化学问题意识外文文献翻译

化学问题意识外文文献翻译
化学问题意识外文文献翻译

原文

题目:Using “What if..” questions to teach science

Abstract

With the widening knowledge base students will need to be more flexible in their learning habits. Traditionally, teaching school science often involves teacher-centred methods like lectures, experimental demonstration or guided inquiry. Plain knowledge dissemination will not adequately prepare students to cope with the changing world. Hence, schools need to train students to be reflective in their learning habits – that is, getting students to be observant, to generate relevant alternatives and to make sense of these ideas. This article discusses a well-documented reflective learning strategy - the use of “what if” questions, to help students extend their learning beyond curricular requirements. Students are introduced to a distillation set up and then asked to pose “what if” questions about it. Their questions and the corresponding peer responses are a wealth of information for teachers to explore how science may be taught differently and with a greater impact on their students’ learning experience.

Introduction

The present science curriculum includes a range of student learning outcomes covering laboratory and experimental science (MOE, 2007). Researchers and scholars had argued that the roles of experiments and practical work in schools should allow students to practice laboratory skills, learn the various investigative processes and acquire first hand experiences in dealing with materials and laboratory wares (Boud, Dunn and Hegarty-Hazel, 1986; Doran et al, 2002; Hegarty-Hazel, 1986; Josephsen, 2003; Woolnough, 1990).Besides these cognitive and psychomotor objectives of school laboratory courses, there are also

suggestions that lessons should be made more attractive through more intellectually demanding courses and new teaching techniques that can motivate students to learn (Schmidt, 2000).This paper discusses a

well-documented reflective learning strategy - the use of questions posed by students to help them extend their learning beyond curricular requirements (Chin and Chia, 2004; Walsh and Sattes, 2005).Specifically, it discusses the use of "what if" questions posed by students (Fogarty, 1994). Students are introduced to a distillation set up and then asked to pose "what if" questions about it. Their questions and the corresponding peer responses provide teachers with a good insight on how students contribute to knowledge building through self-created learning opportunities.The entire experience may also help to create a classroom teaching-learning culture in which the teacher takes on the role of the advanced learner among novice learners.

Conducting the lesson

Traditionally a lesson on experimental science would commence with teacher talk, student evaluation and then possibly, a confirmatory experimental experience in the laboratory.Inquiry-based lessons may tweak the lesson structure a bit, with the teacher starting a learning task by asking a question.For example,

“If you are stranded in the open sea on a small boat, how would you go about making some fresh water to drink from the sea water around you?(Assuming you have the essential laboratory wares with you.)”

The teacher may then follow up by facilitating a class discussion and end with the teacher summarizing and contextualizing the discussion to fit the curricular requirements.

Mortimer and Scott (2003) in their book, Making Meaning in Secondary School Science, suggested that students should engage in some form of dialogic activity if they are to develop an understanding of a science topic.In this respect, classroom talk, learning and meaning making would not make strange bedfellows but are essential features in the science classroom that would ensure students gain some impactful learning experiences.

The lesson, which the present discussion is based on, involved both the traditional classroom lesson delivery and the engagement of student dialogic process. It was conducted for a group of ten secondary three express students (equivalent to grade 8). The students, four girls and six boys, were selected by their Chemistry teacher to attend a remedial lesson on the topic of “Separation Techniques”.They came from two different classes taught by the same teacher.The separation technique to be revised in the 40-minute lesson was on “Simple Distillation”.The author of this paper was requested by their teacher to teach this remedial lesson.The author (referred to as the ‘remedial teacher’ in this paper) is also a qualified and experienced school science teacher of over 16 years. The proceedings of the lesson are summarized in Table 1.

