生成甲烷的反应

生成甲烷的反应

生成甲烷的反应

在气化炉内甲烷的生成是两个独立过程的总结果:一是煤的热解过程;一是煤的气化过程。由碳生成甲烷的过程都是二次反应的结果,即依靠反应:

C+2H2→CH4

CO+3H2→CH4+H2O

CO2+4H2→CH4+2H2O

这些都是体积缩小的放热反应。提高压力无论从平衡或反应速度都是有助于甲烷的生成。碳生成甲烷的过程,实际上是分为两个阶段。首先是煤热解产物中的新生碳与氢的快速甲烷化阶段,此阶段的时间是很短暂的,速度是很快的,要比气化速度快得多。在快速生成甲烷阶段,生成速度与氢分压成正比,而与气化过程中正常情况下存在的其它气体无关。热解时生成的碳所遭受的温度对反应活性有重大影响,温度愈高活性降低愈多,高于815℃就没有快速生成甲烷阶段。生成甲烷的第二阶段是与水蒸汽和碳之间所进行的气化反应同时进行的。可以认为这是高活性碳消失之后所进行的反应,其反应速度要低得多。一般认为此阶段的反应速度与氢分压的关系在一级到二级反应之间,视氢分压的大小而定。

甲烷化操作规程

甲烷化岗位作业指导书 拟稿: 审核: 批准:

公布日期: 目录 一、岗位任务 (2) 二、工艺指标 (2) 三、工艺原理及流程 (2) 四、主要设备 (3) 五、正常开车步骤 (4) 六、正常停车步骤 (5) 七、紧急停车步骤 (5) 八、异常现象及处理方法 (5)

九、安全注意事项 (6)

、本岗位任务 甲烷化岗位的主要任务:在适当的压力、温度、催化剂的作用下把甲醇后 的CO和CO2与H2合成为CH4和战0,并把出0分离下来,把CO+CO2含量控制在25ppm 以下,送往合成岗位。 二、工艺指标 (一)新鲜气温度30- 40C (二)催化剂热点温度250C 士5 C (三)甲烷化塔一入温度W 130C (四)塔壁温度w 150C (五)甲烷化塔二入温度250C —270 C o (六)甲烷化塔二出温度w 190C (七)出系统CO+C2C含量W 25PPM 三、工艺原理及流程 (一)工艺原理: 本工段主要作用是脱除工艺气中的CO和C02。在催化剂的作用下使少量 CO、CO2加氢生成CH4和出0,把工艺气中的CO和CO2的含量脱除到25PPM 以下。由于该反应是放热反应,本工段充分利用其反应热以加热合成塔入口气体。甲烷化催化剂是以镍为活性组分,以稳定活性氧化铝为载体。 反应原理:CO+3H2= CH4+H2O+206.24kJ/mol CO2+4H2= CH4+2H2O+165.4kJ/mol (二)流程: 1、工艺介质主流程: 从压缩机六段来的氢氮气进油分离器,油水分离后气体进入预热器与合成 塔出口气体进行热量交换,加热后经合成塔环隙进塔底换热器与出口气体进一

化工导论69道简答题作业答案,可能有一两题的答案不怎么对

课程考核分成两部分,一是完成问答题,二是完成一份文献和网络检索总结小论文。 问答题部分: 1.解释中文“化工”的含义,它包括哪些内容? 在现代汉语中,化学工业、化学工程和化学工艺的总称或其单一部分都可称为化工,这是中国人创造的词。 化工在汉语中常常是多义的,化工可以分别指化学工业、化学工程和化学工艺,也可指其综合。 2.解释中文“化工”的含义。说明“工程”与“工艺”的关系,并举例说明。 (1) 化工在汉语中常常是多义的,化工可以分别指化学工业、化学工程和化 学工艺,也可指其综合。 (2)应该说明的是化学工程为化学工艺、生物化工、应用化学、工业催化等 学科提供了解决工程问题的基础。 3.化学工业按原料、产品吨位、和化学特性各如何分类? (1)按原料分:石油化学工业、煤化学工业、生物化学工业、农林化学工业 (2)按产品吨位分:大吨位产品和精细化学品 (3)按化学特性分:无机化学工业、有机化学工业 4.简述化工的特点是什么? (1)品种多 (2)原料、生产方法和产品的多样性和复杂性 (3)化学工业是耗能大户 (4)化工生产过程条件变化大 (5)知识密集、技术密集和资金密集 (6)实验与计算并重 (7)使用外语多 5.指出按现行学科的分类,一级学科《化学工程与技术》下分哪些二级学科? 它们的关系如何? 在我国当前的学科划分中,以一级学科“化学工程与技术”概括化工学科,并又分为以下五个二级学科:化学工程、化学工艺、应用化学、生物化工、工业催化。 化学工程为化学工艺、生物化工、应用化学和工业催化等学科提供了解决工程问题的基础。

6.简述化学工程与化学工艺的各自的学科定义与研究内容? 化学工程研究以化学工业为代表的过程工业中有关化学过程和物理过程的一般原理和共性规律,解决过程及装置的开发、设计、操作及优化的理论和方法问题。其研究内容与方向包括:化工热力学、传质过程原理、分离工程、化学反应工程、过程系统工程及其他学科分支。 化学工艺即化工技术或化学生产技术。它是指将原料物质主要经过化学反应转变为产品的过程和方法,包括实现这一转变的所有措施。 应该说明的是化学工程为化学工艺、生物化工、应用化学、工业催化等学科提供了解决工程问题的基础。 7.如何理解化工过程,它包括哪些内容?请举例说明。 一般概括为三个主要步骤: ①原料处理,使原料符合进行化学反应所要求的状态和规格; ②化学反应,使其获得目的产物或其混合物; ③产品精制,将由化学反应得到的混合物进行分离,除去副产物或杂质, 以获得符合组成规格的产品。 8.化学工业在国民经济中起什么作用? 概括而言,化学工业在国民经济中是工业革命的助手,发展农业的支持,战胜疾病的武器,改善生活的手段,与衣、食、住、行息息相关。 9.化学工业中的基本原料包括哪些? (基本)有机化工原料: 有机:三烯、三苯 重要基本有机化学品:上百种,如甲醇、乙醇、萘、苯酐、苯酚、醋酸、丙酮、丁醇、辛醇等。 10.重要的能源重要的能源有几种?其中有哪些是可再生的? 太阳能、风能、石油、煤、天然气等。其中太阳能、风能是可再生的。 一次能源与二次能源的定义?各包括哪些种类? 一次能源:指从自然界获得且可直接加以利用的热源和动力源,包括煤、石油、天然气、油田气等,林木秸秆等植物燃料,沼气,核燃料,还有水能、风能、地热能、海洋能和太阳能等。 二次能源:指从一次能源加工得到的便于利用的能量形式,除火电外,主要是指化学加工得到的汽油、柴油、煤油、重油、渣油和人造汽油等液体燃料,煤气、液化石油气等气体燃料。 11.简述化工与能源的关系。它们之间应如何配合?试举例说明。 化工与能源的关系非常密切,还表现在化石燃料及其衍生的产品不仅是

