分组分解法的概念以及例题讲解

分组分解法的概念以及例题讲解
分组分解法的概念以及例题讲解

集合与函数概念单元测试题-有答案

高一数学集合与函数测试题 一、选择题(每题5分,共60分) 1、下列各组对象:?2008年北京奥运会上所有的比赛项目;②《高中数学》必修1中的所有难题;③所有质数;⑷平面上到点(1,1)的距离等于5的点的全体;⑤在数轴上与原点O非常近的点。其中能构成集合的有() A . 2组B. 3组C. 4组 D . 5组 2、下列集合中与集合{x x 2k 1, k N }不相等的是( ) A. {x x 2k 3,k N} B. {x x 4k 1,k N } C. {x x 2k 1,k N} D. {x x 2k 3, k 3,k Z} 2 3、设f(x)学」,则半等于()X 1f(1) A . 1 B . 1 C . 3 D 3 5 5 4、已知集合 A {xx24 0},集合B {x ax 1},若B A ,则实数a的值是() A . 0 B . 1 C . 0 或—D.0或1 2 2 2 5、已知集合 A {( x, y) x y 2} , B {(x,y)x y 4},则AI B() A . {x 3,y 1} B .(3, 1) C . {3, 1} D.{(3, 1)} 6、下列各组函数 f (x)与g(x)的图象相同的 是 ( ) (A) f (x) x,g(x) (.x)2(B) 2 2 f(x) x ,g(x) (x 1) (C)f(x) 1,g(x) x0 x (D) f(x) |x|,g(x) (x 0) x (x 0) 7;l是定义在'■上的增函数则不等式畑"厮一劭的解集

是() (A)(0 ,+ OO)(B)(0,2)(C)(2 , + OO )(D) (2,兰) 7 8已知全集U R,集合A {x x 1或x 2},集合B {x 1 x 0},则AU C U B() A. {x x 1或x 0} B. {x x 1或 x 1} C. {x x 2或x 1} D. {x x 2或 x 0} 9、设A 、B为两 个 -非空集 合, 定义A B { (a,b) a A,b B} ,若A {1,2,3}, B {2,3 ,4},则 A B中的兀素个数为() A. 3 B.7 C.9 D.12 10、已知集合 A {yy x21},集合 B {xy22x 6},则Al B ( ) A ? {(x,y) x 1,y 2} B. {x1 x 3} C. {x| 1 x 3} D. 11、若奇函数f x在1,3上为增函数,且有最小值0,则它在3, 1上 () A.是减函数,有最小值0 B.是增函数,有最小值0 C.是减函数,有最大值0 D.是增函数,有最大值0 12、若1,a,b 0,a2,a b,则a2005 b2005的值为( ) a (A)0 (C) 1 (B)1 (D)1 或1

分组分解法进行因式分解

分组分解法进行因式分解 【知识精读】 分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。使用这种方法的关键在于分组适当,而在分组时,必须有预见性。能预见到下一步能继续分解。而“预见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。 应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化简,求值及一元二次方程,函数等学习中也有重要作用。 下面我们就来学习用分组分解法进行因式分解。 【分类解析】 1. 在数学计算、化简、证明题中的应用 例1. 把多项式分解因式,所得的结果为() 分析:先去括号,合并同类项,然后分组搭配,继续用公式法分解彻底。 例2. 分解因式 分析:这是一个六项式,很显然要先进行分组,此题可把分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;此题也可把,分别看作一组,此时的六项式变成三项式,提取公因式后再进行分解。 2. 在几何学中的应用 例:已知三条线段长分别为a、b、c,且满足 证明:以a、b、c为三边能构成三角形 分析:构成三角形的条件,即三边关系定理,是“两边之和大于第三边,两边之差小于第三边” 证明: 3. 在方程中的应用 例:求方程的整数解

分析:这是一道求不定方程的整数解问题,直接求解有困难,因等式两边都含有x与y,故可考虑借助因式分解求解 4、中考点拨 例1.分解因式:_____________。 说明:观察此题是四项式,应采用分组分解法,中间两项虽符合平方差公式,但搭配在一起不能分解到底,应把后三项结合在一起,再应用完全平方公式和平方差公式。 例2.分解因式:____________ 说明:前两项符合平方差公式,把后两项结合,看成整体提取公因式。 例3. 分解因式:____________ 说明:分组的目的是能够继续分解。 5、题型展示: 例1. 分解因式: 说明:观察此题,直接分解比较困难,不妨先去括号,再分组,把4mn分成2mn和2mn,配成完全平方和平方差公式。 例2. 已知:,求ab+cd的值。