Table 1: Lesson Proceedings

After the formal greetings and a simple self-introduction, the remedial teacher proceeded to explain the importance of separation techniques in chemistry. He cited simple distillation as an important technique that allows us to obtain a pure solvent or liquid from a contaminated liquid sample (a solution or a suspension).A fully labelled diagram of the apparatus set up for simple distillation was projected on the screen with the help of a visualiser (Figure 1).Referring to the diagram on the screen, the remedial teacher then proceeded to explain how the simple distillation apparatus works.The students were attentive and some were busy taking notes. This segment of the lesson lasted about ten minutes and was totally delivered by teacher-talk.

Figure 1.Diagram of a simple distillation set up for distilling seawater.

At this juncture, students were invited to verbally ask any question about the apparatus set up.There was a short pause with no response from the students.The remedial teacher then requested that they pen their questions on blank pieces of paper.Again, there were some “thoughtful” actions (for examples, a boy had his chin propped by his hand on the table and a few girls showed contorted eyebrows, all presumably deep in their thoughts).Most of them stared blankly at the diagram projected on the screen. Again, no one wrote anything.

The remedial teacher then wrote the following words on the whiteboard –“What if…” and instructed students to begin posing their questions with these two words.He also added that they could ask anything about the apparatus set up, including the materials, products, reaction conditions or anything that interest them, so long as it was something related to the simple distillation process or apparatus set up. They could ask questions that they know the answers, or questions that they do not know the answers.No examples were given to the students other than these instructions.

It was observed that students began to pen their thoughts, writing down the questions and raising their heads periodically to refer to the diagram shown on the screen.It took about ten minutes before most of them became exhausted of ideas and a few started to curiously peek into their neighbou rs’ work.The remedial teacher then collected the papers and began to flash them one by one on the visualiser.For each student’s questions presented, the remedial teacher facilitated an almost spontaneous response from the floor.Students were observed to be chatty while a few showed amusements at their peers’ questions.There was a lively contribution to the possibilities raised by the questions, including difficult and unfamiliar situations arising from questions like “What if there is no condenser there?” and “What if the Bunsen burner was replaced by a candle?” (Figure 2)

Figure 2.“What if..” questions can surface unfamiliar experimental situations

The “what if” questions and peer responses

The activity generated a list of 26 questions from the ten students (Table 2).These questions can be broadly classified into 11 different types of “

What if…” questions pertaining to the topic on simple distillation of seawater.

Table 2:Breakdown and frequency of the types of “What if…” questions posed by students.

(For the actual questions posed by students, please see Annex A)

Unfortunately, the lively discussion during the presentation of the students’ “What if..” questions was not docu mented on paper on the spot or recorded in any media form.However, some typical examples of peer

responses to the posed questions are summarized in Table 3.A few of the peer responses may not be technically sound and some may be incorrect.It is important to have these misconceptions addressed immediately, and on the spot, by the teacher.This was done each time the teacher identified a misconception during the discussion.Table 3 also shows some examples of students’ misconceptions identified from their posed questions and peer responses.

化学专业英语(修订版)翻译

01 THE ELEMENTS AND THE PERIODIC TABLE 01 元素和元素周期表 The number of protons in the nucleus of an atom is referred to as the atomic number, or proton number, Z. The number of electrons in an electrically neutral atom is also equal to the atomic number, Z. The total mass of an atom is determined very nearly by the total number of protons and neutrons in its nucleus. This total is called the mass number, A. The number of neutrons in an atom, the neutron number, is given by the quantity A-Z. 质子的数量在一个原子的核被称为原子序数,或质子数、周淑金、电子的数量在一个电中性原子也等于原子序数松山机场的总质量的原子做出很近的总数的质子和中子在它的核心。这个总数被称为大量胡逸舟、中子的数量在一个原子,中子数,给出了a - z的数量。 The term element refers to, a pure substance with atoms all of a single kind. T o the chemist the "kind" of atom is specified by its atomic number, since this is the property that determines its chemical behavior. At present all the atoms from Z = 1 to Z = 107 are known; there are 107 chemical elements. Each chemical element has been given a name and a distinctive symbol. For most elements the symbol is simply the abbreviated form of the English name consisting of one or two letters, for example: 这个术语是指元素,一个纯物质与原子组成一个单一的善良。在药房“客气”原子的原子数来确定它,因为它的性质是决定其化学行为。目前所有原子和Z = 1 a到Z = 107是知道的;有107种化学元素。每一种化学元素起了一个名字和独特的象征。对于大多数元素都仅仅是一个象征的英文名称缩写形式,一个或两个字母组成,例如: oxygen==O nitrogen == N neon==Ne magnesium == Mg