甲烷化工艺设计培训资料

合肥学院 Hefei University 化工工艺课程设计 设计题目:甲烷化工艺设计 系别:化学与材料工程系 专业:化学工程与工艺 学号: 姓名: 指导教师: 2016年6月

目录 设计任务书 (1) 第一章方案简介 (3) 1.1甲烷化反应平衡 (3) 1.2甲烷化催化剂 (3) 1.3反应机理和速率 (4) 1.4甲烷化工艺流程的选择 (6) 第二章工艺计算 (7) 2.1 求绝热升温 (7) 2.2 求甲烷化炉出口温度 (7) 2.3 反应速率常数 (7) 2.4 求反应器体积 (8) 2.5 换热器换热面积 (9) 第三章设备计算 (9) 3.1 甲烷化反应器结构设计 (11) 3.2 计算筒体和封头壁厚 (11) 3.3 反应器零部件的选择 (12) 3.4 物料进出口接管 (13) 3.5 手孔及人孔的设计 (15) 设计心得 (16) 参考文献及附图 (17)

设计任务书 1.1设计题目:甲烷化工艺设计 1.2设计条件及任务 1.2.1进气量:24000Nm3/h 1.2.3出口气体成分“CO≤5ppm,CO2≤5ppm” 1.3设计内容 变换工段在合成氨生产起的作用既是气体的净化工序,又是原料气的再制造工序,经过变换工段后的气体中的CO含量大幅度下降,符合进入甲烷化或者铜洗工段气质要求。 1.3.1选定流程 1.3.2确定甲烷化炉的工艺操作条件 1.3.3确定甲烷化炉的催化剂床体积、塔径及床层高度 1.3.4绘图:(1)工艺流程图;(2)甲烷化炉的工艺条件图 1.4设计说明书概要 1.4.1目录:设计任务书,概述,热力计算,结构设计与说明,设计总结,附录,致谢,参考文献,附工艺流程图及主体设备图一张(要求工艺流程图出A2以上的图,要求主体设备用AutoCAD出A2以上的图) 1.4.2概述 1.4.3热力计算(包括选择结构,传热计算,压力核算等) 1.4.4结构设计与说明 1.4.5设计总结 1.4.6附录

甲烷取代反应的改进

在1~5号试管中分别加入唾液1mL,然后进行37恒温水浴。 !反应过程中,每隔1min从3号试管中取1滴反应液,滴在比色板上,加1滴碘液显色,待呈橙黄色时立即取出5支试管,加碘液显色并比色,记录实验现象,见表2。 表2 处理 试管编号 12345 pH 5.0 6.2 6.87.48.0 颜色+++橙黄色+++ *?+#表示蓝色程度。 实验过程中可能会出现一些具体问题,如反应速度过快。教师可组织学生交流,找出解决问题的办法,真正做到让学生在?做中学,学中做#,让他们成为探究的主人。 通过学生亲自探索及教师的引导、点拨,并根据上面两组实验的实验现象,学生总结出酸碱度对酶的活性有影响:即酶的最适pH值一般都接近中性,pH值偏高或偏低,酶的活性都降低。在此基础上设置练习巩固知识。如:人体中只有肝脏中含有过氧化氢酶吗?食糜进入小肠中胃蛋白酶还能发挥活性吗?通过本节课的学习,科学探究的一般过程是怎样的?4 教学反思 ?笔者从近年高考实验命题的角度出发,把%酸碱度对酶活性的影响&这个教材中并没有编排实验的知识点设计成探索式实验教学的模式,让学生设计实验并综合运用有关化学知识(pH值)和实验方法(如比色法)来完成实验设计,这样的教学设计培养了学生的知识迁移能力和综合运用能力。 ?高考解答实验设计这类题目不仅要求学生设计的方法、步骤科学合理,还要求语言表达准确、精练。本节课学生在实验过程中充分体现了新课程改革中的三维目标要求。学生在探究的过程中,充分地讨论与交流不仅可以提高文字表达能力,还能提高严密的逻辑思维能力和精确的分析推理能力。另外,这种开放式的课堂教学能让学生在轻松的氛围中掌握知识、培养能力。这在笔者课后回访学生时得到学生的一致认同。 本节课的教学设计对学生解答实验设计这类题目起到一个示范作用。通过本节课的教学,可让学生明白高考中的实验设计题型并非总令人望而生畏,让学生从实践中领悟实验设计题的解题思路。 (收稿日期:2007 03 31) 实验方法与实验设计 甲烷取代反应的改进 ( 刘仁杰 河北省新乐市第一中学 050700 凡高中学习到有机化学,就要学习甲烷。那么验证甲烷主要化学性质的一个非常重要的实验)))甲烷和氯气的取代反应实验显然就摆在了我们的面前。在这个实验中,反应条件是光照,课本中说的是放在光亮且日光直射不到的地方(谨防爆炸)。对于光亮度,教师一般很难掌控好,一旦爆炸就会危及师生的人身安全,而且亮度还会受到阴、晴、冷、暖的气候影响,所以有必要对反应条件进行改进。有关教参中提出用高压汞灯做为光源,远距离照射,虽能进行反应,但需要预热,且装置庞大,移动不方便也不安全,这对于寸时寸金的课堂,实非绝佳之选。针对这种情况,作者对光源进行了改进,而且对反应装置也进行了改进,使实验4min即可完成,而且现象明显,收到了非常好的效果。 1 对光源的改进 ?采用20W~30W的高性能电子节能灯做光 %教学仪器与实验&第23卷2007年第6期?15 ?