向量的概念及运算知识点与例题讲解汇编

向量的概念及运算知识点与例题讲解 【基础知识回顾】 1.向量的概念 ①向量 既有大小又有方向的量。向量一般用c b a ,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB 几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。向量的大小即向量的模(长度) ,记作|AB |即向量的大小,记作|a |。 向量不能比较大小,但向量的模可以比较大小 ②零向量 长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ?|a |=0。由于0的方向 是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。(注意与0的区别) ③单位向量 模为1个单位长度的向量,向量0a 为单位向量?|0a |=1。 ④平行向量(共线向量) 方向相同或相反的非零向量。任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b 。由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向 量也称为共线向量。 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的 ⑤相等向量 长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a =。大小相等,方向相同 ),(),(2211y x y x =???==?21 21y y x x 。 2.向量的运算 (1)向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b ==,则a +b =AB BC +=AC 。 规定: (1)a a a =+=+00; (2)向量加法满足交换律与结合律; 向量加法的“三角形法则”与“平行四边形法则” (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。 A B C a b

集合与函数概念单元测试题_有答案

高一数学集合与函数测试题 一、 选择题(每题5分,共60分) 1、下列各组对象:○12008年北京奥运会上所有的比赛项目;○2《高中数学》必修1中的所有难题;○3所有质数;○4平面上到点(1,1)的距离等于5的点的全体;○5在数轴上与原点O 非常近的点。其中能构成集合的有( ) A .2组 B .3组 C .4组 D .5组 2、下列集合中与集合{21,}x x k k N +=+∈不相等的是( ) A .{23,}x x k k N =+∈ B .{41,}x x k k N +=±∈ C .{21,}x x k k N =+∈ D .{23,3,}x x k k k Z =-≥∈ 3、设221()1x f x x -=+,则(2)1()2 f f 等于( ) A .1 B .1- C .35 D .35- 4、已知集合2{40}A x x =-=,集合{1}B x ax ==,若B A ?,则实数a 的值是( ) A .0 B .12± C .0或12± D .0或12 5、已知集合{(,)2}A x y x y =+=,{(,)4}B x y x y =-=,则A B =I ( ) A .{3,1}x y ==- B .(3,1)- C .{3,1}- D .{(3,1)}- 6、下列各组函数)()(x g x f 与的图象相同的是( ) (A )2)()(,)(x x g x x f == (B )22)1()(,)(+==x x g x x f (C )0)(,1)(x x g x f == (D )???-==x x x g x x f )(|,|)( )0()0(<≥x x 7、是定义在上的增函数,则不等式的解集

分组分解法因式分解(5课时)