《化学工程与工艺专业英语》课文翻译 完整版

Unit 1 Chemical Industry 化学工业 1.Origins of the Chemical Industry Although the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin‘s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939). 1.化学工业的起源 尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。可以认为它起源于工业革命其间,大约在1800年,并发展成为为其它工业部门提供化学原料的产业。比如制肥皂所用的碱,棉布生产所用的漂白粉,玻璃制造业所用的硅及Na2CO3. 我们会注意到所有这些都是无机物。有机化学工业的开始是在十九世纪六十年代以William Henry Perkin 发现第一种合成染料—苯胺紫并加以开发利用为标志的。20世纪初,德国花费大量资金用于实用化学方面的重点研究,到1914年,德国的化学工业在世界化学产品市场上占有75%的份额。这要归因于新染料的发现以及硫酸的接触法生产和氨的哈伯生产工艺的发展。而后者需要较大的技术突破使得化学反应第一次可以在非常高的压力条件下进行。这方面所取得的成绩对德国很有帮助。特别是由于1914年第一次世界大仗的爆发,对以氮为基础的化合物的需求飞速增长。这种深刻的改变一直持续到战后(1918-1939)。 date bake to/from: 回溯到 dated: 过时的,陈旧的 stand sb. in good stead: 对。。。很有帮助

人工智能专业外文翻译-机器人

译文资料: 机器人 首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。另一方面它也是生产力发展的需求的必然结果,也是人类自身发展的必然结果,那么随着人类的发展,人们在不断探讨自然过程中,在认识和改造自然过程中,需要能够解放人的一种奴隶。那么这种奴隶就是代替人们去能够从事复杂和繁重的体力劳动,实现人们对不可达世界的认识和改造,这也是人们在科技发展过程中的一个客观需要。 机器人有三个发展阶段,那么也就是说,我们习惯于把机器人分成三类,一种是第一代机器人,那么也叫示教再现型机器人,它是通过一个计算机,来控制一个多自由度的一个机械,通过示教存储程序和信息,工作时把信息读取出来,然后发出指令,这样的话机器人可以重复的根据人当时示教的结果,再现出这种动作,比方说汽车的点焊机器人,它只要把这个点焊的过程示教完以后,它总是重复这样一种工作,它对于外界的环境没有感知,这个力操作力的大小,这个工件存在不存在,焊的好与坏,它并不知道,那么实际上这种从第一代机器人,也就存在它这种缺陷,因此,在20世纪70年代后期,人们开始研究第二代机器人,叫带感觉的机器人,这种带感觉的机器人是类似人在某种功能的感觉,比如说力觉、触觉、滑觉、视觉、听觉和人进行相类比,有了各种各样的感觉,比方说在机器人抓一个物体的时候,它实际上力的大小能感觉出来,它能够通过视觉,能够去感受和识别它的形状、大小、颜色。抓一个鸡蛋,它能通过一个触觉,知道它的力的大小和滑动的情况。第三代机器人,也是我们机器人学中一个理想的所追求的最高级的阶段,叫智能机器人,那么只要告诉它做什么,不用告诉它怎么去做,它就能完成运动,感知思维和人机通讯的这种功能和机能,那么这个目前的发展还是相对的只是在局部有这种智能的概念和含义,但真正完整意义的这种智能机器人实际上并没有存在,而只是随着我们不断的科学技术的发展,智能的概念越来越丰富,它内涵越来越宽。 下面我简单介绍一下我国机器人发展的基本概况。由于我们国家存在很多其

