2332223x kt x ;t k )t (a ;)k s (t +=== 2、0321`=++ 3、(B ) 4、(C ) 练习四 质点动力学(一) 1、m x ;912== 2、(A ) 3、(C ) 4、(A ) 练习五 质点动力学(二) 1、m 'm mu v )m 'm (v V +-+-=00 2、(A ) 3、(B ) 4、(C ) 5、(1)Ns v v m I v s m v t t v 16)(,3,/19,38304042=-===+-= (2)J mv mv A 1762 1212 024=-= 练习六、质点动力学(三) 1、J 900 2、)R R R R ( m Gm A E 2 12 1-= 3、(B ) 4、(D ) 5、)(2 1 222B A m -ω 练习七 质点动力学(四) 1、) m m (l Gm v 212 2 12+= 2、动量、动能、功 3、(B )

第9章_静电场中的导体和电介质

第9章静电场中的导体和电介质 什么是导体什么是电介质 静电场中的导体静电平衡 9.1.1 静电感应静电平衡 金属导体:金属离子+、自由电子- 1、静电感应:在外电场作用下,导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。(感应电荷与外加电场相互影响,比如金属球置于匀强电场中,外电场使电荷重新分布,感应电荷的分布使均匀电场在导体附近发生弯曲。) 2、导体静电平衡条件 不受外电场影响时,无论对整个导体或对导体中某一个小部分来说,自由电子的负电荷和金属离子的正电荷的总量是相等的,正负电荷中心重合,导体呈现电中性。

若把金属导体放在外电场中,比如把一块金属板放在电场强度为0E r 的匀强电场中,这时导体中的自由电子在作无规则热运动的同时,还将在电场力作用下作宏观定向运动,自由电子逆着电场方向移动,从而使导体中的电荷重新分布。电荷重新分布的结果使得金属板两侧会出现等量异号的电荷。这种在外电场作用下,引起导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。 感应电荷在金属板的内部建立起一个附加 电场,其电场强度'E r 和外在的电场强度0E r 的方向相反。这样,金属板内部的电场强度E r 就是0 E r 和'E r 的叠加。开始时0'E E <,金属板内部的 电场强度不为零,自由电子会不断地向左移动, 从而使'E r 增大。这个过程一直延续到金属板内部的电场强度等于零,即0'0E E E =+=r r r 时为止。这时,导体上没有电荷作定向运动,导体处于静电平衡 状态。 当导体处于静电平衡状态时,满足以下条件:

大学物理习题集(下)答案

一、 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ] (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子 的初相为4 3 π,则t=0时,质点的位置在: [ D ] (A) 过1x A 2=处,向负方向运动; (B) 过1x A 2 =处,向正方向运动; (C) 过1x A 2=-处,向负方向运动;(D) 过1 x A 2 =-处,向正方向运动。 3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表 此简谐振动的旋转矢量图为 [ B ] 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ] (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ] (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。 6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ] (4) 题(5) 题

大学物理习题答案

B 班级 学号 姓名 第1章 质点运动学 1-2 已知质点的运动方程为r i 3j 6k e e t t -=++。(1)求:自t =0至t =1质点的位移。(2)求质点 的轨迹方程。 解:(1) ()k j i r 630++= ()k j i r 6e 3e 1-1++= 质点的位移为()j i r ?? ? ??-+-=3e 31e ? (2) 由运动方程有t x e =,t y -=e 3, 6=z 消t 得 轨迹方程为 1=xy 且6=z 1-3运动质点在某瞬时位于矢径()y x,r 的端点处,其速度的大小为( D ) (A)dt dr (B)dt d r (C)dt d r (D)2 2?? ? ??+??? ??dt dy dt dx 1-5某质点的运动方程为k j i r 251510t t ++-=,求:t =0,1时质点的速度和加速度。 解:由速度和加速度的定义得 k j r v t dt d 1015+== , k v a 10==dt d 所以 t =0,1时质点的速度和加速度为 015==t j v 11015=+=t k j v 1 010,k a ==t 1-8 一质点在平面上运动,已知质点的运动方程为j i r 2235t t +=,则该质点所作运动为[ B ] (A) 匀速直线运动 (B) 匀变速直线运动 (C) 抛体运动 (D) 一般的曲线运动 *1-6一质点沿Ox ?轴运动,坐标与时间之间的关系为t t x 233-=(SI)。则质点在4s 末的瞬时速度为 142m·s -1 ,瞬时加速度为 72m·s -2 ;1s 末到4s 末的位移为 183m ,平均速度为 61m·s -1 ,平均加速度为 45m·s -2。 解题提示:瞬时速度计算dt dx v =,瞬时加速度计算22dt x d a =;位移为()()14x x x -=?,平均速 度为()()1414--= x x v ,平均加速度为 ()()1 414--=v v a 1-11 已知质点沿Ox ?轴作直线运动,其瞬时加速度的变化规律为t a x 3=2s m -?。在t =0时,0=x v ,10=x m 。求:(1)质点在时刻t 的速度。(2)质点的运动方程。

静电场中的导体和电介质

第十章静电场中的导体和电介质§10-1 静电场中的导体 一、导体的静电平衡 1、金属导体的电结构及静电感应 (1)金属导体:由带正电的晶格和带负电的自由电子组成. 带电导体:总电量不为零的导体; 中性导体:总电量为零的导体; 孤立导体:与其他物体距离足够远的导体. “足够远”指其他物体的电荷在该导体上激发的场强小到可以忽略. (2)静电感应过程:导体内电荷分布与电场的空间分布相互影响的过程. (3)静电平衡状态:导体中自由电荷没有定向移动的状态. 2、导体静电平衡条件 (1)从场强角度看: ①导体内任一点,场强; ②导体表面上任一点与表面垂直. 证明:由于电场线与等势面垂直,所以导体表面附近的电场强度必定与该处表面垂直. 说明:①静电平衡与导体的形状和类别无关.

②“表面”包括内、外表面; (2)从电势角度也可以把上述结论说成:静电平衡时导体为等势体. ①导体内各点电势相等; ②导体表面为等势面. 证明:在导体上任取两点A,B,.由于=0,所以. (插话:空间电场线的画法. 由于静电平衡的导体是等势体,表面是等势面.因此,导体正端发出的电场线绝对不会回到导体的负端.应为正电荷发出的电场线终于无穷远,负电荷发出的电场线始于无穷远.) 二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布 如图所示,导体电荷为Q,在其内作一高斯面S,高斯定理为: 导体静电平衡时其内, , 即. S面是任意的,导体内无净电荷存在. 结论:静电平衡时,净电荷都分布在导体外表面上. 2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况 如图所示,导体电量为Q,在其内作一高斯面S,高斯定理为:

相关文档
最新文档