(一)复习 把下列多项式因式分解 (1)2x2+10x (2)a(m+n)+b(m+n) (3)2a(x-5y)+4b(5y-x) (4)(x+y)2-2(x+y) (二)新课讲解 1.引入提问:如何将多项式am+an+bm+bn因式分解? 分析:很显然,多项式am+an+bm+bn中既没有公因式,也不好用公式法。怎么办呢?由于am+an=a(m+n),bm+bn=b(m+n),而a(m+n)+b(m+n)=(m+n)(a+b).这样就有: am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b) 利用分组来分解因式的方法叫做分组分解法。 说明:如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。 练习: 把下列各式分解因式 (1)20(x+y)+x+y (2)p-q+k(p-q) (3)5m(a+b)-a-b (4)2m-2n-4x(m-n) 2.应用举例 例1.把a2-ab+ac-bc分解因式 分析:把这个多项式的四个项按前两项与后两项分成两组,分别提出公因式a与c后,另一个因式正好都是a-b,这样就可以继续提公因式。 解:a2-ab+ac-bc=(a2-ab)+(ac-bc)=a(a-b)+c(a-b)=(a-b)(a+c) 例2:把2ax-10ay+5by-bx分解因式 分析:把这个多项式的四个项按前两项与后两项分成两组,并使两组的项按x的降幂排列,然后从两组中分别提出公因式2a与-b,这时另一个因式正好都是x-5y,这样就可继续提公因式。解:2ax-10ay+5by-bx=(2ax-10ay)+(5by-bx) =2a(x-5y)-b(x-5y)=(x-5y)(2a-b) 提问:这两个例题还有没有其他分组解法?请你试一试。如果能,请你看一下结果是否相同?练习:把下列各式分解因式 (1)ax+bc+3a+3b (2)a2+2ab-ac-2bc (3)a-ax-b+bx (4)xy-y2-yz+xz (5)2x3+x2-6x-3 (6)2ax+6bx+5ay+15by (7)mn+m-n-1 (8)mx2+mx-nx-n (9)8m-8n-mx+nx (10)x2-2bx-ax+2ab (11)ma2+na2-mb2-nb2 四、课外作业把下列各式分解因式 1.a(m+n)-b(m+n) ⒉xy(a-b)+x(a-b) 3.n(x+y)+x+y ⒋a-b-q(a-b) 5.p(m-n)-m+n ⒍2a-4b-m(a-2b) 7.a2+ac-ab-bc ⒏3a-6b-ax+2bx 9.2x3-x2+6x-3 ⒑2ax+6bx+7ay+21by ⒒xy+x-y-1 ⒓ax2+bx2 -ay2-by2 ⒔x3-2x2y-4xy2+8y3 ⒕3m-3y-ma+ay ⒖4x3+4x2y-9xy2-9y3⒗x3y-3x2-2x2y2+6xy

函数的概念练习题及答案解析

1.下列说法中正确的为( ) A .y =f (x )与y =f (t )表示同一个函数 B .y =f (x )与y =f (x +1)不可能是同一函数 C .f (x )=1与f (x )=x 0表示同一函数 D .定义域和值域都相同的两个函数是同一个函数 解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同. 2.下列函数完全相同的是( ) A .f (x )=|x |,g (x )=(x )2 B .f (x )=|x |,g (x )=x 2 C .f (x )=|x |,g (x )=x 2 x D .f (x )=x 2-9x -3 ,g (x )=x +3 解析:选、C 、D 的定义域均不同. 3.函数y =1-x +x 的定义域是( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1} 解析:选D.由? ???? 1-x ≥0x ≥0,得0≤x ≤1. 4.图中(1)(2)(3)(4)四个图象各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的有________. 解析:由函数定义可知,任意作一条直线x =a ,则与函数的图象至多有一个交点,对于本题而言,当-1≤a ≤1时,直线x =a 与函数的图象仅有一个交点,当a >1或a <-1时,直线x =a 与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3). 答案:(2)(3) 1.函数y =1x 的定义域是( ) A .R B .{0} C .{x |x ∈R ,且x ≠0} D .{x |x ≠1} 解析:选C.要使1x 有意义,必有x ≠0,即y =1x 的定义域为{x |x ∈R ,且x ≠0}. 2.下列式子中不能表示函数y =f (x )的是( ) A .x =y 2+1 B .y =2x 2+1 C .x -2y =6 D .x =y 解析:选A.一个x 对应的y 值不唯一. 3.下列说法正确的是( ) A .函数值域中每一个数在定义域中一定只有一个数与之对应 B .函数的定义域和值域可以是空集 C .函数的定义域和值域一定是数集 D .函数的定义域和值域确定后,函数的对应关系也就确定了 解析:选C.根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,

集合与函数概念测试题

新课标数学必修1第一章集合与函数概念测试题(1) 一、选择题:在每小题给出的四个选项中,只有一项是符合题 目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。 1.用描述法表示一元二次方程的全体,应是 ( ) A .{x |ax 2 +bx +c =0,a ,b ,c ∈R } B .{x |ax 2 +bx +c =0,a ,b ,c ∈R ,且a ≠0} C .{ax 2 +bx +c =0|a ,b ,c ∈R } D .{ax 2 +bx +c =0|a ,b ,c ∈R ,且a ≠0} 2.图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 3.设集合P={立方后等于自身的数},那么集合P 的真子集个数是 ( ) A .3 B .4 C .7 D .8 4.设P={质数},Q={偶数},则P ∩Q 等于 ( ) A . B .2 C .{2} D .N 5.设函数x y 111+ = 的定义域为M ,值域为N ,那么 ( ) A .M={x |x ≠0},N={y |y ≠0}