甲烷一步氧化制甲醇新技术进展

甲烷一步氧化制甲醇新技术进展 高云玲,丁钟,彭孝军*,孙世国,孙立成 (大连理工大学精细化工国家重点实验室大连116012) 摘要:主要介绍国内外关于甲烷直接氧化制甲醇新技术研究进展,包括生物催化,仿生催化,光催化,冷等离子技术及超临界与膜的应用等。 关键词:甲烷;甲醇;部分氧化 中图分类号:T Q 223 T E646 文献标识码:A 文章编号:1001-9219(2003)03-50-06 收稿日期:2002-04-23;基金来源:国家自然科学基金资助项目(20128005);作者简介:高云玲(1974-),女,博士;*通讯联系人:pengxj@https://www.360docs.net/doc/bd5667155.html, 0 引言 随着石油资源的日趋短缺,储量巨大的天然气开发利用越来越受到人们的重视。天然气主要成分甲烷的部分氧化反应成为目前催化领域的热点之一[1-5]。 甲醇是一种清洁的能源,又是重要的基础化工原料,贮存和运输都比较方便。传统的甲醇生产方法是以天然气或煤为原料,经合成气转化。此二步法设备投资高,工艺复杂,能耗大,单程转化率低。采用甲烷直接转化成甲醇则是最理想的方式,一直受到国际上的关注。 但甲烷分子结构十分稳定,C -H 键键能很高,活化甲烷需要较高的温度,在高温下甲醇又极易深度氧化。为了提高甲烷直接氧化制甲醇的选择性和产率,各国学者积极研究应用新技术,发展了多种方法合成甲醇,如仿生催化,光催化,超临界水氧化等,本文主要评述近期甲烷直接氧化制甲醇的最新技术进展。 1 生物催化氧化 生物体内的甲烷单加氧酶(Methane M onoox y -genase 简称MM O,ECL 114113125)可催化甲烷部分氧化合成甲醇,也可以催化C 1~C 20烷烃化合物羟基化和C 2~C 10烯烃化合物的环氧化。M MO 的氧化反应具有很好的立体选择性,可以获得光学纯度 接近100%的手性醇产物[6]。 生物催化甲烷制甲醇可采用纯酶M MO 或用含酶细胞两种方式进行催化。沈润南[7]等采用M MO 纯酶体系,添加电子供体NADH (NADH 为还原型烟酰胺腺嘌呤二核苷酸)催化甲烷合成了甲醇。MM O 催化活性可达1054nmol/min/h ,反应4~5h 后,甲醇累积浓度高达282L mol,M MO 仍具有较高的酶活性。尉迟力[8]等利用无机载体吸附法和天然藻胶包埋法制备了固定化细胞催化剂。吸附法中,活性炭对菌体的吸附率最高,固定化细胞的操作稳定性最好;包埋法制备的固定化细胞不易在反应中流失,易于保持酶的活性。文献[2]曾报导1kg 单加氧酶可生产2102kg 甲醇。 利用含酶细胞催化反应可以避免M MO 纯酶体系稳定性差的缺点,但是M MO 催化甲烷生成的产物甲醇会被甲醇脱氢酶(MDH )等继续氧化代谢掉。研究发现 [9] EDTA 能抑制M DH 的活性,甲酸钠可 作为外源电子给体,又可作为产物反馈抑制甲醇的继续氧化,而高浓度的甲醇对MM O 活性无明显抑制作用 [8] 相对于纯酶体系,固定化细胞催化具有较佳的稳定性和酶活性,勿需添加外源电子给体使NADH 再生,但甲醇的产量受MDH 抑制,因此寻找更好的抑制甲醇氧化的抑制剂、适宜的固定化方法、提高酶的稳定性、减少酶的活性损失是生物催化氧化制甲醇的关键。 生物催化氧化制甲醇,反应条件温和,一般为常温、常压,反应液为生理环境,pH 在7左右,催化高度专一,具有广阔的应用前景,将会是一种理想的工

甲烷化技术

甲烷化技术 ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ 甲烷化技术是煤制天然气的关键环节,一氧化碳和氢气在一定温度、压力和催化剂下合成甲烷的反应叫甲烷化反应。 煤制天然气的原理就是合成气的甲烷化反应,其化学方程式如下: 一氧化碳和氢反应: CO +3H2 =CH4 +H2O △H= -206.2kJ/mol 反应生成的水与一氧化碳发生作用 CO +H2O =CO2 +H2 △H= -38.4kJ/mol 二氧化碳与氢作用: CO2 +4H2 =CH4 +2H2O △H =-165.0kJ/mol 以上反应体系为强放热、快速率的自平衡反应,温度升高到一定程度后反应速率快速下降且向相反方向(左)进行。另外甲烷化的过程属于体积缩小的反应,增加反应压力,一方面有利于提高反应速率,另一方面有助于推动反应向甲烷合成向进行,增加压力可以在很大程度上减小装置体积,提高装置产能。 甲烷化反应为强放热反应,每转化1%的CO,体系绝热升温约72℃,因此煤制天然气工艺要解决一氧化碳转化率和反应热的转移问题。 该过程中发生的副反应: 一氧化碳的分解反应: 2CO =CO2 +C △H= -173.3kJ/mol 沉积碳的加氢反应 C +2H2 =CH4 △H = -84.3kJ/mol 该反应在甲烷合成温度下,达到平衡是很慢的。当有碳的沉积产生时催化剂失活。 反应器出口气体混合物的热力学平衡,决定于原料气的组成、压力和温度。目前,甲

烷化技术已经用在大规模的合成气制天然气上,最大的问题是催化剂的耐温和强放热反应器的设计制作上。 甲烷化工艺有两步法和一步法两种类型。 两步法甲烷化工艺是指煤气化得到的合成气,经气体变换单元提高H2/CO比后,再进入甲烷化单元的工艺技术。由于两步法甲烷化工艺技术成熟,甲烷转化率高,技术复杂度略低,已实现工业化运行。一步法甲烷化工艺是指将气体变换单元和甲烷化单元合并在一起同时进行的工艺技术,也叫直接合成天然气技术。 托普索甲烷化技术 ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ TREMP?技术的操作经验可以追溯到20世纪70年代后期,托普索进行了大量的中试验证,保证了该技术能够进行大规模应用。 托普索循环节能甲烷化工艺与鲁奇公司甲烷化技术和Davy公司甲烷化技术有所不同,