电气自动化专业毕业论文英文翻译

电厂蒸汽动力的基础和使用 1.1 为何需要了解蒸汽 对于目前为止最大的发电工业部门来说, 蒸汽动力是最为基础性的。 若没有蒸汽动力, 社会的样子将会变得和现在大为不同。我们将不得已的去依靠水力发电厂、风车、电池、太阳能蓄电池和燃料电池,这些方法只能为我们平日用电提供很小的一部分。 蒸汽是很重要的,产生和使用蒸汽的安全与效率取决于怎样控制和应用仪表,在术语中通常被简写成C&I(控制和仪表 。此书旨在在发电厂的工程规程和电子学、仪器仪表以 及控制工程之间架设一座桥梁。 作为开篇,我将在本章大体描述由水到蒸汽的形态变化,然后将叙述蒸汽产生和使用的基本原则的概述。这看似简单的课题实际上却极为复杂。这里, 我们有必要做一个概述:这本书不是内容详尽的论文,有的时候甚至会掩盖一些细节, 而这些细节将会使热力学家 和燃烧物理学家都为之一震。但我们应该了解,这本书的目的是为了使控制仪表工程师充 分理解这一课题,从而可以安全的处理实用控制系统设计、运作、维护等方面的问题。1.2沸腾:水到蒸汽的状态变化 当水被加热时,其温度变化能通过某种途径被察觉(例如用温度计 。通过这种方式 得到的热量因为在某时水开始沸腾时其效果可被察觉,因而被称为感热。 然而,我们还需要更深的了解。“沸腾”究竟是什么含义?在深入了解之前,我们必须考虑到物质的三种状态:固态,液态,气态。 (当气体中的原子被电离时所产生的等离子气体经常被认为是物质的第四种状态, 但在实际应用中, 只需考虑以上三种状态固态,

物质由分子通过分子间的吸引力紧紧地靠在一起。当物质吸收热量,分子的能量升级并且 使得分子之间的间隙增大。当越来越多的能量被吸收,这种效果就会加剧,粒子之间相互脱离。这种由固态到液态的状态变化通常被称之为熔化。 当液体吸收了更多的热量时,一些分子获得了足够多的能量而从表面脱离,这个过程 被称为蒸发(凭此洒在地面的水会逐渐的消失在蒸发的过程中,一些分子是在相当低的 温度下脱离的,然而随着温度的上升,分子更加迅速的脱离,并且在某一温度上液体内部 变得非常剧烈,大量的气泡向液体表面升起。在这时我们称液体开始沸腾。这个过程是变为蒸汽的过程,也就是液体处于汽化状态。 让我们试想大量的水装在一个敞开的容器内。液体表面的空气对液体施加了一定的压 力,随着液体温度的上升,便会有足够的能量使得表面的分子挣脱出去,水这时开始改变 自身的状态,变成蒸汽。在此条件下获得更多的热量将不会引起温度上的明显变化。所增 加的能量只是被用来改变液体的状态。它的效用不能用温度计测量出来,但是它仍然发生 着。正因为如此,它被称为是潜在的,而不是可认知的热量。使这一现象发生的温度被称为是沸点。在常温常压下,水的沸点为100摄氏度。 如果液体表面的压力上升, 需要更多的能量才可以使得水变为蒸汽的状态。 换句话说, 必须使得温度更高才可以使它沸腾。总而言之,如果大气压力比正常值升高百分之十,水必须被加热到一百零二度才可以使之沸腾。

机械专业外文翻译(中英文翻译)