B .M={x |x <0且x ≠-1,或x >0}, N={y |y <0,或0<y <1,或y >1} C .M={x |x ≠0},N={y |y ∈R } D .M={x |x <-1,或-1<x <0,或x >0} ,N={y |y ≠0} 6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时 的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( ) A .x =60t B .x =60t +50t C .x =???>-≤≤)5.3(,50150) 5.20(,60t t t t D .x =? ????≤<--≤<≤≤) 5.65.3(),5.3(50150) 5.35.2(,150) 5.20(,60t t t t t 7.已知g (x )=1-2x , f [g (x )]=)0(122 ≠-x x x ,则 f (2 1)等于 ( ) A .1 B .3 C .15 D .30 8.函数y= x x ++ -1912是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数 9.下列四个命题 (1)f(x)= x x -+-12有意义; (2)函数是其定义域到值域的映射; (3)函数 y=2x(x N ∈)的图象是一直线;

集合与函数概念单元测试题(含答案)

新课标数学必修1第一章集合与函数概念测试题 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分)。 1.用描述法表示一元二次方程的全体,应是 ( ) A .{x |ax 2+bx +c =0,a ,b ,c ∈R } B .{x |ax 2+bx +c =0,a ,b ,c ∈R ,且a ≠0} C .{ax 2+bx +c =0|a ,b ,c ∈R } D .{ax 2+bx +c =0|a ,b ,c ∈R ,且a ≠0} 2.图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 3.设集合P={立方后等于自身的数},那么集合P 的真子集个数是 ( ) A .3 B .4 C .7 D .8 4.设P={质数},Q={偶数},则P ∩Q 等于 ( ) A . B .2 C .{2} D .N 5.设函数x y 111+=的定义域为M ,值域为N ,那么 ( ) A .M={x |x ≠0},N={y |y ≠0} B .M={x |x <0且x ≠-1,或x >0},N={y |y <0,或0<y <1,或y >1} C .M={x |x ≠0},N={y |y ∈R } D .M={x |x <-1,或-1<x <0,或x >0=,N={y |y ≠0} 6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( ) A .x =60t B .x =60t +50t C .x =???>-≤≤)5.3(,50150)5.20(,60t t t t D .x =?????≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150) 5.20(,60t t t t t 7.已知g (x )=1-2x,f [g (x )]=)0(122≠-x x x ,则f (21)等于 ( ) A .1 B .3 C .15 D .30 8.函数y=x x ++-1912是( )

【例题与讲解】定义与命题

2定义与命题 1.定义 对某些名称或术语的含义加以描述,作出明确的规定,就是对名称和术语下定义. 谈重点下定义的注意事项 ①在定义中,必须揭示出事物与其他事物的本质属性的区别.②定义的双 重性:定义本身既可以当性质用,又可以当判定用.③语句必须通 顺、严格、准确,一般不能用“大约”“大概”“差不多”“左右”等含糊不 清的词语.要有利于人们对被定义的事物或名词与其他事物或名词 区别. ②【例1】下列语句,属于定义的是(). A.两点之间线段最短 B.连接三角形两边中点的线段叫做三角形的中位线 C.三角形的中位线平行于第三边并且等于第三边的一半 D.三人行则必有我师焉 解析:判断是不是定义,关键看是否对名称或术语的含义加以描述,而且作出了规定.很明显,A,C,D没有对名称或术语作出描述,故应选B. 答案:B 点技巧分清定义与命题 注意定义与命题的区分,作出判断的是命题,对名称或术语作出描述的是定义. 2.命题 (1)定义:判断一件事情的句子,叫做命题. (2)命题的组成结构: ①每个命题都是由条件和结论两部分组成.条件是已知事项,结论是由已知事项推断出的事项.命题一般写成“如果……那么……”的形式.“如果”引出的部分是条件,“那么”引出的部分是结论. ②有些命题没有写成“如果……那么……”的形式,条件和结论不明显.对