甲烷(CH4)的直接转化利用技术

2010年第09期甲烷(CH4)的直接转化利用技术 苗蓓蓓 大庆炼化公司档案管理中心 黑龙江大庆 163411 摘 要:目前较为成熟的技术路线是将甲烷转化为合成气,再合成甲醇或合成氨,进而开发相关的下游产品。但由于间接利用甲烷的技术路线存在投资费用高、工艺流程复杂,生产成本较高等原因,目前在工业上还并未得到大规模化应用。从原理上看,甲烷直接转化利用是最直接有效的途径。研究表明,由于甲烷的化学惰性,目前的很难在较高的甲烷转化率下获得理想的产物选择性。因此,甲烷直接转化法在工业上应用的较少,大都还处于实验室研究阶段。一旦催化技术有所突破,天然气必将成为最理想的石油替代品。 关键词:甲烷 直接转化 利用技术 一、甲烷直接制备甲醇 (1)甲烷直接部分氧化制备甲醇。甲烷直接部分氧化制备甲醇的关键技术还是催化剂,常见的催化剂目前主要是过渡金属的氧化物。例如陈立宇,杨伯伦等采用V2O5为催化剂,在发烟H2SO4中进行了甲烷液相选择性氧化的研究。V2O5催化甲烷液相部分氧化反应遵循亲电取代机理,反应为一级反应,甲烷在部分氧化反应中首先转化为硫酸甲酯,后者进一步水解得到甲醇。甲烷转化率可达54.5%,选择性45.5%。王利娟等研究了CoM004负载Mo-V-Cr-Bi氧化物催化剂上甲烷部分氧化反应,发现反应存在一转折温度,当反应温度低于此温度时,CO是主要产物,氧化产物中甲醇的选择性低于20%,而当反应温度高于此温度时,CO的选择性大大降低,而CO2的选择性大大升高,主要产物变为CO2,甲醇的选择性降为0。在甲烷首先转化生成醋酸甲酯,醋酸甲酯水解生成甲醇。在压力0.1MPa、温度267-280℃下,甲烷转化率为26.61%,目的产物选择性97.26%。 (2)甲烷和水合成甲醇。甲烷和水直接合成甲醇和H2,具有天然气资源和清洁氢能源综合开发利用的应用价值。桑丽霞,钟顺和在固定床环隙反应器中,150℃下,MoO3-TiO2/SiO2为催化剂光催化气相甲烷和水合成了目的产物甲醇和H2,甲醇选择性达87.3%。 二、甲烷制备低碳烯烃 (1)甲烷部分氧化制备烯烃。1982年美国的Union Carbide化学公司首次公开发表了甲烷催化偶联制乙烯的研究成果,该工艺是迄今为止天然气制乙烯最简捷的工艺,反应一步完成。最近LG化学公司正在进行利用天然气的主要成分甲烷生产乙烯的技术开发。这是目前世界上利用甲烷生产乙烯的首例技术尝试。甲烷氧化偶联制乙烯的技术关键在于催化剂,目前催化剂品种多达2000种以上。其中,碱金属-碱土金属、稀土金属、过渡金属氧化物和具有特定结构的复合金属氧化物等几大体系的催化剂,以及电催化、等离子催化、激光表面催化和以钙钛矿催化膜为核心的催化技术均具有较好的甲烷氧化偶联生成C2烃的反应活性。苑慧敏,张永军等综述了甲烷氧化偶联制乙烯催化剂的研究进展情况。侯思聪等采用浸渍法制备了Li-ZnO/La2O3催化剂并考察了其低温催化甲烷氧化偶联反应性能。在680℃,甲烷转化率为27.3%,C2选择性为65.2%,C2收率为17.8%的结果;在700℃,C2收率达到21.8%。王凡,郑丹星通过平衡常数法研究了500-1000℃、0.1-3.0MPa,以及进料组成中甲烷与氧的摩尔比(即n0,CH4/n0,O2)为1-10下的甲烷转化率及其他各组分收率和选择性的变化情况,在对甲烷氧化偶联制烯烃体系的热力学平衡进行分析后发现,在甲烷氧化偶联制烯烃体系中,H2、CO 的生成相对容易,C2产物(C2H6、C2H4)不容易生成。实验为甲烷氧化偶联反应器和催化剂的开发研究提供热力学依据。由于甲烷氧化偶联制乙烯反应本身受动力学控制,C2烃单程收率低,产物分离困难。目前同时能使甲烷转化率、C2选择性之和达到或接近100%的催化剂为数不多,催化剂筛选成为其实现工业化的重要阻碍。 (2)等离子体催化甲烷合成烯烃。除了传统的催化剂活化甲烷合成乙烯外,电催化、等离子催化、激光表面催化也被用于甲烷氧化偶联的催化研究中。陈韩飞等综述了等离子体活化及等离子体与催化剂协同活化甲烷转化的国内外研究进展。同时对其反应机理进行了讨论,分析了当前利用等离子体活化甲烷所存在的问题,并提出了今后的研究方向。 (3)氯甲烷路线。1988年,TaylorC.E.等人提出了甲烷经氯甲烷合成汽油产品的循环利用途径。氯甲烷转化为低碳烯烃作为天然气利用的一个全新途径,已经引起了甲烷转化研究领域的关注。甲烷首先在催化剂的作用下发生氧氯化反应得到氯甲烷,氯甲烷干燥后在催化剂上转化为汽油产品,而过程中产生的HCl可以通过循环继续参与第一步的反应形成循环过程。使用分子筛催化剂可以将氯甲烷转化为烃类产品,但产物大多数以芳烃和烷烃为主,使用镁和磷镁修饰的催化剂可以提高产物中烯烃的选择性。张大治等经过研究认为镁的修饰对催化剂酸性的影响导致了产物中低碳烯烃的增加。 (4)天然气部分氧化制乙炔。天然气部分氧化制乙炔主要采用气相氧化法,主要有德国的BASF工艺、比利时的SBA工艺和意大利的Motecatini工艺。其中,以BASF工艺为主,约占80%。BASF 工艺原料中的O2,与CH4的摩尔比为0.6,在反应炉进行复杂的气相反应,主要反应通过部分甲烷进行部分氧化提供热量,剩余甲烷被加热到1500℃后裂解缩合为乙炔。 三、甲烷制备芳烃 (1)甲烷部分氧化制备芳烃。上个世纪80年代,Shepelev等对甲烷催化氧化制芳烃技术进行了研究,结果表明,在氧化条件下,甲烷合成芳烃的反应很难控制,甲烷的转化率很低,芳烃选择性和收率也很低,在经济上不具备开发前景。舒玉瑛等发现,不同方法制备的Mo/H-ZSM-5催化剂上甲烷的芳构化反应,对甲烷制备芳烃反应有较大的影响。 (2)甲烷无氧脱氢制备芳烃。从热力学角度来讲,甲烷直接转化为芳烃要比直接转化为乙烷和乙烯更为有利。而且,在无氧条件下也不生成CO和CO2。自1993年大连化学物理研究所首先报道了在无氧和连续流动的反应条件下,甲烷在Mo/HZSM-5催化剂上直接转化为芳烃以来,甲烷无氧芳构化已经成为甲烷直接催化转化研究中的一个重要分支,是目前甲烷直接转化的主要研究内容。魏飞等综述了利用甲烷直接脱氢制备芳烃的催化剂方面的研究情况,此外,郑海涛等人还研究了甲烷和丙烷混合气体在不同催化剂上的无