外文翻译 英文原文 Belt Conveying Systems Development of driving system Among the methods of material conveying employed,belt conveyors play a very important part in the reliable carrying of material over long distances at competitive cost.Conveyor systems have become larger and more complex and drive systems have also been going through a process of evolution and will continue to do so.Nowadays,bigger belts require more power and have brought the need for larger individual drives as well as multiple drives such as 3 drives of 750 kW for one belt(this is the case for the conveyor drives in Chengzhuang Mine).The ability to control drive acceleration torque is critical to belt conveyors’performance.An efficient drive system should be able to provide smooth,soft starts while maintaining belt tensions within the specified safe limits.For load sharing on multiple drives.torque and speed control are also important considerations in the drive system’s design. Due to the advances in conveyor drive control technology,at present many more reliable.Cost-effective and performance-driven conveyor drive systems covering a wide range of power are available for customers’ choices[1]. 1 Analysis on conveyor drive technologies 1.1 Direct drives Full-voltage starters.With a full-voltage starter design,the conveyor head shaft is direct-coupled to the motor through the gear drive.Direct full-voltage starters are adequate for relatively low-power, simple-profile conveyors.With direct fu11-voltage starters.no control is provided for various conveyor loads and.depending on the ratio between fu11-and no-1oad power requirements,empty starting times can be three or four times faster than full load.The maintenance-free starting system is simple,low-cost and very reliable.However, they cannot control starting torque and maximum stall torque;therefore.they are

化学专业英语翻译1

01.THE ELEMENTS AND THE PERIODIC TABLE 01元素和元素周期 表。 The number of protons in the nucleus of an atom is referred to as the atomic number, or proton number, Z. The number of electrons in an electrically neutral atom is also equal to the atomic number, Z. The total mass of an atom is determined very nearly by the total number of protons and neutrons in its nucleus. This total is called the mass number, A. The number of neutrons in an atom, the neutron number, is given by the quantity A-Z. 原子核中的质子数的原子称为原子序数,或质子数,卓电子数的电中性的原子也等于原子序数Z,总质量的原子是非常接近的总数量的质子和中子在原子核。这被称为质量数,这个数的原子中的中子,中子数,给出了所有的数量 The term element refers to, a pure substance with atoms all of a single kind. To the chemist the "kind" of atom is specified by its atomic number, since this is the property that determines its chemical behavior. At present all the atoms from Z = 1 to Z = 107 are known; there are 107 chemical elements. Each chemical element has been given a name and a distinctive symbol. For most elements the symbol is simply the abbreviated form of