于这样的命题,要经过分析才能找到条件和结论,也可以将它们改写成“如果……那么……”的形式.命题的条件部分,有时也可用“已知……”或“若……”等形式表述.命题的结论部分,有时也可用“求证……”或“则……”等形式表述. 谈重点改写命题 命题的改写不能是简单地加上“如果”“那么”,而应当使改写的命题和原来的命题内容不变,且语句通顺完整,命题的条件、结论要清楚可见.有些命题条件和结论不一定只有一个,要注意区分. 【例2】指出下列命题的条件和结论:①平行于同一直线的两条直线互相平行;②若ab=1,则a与b互为倒数;③同角的余角相等;④矩形的四个角都是直角. 分析:命题的条件是已知事项,结论是由已知事项推断出的事项.命题一般写成“如果……,那么……”的形式.“如果”引出的部分是条件,“那么”引出的部分是结论. 解:①条件:两条直线都和第三条直线平行,结论:这两条直线互相平行. ②条件:ab=1,结论:a与b互为倒数. ③条件:两个角是同一个角的余角,结论:这两个角相等. ④条件:一个四边形是矩形,结论:这个四边形的四个角都是直角. 点技巧分清条件和结论 “若……则……”形式的命题中“若”后面是条件,“则”后面是结论. 3.公理、定理、证明 (1)公理 公认的真命题称为公理. ①公理是不需推理论证的真命题. ②公理可以作为推理论证定理及其他命题真假的依据. 常用的几个公理: ①两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. ②两条平行线被第三条直线所截,同位角相等. ③两边及其夹角对应相等的两个三角形全等.

集合与函数概念测试题

修文县华驿私立中学2012-2013学年度第一学期单元测试卷(四) (内容:集合与函数概念 满分:150 时间:120 制卷人:朱文艺) 班级: 学号: 姓名: 得分: 一、选择题:(以下每小题均有A,B,C,D 四个选项,其中只有一个选项正确,请把你的正确答案填入相应的括号中,每小题5分,共60分) 1. 下列命题正确的是 ( ) A .很小的实数可以构成集合 B .集合{} 1|2-=x y y 与集合(){} 1|,2-=x y y x 是同一个集合 C .自然数集N 中最小的数是1 D .空集是任何集合的子集 2. 已知{}32|≤≤-=x x M ,{}41|>-<=x x x N 或, 则N M 等于 ( ) A. {}43|>≤=x x x N 或 B. {}31|≤<-=x x M C. {}43|<≤=x x M D.{}12|-<≤-=x x M 3. 函数2() = f x ( ) A. 1 [,1]3- B. 1(,1)3- C. 11(,)33- D. 1(,)3 -∞- 4. 下列给出函数()f x 与()g x 的各组中,是同一个关于x 的函数的是 ( ) A .2 ()1,()1x f x x g x x =-=- B .()21,()21f x x g x x =-=+ C .2(),()f x x g x == D .0()1,()f x g x x == 5. 方程组? ??-=-=+122 y x y x 的解集是 ( ) A .{}1,1==y x B .{}1 C.{})1,1(|),(y x D . {})1,1( 6.设{} 是锐角x x A |=,)1,0(=B ,从A 到B 的映射是“求正切”,与A 中元素0 60相对应的B 中元素是 ( ) A .3 B . 33 C .21 D .2 2

初中因式分解中的“分组分解法”

初二因式分解解读之六:编制人:平生曜曜 因式分解中的“分组分解法” 分组分解法的运用最能体现同学们对基础知识掌握程度,如何分组并非漫无目标地轮换重组,这需要讲究一些“可以掌控的”技巧,而技巧从懵懂到明晰都有待于通过解题训练与归纳总结去养成。 不废话!开始上菜,入席就吃。只要肯用心吃,终有一天会吃胖的! (1)、分解因式:a2 x -b2 x -a2 y + b2 y …………先………写………出………你………的………答………案………… 你的答案:______________________________________。 〈分析〉:原式由“①、a2 x,②、-b2 x,③、+ a2 y,④、+ b2 y”这四部分组成,其中没有任何公因式可提取,但我们发现,其中个别“成员”间有公因式,所以可考虑: 第一种分组方式:①和②分为一组,③和④分为另一组。 解:原式=(a2 x -b2 x)+(-a2 y + b2 y) = x(a2 -b2)- y(a2 -b2) = (a2 -b2)(x -y) =(a + b)(a-b)(x -y) 第二种分组方式:①和③分为一组,②和④分为另一组。 解:原式=(a2 x -a2 y)+(-b2 x + b2 y) = a2(x - y )-b2(x -y) =(x -y)(a2 -b2) = (x -y)(a-b)(a + b) (2)、分解因式:x2 -4 + y2-2xy …………先………写………出………你………的………答………案………… 你的答案:______________________________________。