甲烷化操作规程

甲烷化操作规程 甲烷化岗位作业指导书 拟稿: 审核: 批准: 公布日期: 目录 一、岗位任务 (2) 二、工艺指标 (2) 三、工艺原理及流程 (2) 四、主要设备 (3) 五、正常开车步骤 (4) 六、正常停车步骤 (5) 七、紧急停车步骤 (5) 八、异常现象及处理方法 (5) 九、安全注意事项 (6) 一、本岗位任务 甲烷化岗位的主要任务:在适当的压力、温度、催化剂的作用下把甲醇后的CO和CO2与H2合成为CH4和H2O,并把H2O分离下来,把CO+CO2含量控制在25ppm以下,送往合成岗位。

二、工艺指标 (一)新鲜气温度30-40℃ (二)催化剂热点温度250℃± 5 ℃ (三)甲烷化塔一入温度≤130℃ (四)塔壁温度≤150℃ (五)甲烷化塔二入温度250℃-270℃。 (六)甲烷化塔二出温度≤190℃ (七)出系统CO+CO2含量≤25PPM 三、工艺原理及流程 (一)工艺原理: 本工段主要作用是脱除工艺气的CO和CO2。在催化剂的作用下使少量CO、CO2加氢生成CH4和H2O,把工艺气的CO和CO2的含量脱除到25PPM 以下。由于该反应是放热反应,本工段充分利用其反应热以加热合成塔入口气体。甲烷化催化剂是以镍为活性组分,以稳定活性氧化铝为载体。 反应原理:CO+3H2= CH4+H2O +206.24kJ/mol CO2+4H2= CH4+2H2O +165.4kJ/mol (二)流程: 1、工艺介质主流程:

从压缩机六段来的氢氮气进油分离器,油水分离后气体进入预热器与合成塔出口气体进行热量交换,加热后经合成塔环隙进塔底换热器与出口气体进一 步换热,然后出合成塔进加热器,经蒸汽加热后再经合成塔心管到内件顶部进触媒层进行反应。出口气体经塔底换热器换热后进预热器管内继续换热,然后进水冷排冷却,再进水分离器分离水后送合成。 注:(1)入工段阀门处增设旁路,主要目的是开停车时使用老系统的精练气。 (2)系统入口阀门前接循环机来气管线;增设放空管线。 (3)去合成阀门前增设去甲醇管线,为甲醇开车使用。 (4)去合成阀门前接去循环机管线,增设放空。 2、蒸汽流程: 过热蒸汽总管来蒸汽经调节阀进甲烷化加热器上部,对工艺气起加热后回蒸汽管网。 3、水流程: 循环水来自氨合成凉水塔,经冷排后,通过水池底部连通管回到合成冷排水池。 四、主要设备

甲烷(CH4)的直接转化利用技术

甲烷(CH4)的直接转化利用技术 摘要:目前较为成熟的技术路线是将甲烷转化为合成气,再合成甲醇或合成氨,进而开发相关的下游产品。但由于间接利用甲烷的技术路线存在投资费用高、工艺流程复杂,生产成本较高等原因,目前在工业上还并未得到大规模化应用。从原理上看,甲烷直接转化利用是最直接有效的途径。研究表明,由于甲烷的化学惰性,目前的很难在较高的甲烷转化率下获得理想的产物选择性。因此,甲烷直接转化法在工业上应用的较少,大都还处于实验室研究阶段。一旦催化技术有所突破,天然气必将成为最理想的石油替代品。 关键词:甲烷直接转化利用技术 一、甲烷直接制备甲醇 (1)甲烷直接部分氧化制备甲醇。甲烷直接部分氧化制备甲醇的关键技术还是催化剂,常见的催化剂目前主要是过渡金属的氧化物。例如陈立宇,杨伯伦等采用V2O5为催化剂,在发烟H2SO4中进行了甲烷液相选择性氧化的研究。V2O5催化甲烷液相部分氧化反应遵循亲电取代机理,反应为一级反应,甲烷在部分氧化反应中首先转化为硫酸甲酯,后者进一步水解得到甲醇。甲烷转化率可达54.5%,选择性45.5%。王利娟等研究了CoM004负载Mo-V-Cr-Bi氧化物催化剂上甲烷部分氧化反应,发现反应存在一转折温度,当反应温度低于此温度时,CO是主要产物,氧化产物中甲醇的选择性低于20%,而当反应温度高于此温度时,CO的选择性大大降低,而CO2的选择性大大升高,主要产物变为CO2,甲醇的选择性降为0。在甲烷首先转化生成醋酸甲酯,醋酸甲酯水解生成甲醇。在压力0.1MPa、温度267-280℃下,甲烷转化率为26.61%,目的产物选择性97.26%。 (2)甲烷和水合成甲醇。甲烷和水直接合成甲醇和H2,具有天然气资源和清洁氢能源综合开发利用的应用价值。桑丽霞,钟顺和在固定床环隙反应器中,150℃下,MoO3-TiO2/SiO2为催化剂光催化气相甲烷和水合成了目的产物甲醇和H2,甲醇选择性达87.3%。 二、甲烷制备低碳烯烃 (1)甲烷部分氧化制备烯烃。1982年美国的Union Carbide化学公司首次公开发表了甲烷催化偶联制乙烯的研究成果,该工艺是迄今为止天然气制乙烯最简捷的工艺,反应一步完成。最近LG化学公司正在进行利用天然气的主要成分甲烷生产乙烯的技术开发。这是目前世界上利用甲烷生产乙烯的首例技术尝试。甲烷氧化偶联制乙烯的技术关键在于催化剂,目前催化剂品种多达2000种以上。其中,碱金属-碱土金属、稀土金属、过渡金属氧化物和具有特定结构的复合金属氧化物等几大体系的催化剂,以及电催化、等离子催化、激光表面催化和以钙钛矿催化膜为核心的催化技术均具有较好的甲烷氧化偶联生成C2烃的反应活性。苑慧敏,张永军等综述了甲烷氧化偶联制乙烯催化剂的研究进展情况。侯思聪等采用浸渍法制备了Li-ZnO/La2O3催化剂并考察了其低温催化甲烷氧化偶联反应性