污水处理 英文文献3 翻译

丹宁改性絮凝剂处理城市污水 J.Beltrán-heredia,J.ánche z-Martin 埃斯特雷马杜拉大学化学工程系和物理化学系,德埃娃儿,S / N 06071,巴达霍斯,西班牙 摘要 一种新的以丹宁为主要成分的混凝剂和絮凝剂已经过测试用以处理城市污水。TANFLOC 证实了其在浊度的去除上的高效性(接近100%,取决于剂量),并且近50%的BOD5和COD 被去除,表明TANFLOC是合适的凝集剂,效力可与明矾相媲美。混凝絮凝剂过程不依赖于温度,发现最佳搅拌速度和时间为40转/每分钟和30分钟。多酚含量不显著增加,30%的阴离子表面活性剂被去除。沉淀过程似乎是一种絮凝分离,所以污泥体积指数和它随絮凝剂剂量的改变可以确定。证明TANFLOC是相当有效的可用于污水处理的混凝絮凝剂。 关键词: 基于丹宁的絮凝剂城市污水絮凝天然混凝剂 1.简介 人类活动是废物的来源。特别是在城市定居点,来自家庭和工业的废水可能是危险有害的产品[ 1 ],需要适当的处理,以避免对环境[ 2 ]和健康的影响[ 3,4 ]。2006年12月4日联合国大会通过决议宣布2008为国际卫生年。无效的卫生基础设施促使每年220万人死于腹泻,主要在3岁以下儿童,600万人因沙眼失明,两亿人感染血吸虫病,只是为了给出一些数据[ 5 ]。显然,他们中的大多数都是在发展中国家,所以谈及城市污水,必须研究适当的技术来拓宽可能的处理技术种类。 在这个意义上,许多类型的水处理被使用。他们之间的分歧在于经济和技术特点上。了摆脱危险的污染[ 6 ],一些令人关注的论文已经发表的关于城市污水处理的几种天然的替代方法,包括绿色过滤器、化学初步分离、紫外消毒[ 7 ]和多级程序[ 8 ]。 几个以前的文件指出了城市污水管理[9,10]的重要性。这种类型的废物已成为社会研究的目标,因为它涉及到几个方面,都与社会结构和社会组织[11 ]相关。根据这一维度,必须认识到废水管理作为发展中国家的一种社会变化的因素,事关污水处理和生产之间的平衡,是非常重要的,一方面,人类要发展,另一方面,显而易见。 对水处理其它程序的研究一直是这和其他文件的范围。几年来,研究者关注的是发展中国家间的合作,他们正在致力于水处理的替代过程,主要考虑可持续发展,社会承受能力和可行性等理念。在这个意义上,自然混凝絮凝剂这一广为传播,易于操作的资源即使是非专业人员也不难操作。有一些例子,如辣木[ 14 ]和仙人掌榕[ 15 ]。丹宁可能是一个新的混凝剂和絮凝剂。 一些开拓者已经研究了丹宁水处理能力。 ?zacar和sengil [ 16 ]:从瓦罗NIA获得的丹宁,从土耳其的autoctonous树的果壳中获得丹宁,并用于他们的–污水混凝絮凝过程。他们表明,丹宁有很好的效果,结合Al2(SO4)3可进一步提高污泥去除率。 詹和赵[ 17 ]试着用丹宁为主要成分的凝胶作为吸收剂除去水中的铝,丹宁凝胶改进了金属去除过程,一定意义上也可参照Nakano等人的[ 18 ],Kim 和Nakano[ 19 ]。 ?zacar和sengil [ 20 ]加强以前的文章给出了关于三卤甲烷的形成和其他不良化合物特殊的数据,以及处理后的水质安全。他们始终使用丹宁与Al2(SO4)3的组合。 帕尔马等人将丹宁从辐射松的树皮为原位提取,用于重金属去除中聚合固体。树皮本

文献综述_人工智能

人工智能的形成及其发展现状分析 冯海东 (长江大学管理学院荆州434023) 摘要:人工智能的历史并不久远,故将从人工智能的出现、形成、发展现 状及前景几个方面对其进行分析,总结其发展过程中所出现的问题,以及发展现状中的不足之处,分析其今后的发展方向。 关键词:人工智能,发展过程,现状分析,前景。 一.引言 人工智能最早是在1936年被英国的科学家图灵提出,并不为多数人所认知。 当时,他编写了一个下象棋的程序,这就是最早期的人工智能的应用。也有著名的“图灵测试”,这也是最初判断是否是人工智能的方案,因此,图灵被尊称为“人工智能之父”。人工智能从产生到发展经历了一个起伏跌宕的过程,直到目前为止,人工智能的应用技术也不是很成熟,而且存在相当的缺陷。 通过搜集的资料,将详细的介绍人工智能这个领域的具体情况,剖析其面临的挑战和未来的前景。 二.人工智能的发展历程 1. 1956年前的孕育期 (1) 从公元前伟大的哲学家亚里斯多德(Aristotle)到16世纪英国哲学家培根(F. Bacon),他们提出的形式逻辑的三段论、归纳法以及“知识就是力量”的警句,都对人类思维过程的研究产生了重要影响。 (2)17世纪德国数学家莱布尼兹(G..Leibniz)提出了万能符号和推理计算思想,为数理逻辑的产生和发展奠定了基础,播下了现代机器思维设计思想的种子。而19世纪的英国逻辑学家布尔(G. Boole)创立的布尔代数,实现了用符号语言描述人类思维活动的基本推理法则。 (3) 20世纪30年代迅速发展的数学逻辑和关于计算的新思想,使人们在计算机出现之前,就建立了计算与智能关系的概念。被誉为人工智能之父的英国天才的数学家图灵(A. Tur-ing)在1936年提出了一种理想计算机的数学模型,即图灵机之后,1946年就由美国数学家莫克利(J. Mauchly)和埃柯特(J. Echert)研制出了世界上第一台数字计算机,它为人工智能的研究奠定了不可缺少的物质基础。1950年图灵又发表了“计算机与智能”的论文,提出了著名的“图灵测试”,形象地指出什么是人工智能以及机器具有智能的标准,对人工智能的发展产生了极其深远的影响。 (4) 1934年美国神经生理学家麦克洛奇(W. McCulloch) 和匹兹(W. Pitts )建立了第一个神经网络模型,为以后的人工神经网络研究奠定了基础。 2. 1956年至1969年的诞生发育期 (1)1956年夏季,麻省理工学院(MIT)的麦卡锡(J.McCarthy)、明斯基(M. Minshy)、塞尔夫里奇(O. Selfridge)与索罗门夫(R. Solomonff)、 IBM的洛