〈分析〉:原式由“①:x2”、“②:-4”、“③: +y2”和“④:-2xy”这四部分组成,其中没有任何公因式可提取,但我们发现,其中个别“成员”若组合在一起,就可以暂时先用提取公因式法,或者运用公式法,来作第一步分解,所以值得尝试: 第一种分组方式:①和②分为一组,③和④分为另一组。 解:原式=(x2 -4)+(y2 -2x y) = (x - 2 )(x + 2)-y(y -2x) 此法不能完成最终的分解任务,所以要另行分组,进行微调、重组! 第二种分组方式:①、③、④合为一组,②单独为另一组。 解:原式=(x2 + y2 -2x y )+(-4) =(x - y)2 -(2)2 =(x - y + 2)(x - y - 2) (3)、分解因式:x2 + 3x -y2 -3y …………先………写………出………你………的………答………案………… 你的答案:______________________________________。 〈分析〉: 第一种情况:尝试①、②合为一组,③、④合为另一组: 解:原式=(x2 + 3x )+(-y2 -3y) = x(x + 3)- y(y + 3) 此法不能完成最终的分解任务,所以要另行分组,进行微调、重组! 第二种情况:尝试①、③合为一组,②、④合为另一组: 解:原式=(x2 -y2)+(3x-3y) =(x + y)(x - y)+ 3(x - y) =(x - y)(x + y + 3) 〈总结技巧之一〉:形如“平方和”的项,宜与“相应的交叉项”暂时凑成一组,然

人教A版高一数学函数的概念知识点总结与例题讲解

函数的概念知识点总结 本节主要知识点 (1)函数的概念. (2)函数的三要素与函数相等. (3)区间的概念及其表示. 知识点一 函数的概念 初中学习的函数的传统定义 一般地,如果在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数. 函数的近代定义 设A , B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()x f 和它对应,那么就称f :B A →为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈. 其中,x 叫作自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫作函数值,函数值的集合{}A x x f y y ∈=),(叫做函数的值域.显然,值域是集合B 的子集. 对函数的近代定义的理解 (1)只有两个非空的数集之间才可能建立函数关系.定义域或值域为空集的函数是不存在的. 如x x y --= 11就不是函数. (2)注意函数定义中的“三性”:任意性、存在性和唯一性. 任意性:集合A 中的任意一个元素x 都要考虑到. 存在性:集合A 中的任意一个元素x ,在集合B 中都存在对应元素y . 唯一性:在集合B 中,与每一个元素x 对应的元素y 是唯一的.

(3)集合B 不一定是函数的值域,值域是集合B 的子集. 在集合B 中,可以存在元素在集合A 中没有与之对应者. 例1. 讨论二次函数的定义域和值域. 解:二次函数的一般式为()02≠++=a c bx ax y ,为整式函数,所以其定义域为R ,其值域的确定分为两种情况: ①当0>a 时,函数的值域为?????? -≥a b ac y y 442; ②当0

第一章 集合与函数概念测试题

集合与函数概念测试题 一、选择题(每小题5分,满分60分) 1.已知(){},3A x y x y =+=,(){},1B x y x y =-=,则A B = ( ). A .{}2,1 B .(){}2,1 C .{}2,1x y == D .()2,1 2.如图,U 是全集,,,M P S 是U 的三个子集,则阴影部分所表示的集合是 ( ). A .()M P S B .()M P S C .()()U M P C S D .()()U M P C S 3.下列各组函数表示同一函数的是( ). (A) 2 (),()f x g x = = (B) 0 ()1,()f x g x x == (C) 2 1()1,()1 x f x x g x x -=+=- (D )2 (),()f x g x = = 4.函数{}()1,1,1,2f x x x =+∈-的值域是( ). (A) 0,2,3 (B) 30≤≤y (C) }3,2,0{ (D )]3,0[ 5.已知函数2 2 1()12,[()](0)x g x x f g x x x -=-= ≠,则(0)f 等于( ) . (A) 3- (B) 32 - (C) 32 (D ) 3 6.函数2 ()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数a 的取值范围是( ). A .3a ≥- (B) 3a ≤- (C) 5a ≤ (D )3a ≥ 7.函数()f x 是定义在R 上的奇函数,当0>x 时,1)(+-=x x f ,则当0