甲烷化重点

大家好,这只是我们感觉比较重要的,但不一定全面,如果中间有错误的地方自己给于更正,祝大家这周都能考好。 1甲烷化合成CO转化率接近100% H 99% CO2 98% 2煤制气能量转化率60-70% 3 甲烷化主要工艺技术要求英国戴维公司丹麦托普索公司节能降耗德国鲁奇 4 31 代表甲烷化32 压缩33干燥 5 SNG 合成天然气CNG 压缩天然气LNG 液化天然气LPG 液化石油气 6甲烷化装置将低温甲醇洗装置来的净化气经甲烷化、天然气压缩、天然气干燥三个工序标称生产20亿Nm3/年SNG。 7 CO + 3 H2 ?CH4 + H2O + heat CO2 + 4 H2 ?CH4 + 2H2O + heat 强放热反应需要稀释新鲜合成气以维持反应器出口温度低于催化剂的最高耐受温度。通过甲烷化工段产品气的循环来实现这一要求8 甲烷化丹麦托普索工艺压缩离心式压缩机组干燥三甘醇工艺 9工艺基本过程脱硫气体调节主甲烷化最终甲烷化压缩干燥10脱硫槽催化剂托普索催化剂ST-201(氧化锌铜基)反应方程目的防止甲烷化的催化剂中毒而失活 脱出H2S和COS,其他有毒物质(HCl等)也会在脱硫槽被吸收 加入0.5mol%蒸汽(与原料气比值)混合后进入脱硫槽,其中蒸汽会

有助于COS的水解。 气体调节催化剂托普索GCC。 CO + H2O ?H2 + CO2 + heat 气体调节三个作用1、调节氢碳比,达到甲烷化反应所需要的最佳比例2、降低CO的分压、避免甲烷化催化剂在低温高压发生积碳。3、气体调节反应器所用的催化剂GCC,可以使得甲烷化催化剂避免在低温下钝化,延长其使用寿命。 气体调节出口温度是通过控制循环气的温度来控制的 1甲烷化工段主要包括甲烷化、天然气压缩、天然气干燥 2进甲烷化工段的原料气温度30 压力2.95、经原料气预热器加热后温度155、第一甲烷化反应器进口温度330、出口温度675、第二进口338、出口580、第三进口290、出口428、第四进口240、出口350 3、进入脱硫槽的高压饱和蒸汽量0.5mol%,作用促使COS发生 水解反应 脱硫槽的作用:脱出H2S、COS,Br,Cl等杂质,催化剂型号ST-201,成分ZnO和铜基,方程式(1)COS + H2O?CO2 + H2 、(2)H2S + ZnO ?ZnS + H2O 气体调节器催化剂型号GCC,成分铜基,方程式CO + H H2 + CO2 + heat。 2O 5第一、二甲烷化反应器,高温。有耐火材料,所用催化剂MCR。

高中化学复习知识点:甲烷取代反应实验探究

高中化学复习知识点:甲烷取代反应实验探究 一、单选题 1.实验室中用如图所示的装置进行甲烷与氯气在光照下反应的实验。 光照下反应一段时间后,下列装置示意图中能正确反映实验现象的是 A.B. C.D. 2.如图所示,集气瓶内充满某混合气体,置于光亮处,将滴管内的水挤入集气瓶后,烧杯中的水会进入集气瓶,集气瓶气体是 ① CO、O2 ② Cl2、CH4 ③ NO2、O2④ N2、H2 A.①②B.②④C.③④D.②③ 3.取一支硬质大试管,通过排饱和NaCl溶液的方法先后收集半试管甲烷和半试管氯气(如图),下列对于试管内发生的反应及现象的说法正确的是( )。

A .反应过程中试管内黄绿色逐渐消失,试管壁上有油珠产生 B .甲烷和2Cl 反应后的产物有4种 C .盛放饱和NaCl 溶液的水槽底部不会有晶体析出 D .4CH 和2Cl 完全反应后液面上升,液体充满试管 4.取一支硬质大试管,通过排饱和食盐水的方法先后收集半试管甲烷和半试管氯气,并置于光亮处(如图),下列对于试管内发生的反应及现象的说法正确的是( ) A .反应过程中试管内黄绿色逐渐变浅,试管壁上有油珠产生 B .将该装置放在黑暗处,4CH 与2Cl 也能反应 C .该反应仅得到一种有机产物 D .4CH 和2Cl 完全反应后液面上升,液体充满试管 5.常温下,把一个盛有一定量甲烷和氯气的密闭玻璃容器放在光亮的地方,两种气体发生反应,则下列叙述不正确的是( ) A .容器内原子总数不变 B .容器内压强不变 C .容器内分子数不变 D .发生的反应为取代反应 6.将等体积的甲烷与氯气混合于一集气瓶中,加盖后置于光亮处,下列有关此实验的现象和结论叙述不正确的是( ) A .瓶内壁有油状液滴形成 B .瓶中气体的黄绿色逐渐变浅 C .反应的有机产物都为液体 D .若日光直射可能发生爆炸 7.下列实验操作、现象及结论均正确的是 ( )