高考生物总复习例题讲解遗传学的基本概念

遗传学的基本概念 : 一、两性花和单性花 两性花,举例。两性花的传粉方式是和。 单性花,举例。单性性花的传粉方式是 闭花传粉是? 二、相对性状、显性性状和隐性性状 相对性状是。F1表现出来的性状称为,未表现出来的性状称为。 三、等位基因、非等位基因 位于同源染色体的同一位置,控制相对性状的基因称为;位于同源染色体的不同位置或非同源染色体上,控制不同性状的基因称为。在减数分裂形成配子的过程中等位基因的行为遵循非等位基因的行为遵循。请指出下图中哪些为等位基因?哪些为非等位基因? 四、纯合子、杂合子和性状分离 纯合子是由的配子结合成的合子发育而来的,其遗传特性是。杂合子是由的配子结合成的合子发育而来的,杂合子不能稳定遗传,在杂种后代中显现不同性状的现象,称为。 下面哪些是纯合子?哪些是杂合子?自交后子代表现? AA Aa aa AAbb AABb aabb AaBb 五、杂交、自交、测交 杂交:通常是指基因型不同的个体交配。 自交:指来自同一个体的雌雄配子的结合或具有间的交配或来自同一无性繁殖系的个体间的交配。 测交:为测定杂合个体的基因型而进行的与有关隐性纯合个体之间的交配。 六、基因型和表现型 表现型是基因型和环境条件(内外)共同作用的结果。具有相同表现型的个体其基因型(一定/不一定)相同;具有相同基因型的个体,其表现型也(一定/不一定)相同。水毛茛的叶形有丝状和扁平状是由于其因素带来的,其体细胞的基因型相同。位于常染色体上的Bb基因型的个体,男性表现为秃顶,女性表现为不秃,其原因是,这种仅见于某一性别的特征称为限性遗传。

七、显性的相对性 1.完全显性 ⑴F1与显性亲本性状完全相同的现象 ⑵F1 自交产生的F2性状分离比,举例 2.不完全显性 ⑴F1表现为双亲的中间类型的现象 ⑵F1 自交产生的F2性状分离比举例 3.共显性 ⑴F1同时表现出双亲的性状的现象 ⑵F1 自交产生的F2性状分离比1:2:1举例 八、基因重组和基因自由组合 1.基因重组概念: 通常是指生物进行有性生殖时,控制不同性状的基因(如A和B或A和b等)即重新组合 2. 基因重组类型: ①非同源染色体上的自由组合引起的基因重组 ②同源染色体上的交叉互换引起的基因重组 ③体外基因重组技术(转基因技术) 九、遗传病 1. 或中的遗传物质发生改变而引发的疾病 2.通常具有的特征 3.包括、和

集合与函数概念检测试题

数学必修一第一章检测试题(含答案) (集合与函数概念) 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项 是符合题目要求的. 1.已知集合}8,5,2{=M ,}10,9,8,5{=N ,则=N M (A ) A .}10,9,8,5,2{ B .}8,5{ C .}10,9{ D .}2{ 2.若集合{},,a b c 当中的元素是△ABC 的三边长,则该三角形是(C) A .正三角形 B .等腰三角形 C .不等边三角形 D .等腰直角三角形 3.集合{1,2,3}的真子集共有(C) A .5个 B .6个 C .7个 D .8个 4.设A 、B 是全集U 的两个子集,且A ?B ,则下列式子成立的是(C) A .C U A ?C U B B . C U A ?C U B=U C .A ?C U B=φ D .C U A ?B=φ 5.已知}19,2,1{2-=a A ,B={1,3},A =B }3,1{,则=a (C) A . 3 2 B . 2 3 C .3 2± D .2 3± 6.函数x x x y +=的图象是 (D) 7.如果集合A={x|ax 2+2x +1=0}中只有一个元素,那么a 的值是(B) A .0 B .0 或1 C .1 D .不能确定 8.已知2 2(1)()(12)2(2)x x f x x x x x +≤-??=-<

《因式分解-分组分解与十字相乘法》知识点归纳

《因式分解-分组分解与十字相乘法》知 识点归纳 ★★ 知识体系梳理 ◆ 分组分解法: 用分组分解法来分解的多项式一般至少有四项,分组不是盲目的,要有预见性.也就是说,分组后每组之间必须要有公因式可提取,或者分组后可直接运用公式。 、分组后能提公因式; 2、分组后能运用公式 ◆ 十字相乘法: 、型的二次三项式因式分解: (其中,) 、二次三项式的分解: 如果二次项系数分解成、,常数项分解成、;并且等于一次项系数,那么二次三项式: 借助于画十字交叉线排列如下:

◆ 因式分解的一般步骤:一提二代三分组 ①、如果多项式的各项有公因式,那么先提取公因式; ②、提取公因式以后或没有公因式,再考虑公式法或十字相乘法; ③、对二次三项式先考虑能否用完全平方公式,再考虑能否用十字相乘法; ④、用以上方法不能分解的三项以上的多项式,考虑用分组分解法。 ◆ 因式分解几点注意与说明: ①、因式分解要进行到不能再分解为止; ②、结果中相同因式应写成幂的形式; ③、根据不同多项式的特点,灵活的综合应用各种方法分解因式是本章的重点和难点,因此掌握好因式分解的概念、方法、步骤是学好本章的关键。 ★★ 典型例题、解法导航 ◆ 考点一:十字相乘法 、型三项式的分解 【例1】计算:

(1) (2) (3) (4) 运用上面的结果分解因式: ①、 ②、 ③、 ④、 方法点金:型三项式关键是把常数分解为两个数之积(),而这两个数的和正好等于一次项的系数()。 ◎变式议练一: 、 2、已知能分解成两个整系数的一次因式的乘积,则符合条件的整数的个数为( ) 、个 、个 、个 、个 3、把下列各式分解因式: ①、

集合与函数概念单元测试题经典含答案

第一章集合与函数概念测试题 一:选择题 1、下列集合中与集合{21,}x x k k N +=+∈不相等的是( ) A .{23,}x x k k N =+∈ B .{41,}x x k k N +=±∈ C .{21,}x x k k N =+∈ D .{23,3,}x x k k k Z =-≥∈ 2、图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 3、已知集合2{1}A y y x ==+,集合2{26}B x y x ==-+,则A B =( ) A .{(,)1,2}x y x y == B .{13}x x ≤≤ C .{13}x x -≤≤ D .? 4、已知集合2{40}A x x =-=,集合{1}B x ax ==,若B A ?,则实数a 的值是( ) A .0 B .12± C .0或12± D .0或12 5、已知集合{1,2,3,}A a =,2{3,}B a =,则使得Φ=B A C U )(成立的a 的值的个数为( ) A .2 B .3 C .4 D .5 6、设A 、B 为两个非空集合, 定义{(,),}A B a b a A b B ⊕=∈∈,若{1,2,3}A =,{2,3,4}B =,则A B ⊕中的元素个数为 ( ) A .3 B .7 C .9 D .12 7、已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( ) A .x =60t B .x =60t +50 C .x =???>-≤≤)5.3(,50150)5.20(,60t t t t D .x =? ????≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t 8、已知g (x )=1-2x, f [g (x )]=)0(12 2≠-x x x ,则f (21)等于 ( ) A .1 B .3 C .15 D .30

高三数学数列总复习例题讲解

数列专题复习 一、等差数列的有关概念: 1、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。 如设{}n a 是等差数列,求证:以b n =n a a a n +++ 21 *n N ∈为通项公式的数列{}n b 为 等差数列。 2、等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。 如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a = (答:210n +); (2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答: 8 33 d <≤) 3、等差数列的前n 和:1()2n n n a a S += ,1(1) 2 n n n S na d -=+ 。 如(1)数列 {}n a 中,* 11(2,)2 n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-, 则1a = _,n =_(答:13a =-,10n =); (2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T (答: 2* 2* 12(6,)1272(6,) n n n n n N T n n n n N ?-≤∈?=?-+>∈??). 4、等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2 a b A += 。 提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及 n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个, 即知3求2。(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…, 2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d ) 5、等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0.

相关文档
最新文档