甲烷一部氧化法制甲醇合成技术 综述

导言 随着世界石油资源的日益枯竭,天然气的综合利用越来越受到重视。在我国内陆和沿海大陆架上都有丰富的天然气资源,但是气体原料的储存和远距离运输十分不便。天然气主要成分是甲烷,如何把丰富的甲烷转化成便于运输的有用的化学原料甲醇来弥补石油资源的不足,是缓解能源危机的有效途径。 天然气主要成分甲烷的部分氧化反应成为目前催化领域的热点之一。甲醇是一种清洁的能源,又是重要的基础化工原料,贮存和运输都比较方便。 甲烷直接氧化制甲醇的研究已经持续近一个世纪,但至今尚未取得突破性进展。传统的甲醇生产方法是以天然气或煤为原料,经合成气转化。此二步采用甲烷直接转化成甲醇则是最理想的方式,一直法设备投资高,工艺复杂,能耗大,单程转化率低。 该反应是减分子反应,从动力学上考虑高压对正反应有利,故多数研究者采用高压条件下进行,一般为5~10MPa;设备要求高、操作工艺繁杂,但仍不能同时获得较高的转化率和甲醇的选择性,其主要原因是产物甲醇比甲烷更易氧化。为提高甲醇的选择性,有学者提出采用膜催化反应器来进行这类反应,以控制反应的深度,但膜反应器不能在高压下操作,为此,有人在常压下研究了Mo-Co-O/SiO2系催化剂上甲烷直接氧化制甲醇的反应。 甲烷分子结构十分稳定,C-H键能很高,活化甲烷需要较高的温度,在高温下甲醇又极易深度氧化。为了提高甲烷直接转换成甲醇的选择性和产率,各国学者、专家积极研究应用新技术发展了多种方法合成甲醇,如仿生催化、光催化、超临界水氧化等,本文主要结合论文的要求,通过查阅资料,首先介绍近期国际上在甲烷直接氧化制甲醇工艺上研究的一些进展,然后结合小学期上过的课《第三章甲醇》这一章上介绍的几种甲烷一部氧化法制甲醇进行综合和拓展,评述近期甲烷直接氧化制甲醇的新技术进展。 最新研究进展 细菌法甲烷制甲醇技术① 日本Osaka Gas公司开发出一种利用细菌由甲烷制取甲醇的技术。该技术是将甲烷和氧送入温度为50℃、里面有由甲烷产生的细菌的反应器而制得甲醇。采用这一技术制取甲醇的生产成本极低。Osaka Gas公司还将继续进行这一技术的研究与开发,提高其效率并降低生产成本。 美国开发成功碘催化氧化甲烷制甲醇甲烷② 根据美国《化学工程新闻》最近报道,美国南加州大学洛克尔烃研究所化学助理教授波

甲烷在催化剂表面选择氧化生成甲醇-甲醛的催化反应机理研究

重庆市自然科学基金计划项目立项申请书 项目名称:甲烷在催化剂表面选择氧化生成 甲醇/甲醛的催化反应机理研究 所属专项:其它 申请者:张海东 申报单位:重庆工商大学(签章) 联系电话:62769652 申请日期:2005年12月7日 重庆市科学技术委员会 二ΟΟ五年四月制

填写说明 1、凡申报重庆市自然科学基金计划的项目须填写此立项申请书。 2、立项申请书由项目的主承担者填写,经项目主承担者工作单位审查同意后,一般项目一式三份、重点项目一式七份并附申报软盘一张报送重庆市科委。 3、填写申请书前,请先查阅《重庆市自然科学基金计划项目管理办法》及有关规定,其中重点项目应围绕当年“项目指南”内容撰写。 4、立项申请书所列内容都要据实填写,表达应明确、完整、严谨、扼要(外文名词要同时用中文表达)。 5、项目组主要成员本人应在申请书上亲自签名以示同意合作。 6、立项申请书一律要求用A4纸张打印,否则不予受理。 7、所有申报材料恕不退还,请注意留底。

一、基本信息 至少填至二级学科。

二、项目组主要成员(含项目负责人)

三、经费预算(单位:万元) 2、一般项目不得提取管理费。

四、申请书正文 (一)立项依据与研究内容 1、项目的立项依据 1.1 立项背景和科学依据 天然气的主要成分是甲烷,除了作为燃料使用以外,也是十分重要的化工原料。随着全球经济的发展对化工原料需求量的增加,用于生产化工原料的天然气在开采量中所占比例越来越高。特别是当前世界上天然气被越来越多地用于象汽车燃料这样的领域,使用甲醇、二甲醚作为汽油替代燃料或添加燃料的趋势越来越明显,显示出诱人的前景,发达国家都竞相投入力量进行开发。此外天然气资源大多位于偏远地区,但天然气及其下游产品的消费地却是远离产地的工业和人口集中的经济发达地区,运输和存储的问题是天然气开发必须要解决的问题。与目前普遍采用的管道输送和液化天然气(LNG)的储存、运输方法相比,将天然气转化为易于运输的液体燃料或有机化学品(比如甲醇、甲醛、二甲醚、苯)更为经济。 目前已经工业化的天然气转化路线是由甲烷制得合成气(syngas),再由合成气合成甲醇或经FT合成制得其它化学品。甲烷的水蒸气重整制合成气是一个非热力学有利的过程,能耗很高。以甲醇的生产为例,由合成气路线制甲醇的成本中有60%左右的成本来自水汽重整这一步。以分子氧(O2)为氧化剂的甲烷直接选择氧化制甲醇、甲醛具有更好的经济性,所以此研究一直受到重视,例如英国石油公司(BP)在其“面向未来的清洁能源”(CEFTF)研究计划中也将甲烷直接选择氧化制甲醇、甲醛列为重要项目。另外,作为最难活化的烷烃分子-甲烷的活化和选择性转化一直是各国催化科学家关注的学术热点,在美国化学会发表的对21世纪化学科学的展望报告中被称作化学研究中的“圣杯”,具有重大的学术意义,每年都有大量研究这个反应的学术论文发表在国际刊物上。 中国的天然气资源比较丰富,重庆市辖区内的天然气资源也很丰富,对甲烷的选择氧化进行研究有利于发挥重庆本地的资源优势、推动重庆的本地化工企业的技术进步,进而促进重庆的经济发展。此外,进行这方面的研究与目前天然气消费量急剧增加,对天然气的综合利用日益受到国家重视的潮流相吻合,从1999年开始,国家973项目连续有天然气的综合利用项目立项(G1999022400、2005CB221400),其中甲烷的选择氧化制备甲醇、甲醛都被列为子课题(G1999022407、2005CB221407)。开展这方面的研究可以促进重庆本地的相关研究队伍的发展,提高重庆在这个领域中的知名度和学术地位,为今后申请国家层面的科研资金打下很好的基础。 1.2 目前的研究现状 多年来,在固体催化剂表面上进行的气固相催化反应研究一直是甲烷选择氧化研究的重点。世界上第一个甲烷直接催化氧化制甲醇的专利由Lance和Elworthy于1906年申请。他们所用的催化剂为FeSO4,氧化剂为H2O2,产物包括甲醇、甲醛和甲酸。1930年代,Boomer和Thomas研究了在30至60个大气压

甲烷化催化剂

甲烷化催化剂的综述 院系: 专业班级: 学号: 姓名: 指导老师:

关于甲烷化催化剂的一些探讨 概念: 1、甲烷化: 2、甲烷化工艺的发展 目的:这次任务我主要找关于甲烷化的文献,通过对这些文献的查看来研究关于

甲烷化催化剂的发展,研究方向的重点以及它对人类的发展所起到的作用。这次自己找了十几篇文章来谈论一下。 主题: 1、低温甲烷化催化剂的工业应用 低温催化剂较高温催化剂性能, 反应空速大、床层温度低、开车时间短、蒸汽消耗量大幅降低,并且安全性能更好。该催化剂的使用提高了乙烯装置的安全性和稳定性。由原用的高温催化剂改为低温催化剂时, 只需更换催化剂即可, 无需改动反应器和管线。 2、第二金属组分对CO2 甲烷化沉淀型镍基催化剂的影响 用并流共沉淀法制备了一系列镍基双金属催化剂,在微型固定床流动反应装置上进行了二氧化碳和氢气生成甲烷的催化反应,考察了在不同反应条件下第二金属组分Fe、Co 、Cr 、Mn、Cu、Zn 等对镍基催化剂活性的影响。采用程序升温还原( TPR) 、X 射线衍射(XRD) 等手段对催化剂进行表征。结果表明,第二组分的添加会改变镍催化剂的表面结构以及活性组分的分散度,有些会产生电子效应。其中,锰的添加使催化剂活性大大提高,原因是Mn ( Ⅳ) Ni2O4 的生成不仅有利于催化剂还原,而且有利于产生电子效应。 3、二氧化碳甲烷化催化剂制备方法的研究 采用浸渍法和并流共沉淀法制备含Ni 量不同的Ni/ ZrO2 催化剂, 研究了它们在二氧化碳甲烷化反应中的催化性能. 结果表明, 共沉淀法制备的高Ni 催化剂具有良好的催化性能. 在较温和的条件( T = 573 K, P = 0. 1 MPa, GHSV =12000 h- 1) 下, CO2 的转化率达99. 7%, CH4 的选择性达100% . Ni 与ZrO2 的相互作用对催化活性有很强的影响. Ni 的含量和CO2 吸附程度决定了甲烷化反应活性.催化剂作用下活化能的大小与活性变化规律相符. 与浸渍法相比, 共沉淀法制备出的催化剂具有如下特点: ( 1) 产率高; ( 2) 性能稳定; ( 3) 抗积碳性好; ( 4) 反应温度及活化能更低; ( 5) 产物成分单一. 利用共沉淀法制备二氧化碳甲烷化催化剂具有很高的研究、应用和开发价值. 4、反应条件对焦炉气甲烷化催化剂性能的影响 近年来, 中国天然气市场需求急剧增加, 制取合成天然气的工业投资项目增多, 对于合成甲烷反应过程的研究逐渐得到重视。特别是焦炉气作为一种工业排放废气, 产量大( 2008年, 全国焦炉气总产量约1 430亿m3 ) [ 2] , 将其进行甲烷化回收利用, 既符合节能减排的政策要求, 又能产生一定的经济效益,是一项具有市场前景的技术。重视节能减排技术在传统工业中的推广应用, 在焦炉气甲烷化催化剂及相关工艺技术方面开展了一系列的条件实验和测试工作。通过实验可知1) 焦炉气甲烷化催化剂具有活性高的特点, 在以焦炉气的典型组成为原料、出口温度约550 、压力1MPa~ 3MPa、空速5 000 h- 1 ~ 10 000 h- 1的条件下, 可使CO 转化率> 99%, CO2 转化率> 97%,C2H6 转化率> 99%, 接近于平衡转化率, 能适用于焦炉气的甲烷化反应过程。 2) 通过稀土、助剂等改善了催化剂的固体酸碱性, 增强了活性表面的水气吸附力、氢气吸附解离性能等, 从而提高了抗结炭性能。抗结炭实验的测试结果表明, 该催化剂具有较好的抗结炭性能。

甲烷化操作实操

1、甲烷合成反应器的反应机理? 在甲烷化反应器中主要进行的是甲烷的合成反应,即一氧化碳、二氧化碳与氢在催化剂的作用下转化成甲烷。甲烷合成反应是个强放热反应,伴随甲烷合成反应同时还发生了一氧化碳的氧化还原。总反应方程式如下: CO + 3H2 = CH4 + H2O CO2 + 4H2 = CH4 + 2H2O CO + H2O = CO2 + H2 2.在氨厂典型的甲烷化炉操作条件下,毎1%CO转化的绝热温升为72℃,每1%CO2转化的绝热温升60℃,反应炉的总温升可由下式计算: ΔT=72╳[CO]入+60╳[CO2]入 式中:ΔT----分别为进口气中CO、CO2的含量,%(体积分数) 3甲烷化设备主要有哪些? 甲烷化设备主要有硫吸收器、甲烷化反应器、高压废热锅炉、低压废热锅炉、甲烷化换热器、高压蒸汽过热器、开车加热器、循环压缩机、水冷器、水分离器等设备。 4、甲烷化催化剂的组成及主要组分的作用是什么? 甲烷化催化剂是以镍为活性组分在载体上,为获得催化剂的活性和热稳定性有添加了一些促进剂。主要组分有Ni、Al2O3、MgO、Re2O3等

Al2O3是一种普遍使用的载体。Al2O3具有多种结构形态,用于甲烷化的是具有大孔的Al2O3。 MgO是一种良好的的结构稳定剂。 Re2O3为稀土氧化物,具有良好的活性与稳定性。 5、为什么要对甲烷化催化剂进行还原?还原过过程中有哪些化学反应? ①甲烷化催化剂使用前,是以镍(Ni)的氧化物形式纯在,所以使用时,必须还原活化。在还原剂(H2、CO)被氧化的同时,多组分催化剂中的NiO被还原具有活性的金属镍(Ni),并在还原过程中形成了催化剂的孔道。而Al2O3不会被还原,起着间接支持催化剂结构的助构作用,使镍处于均匀分散的微晶状态,使催化剂具有较大的比表面、较高的活性和稳定性。 ②甲烷化催化剂还原时发生如下反应: NiO + H2 = Ni + H2O - 2.55KJ/mol NiO + CO = Ni + CO2 - 30.25 KJ/mol 这些都不是强放热反应,还原过程本身不会引起催化剂床层大的温升。 6、温度、压力、空速、气体成分对甲烷化催化剂的还原有何影响? ①温度温度是影响还原过程的主要因素。温度过低,还原速度很慢,还原过程拖得时间太长。温度过高,由于热

相关文档
最新文档