英语专业毕业论文翻译类论文

英语专业毕业论文翻译 类论文 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

毕业论文(设计)Title:The Application of the Iconicity to the Translation of Chinese Poetry 题目:象似性在中国诗歌翻译中的应用 学生姓名孔令霞 学号 BC09150201 指导教师祁晓菲助教 年级 2009级英语本科(翻译方向)二班 专业英语 系别外国语言文学系

黑龙江外国语学院本科生毕业论文(设计)任务书 摘要

索绪尔提出的语言符号任意性,近些年不断受到质疑,来自语言象似性的研究是最大的挑战。语言象似性理论是针对语言任意性理论提出来的,并在不断发展。象似性是当今认知语言学研究中的一个重要课题,是指语言符号的能指与所指之间的自然联系。本文以中国诗歌英译为例,探讨象似性在中国诗歌翻译中的应用,从以下几个部分阐述:(1)象似性的发展;(2)象似性的定义及分类;(3)中国诗歌翻译的标准;(4)象似性在中国诗歌翻译中的应用,主要从以下几个方面论述:声音象似、顺序象似、数量象似、对称象似方面。通过以上几个方面的探究,探讨了中国诗歌翻译中象似性原则的重大作用,在诗歌翻译过程中有助于得到“形神皆似”和“意美、音美、形美”的理想翻译效果。 关键词:象似性;诗歌;翻译

Abstract The arbitrariness theory of language signs proposed by Saussure is severely challenged by the study of language iconicity in recent years. The theory of iconicity is put forward in contrast to that of arbitrariness and has been developing gradually. Iconicity, which is an important subject in the research of cognitive linguistics, refers to a natural resemblance or analogy between the form of a sign and the object or concept. This thesis mainly discusses the application of the iconicity to the translation of Chinese poetry. The paper is better described from the following parts: (1) The development of the iconicity; (2) The definition and classification of the iconicity; (3) The standards of the translation to Chinese poetry; (4) The application of the iconicity to the translation of Chinese poetry, mainly discussed from the following aspects: sound iconicity, order iconicity, quantity iconicity, and symmetrical iconicity. Through in-depth discussion of the above aspects, this paper could come to the conclusion that the iconicity is very important in the translation of poetry. It is conductive to reach the ideal effect of “the similarity of form and spirit” and “the three beauties”. Key words: the iconicity; poetry; translation

各专业的英文翻译剖析

哲学Philosophy 马克思主义哲学Philosophy of Marxism 中国哲学Chinese Philosophy 外国哲学Foreign Philosophies 逻辑学Logic 伦理学Ethics 美学Aesthetics 宗教学Science of Religion 科学技术哲学Philosophy of Science and Technology 经济学Economics 理论经济学Theoretical Economics 政治经济学Political Economy 经济思想史History of Economic Thought 经济史History of Economic 西方经济学Western Economics 世界经济World Economics 人口、资源与环境经济学Population, Resources and Environmental Economics 应用经济学Applied Economics 国民经济学National Economics 区域经济学Regional Economics 财政学(含税收学)Public Finance (including Taxation) 金融学(含保险学)Finance (including Insurance) 产业经济学Industrial Economics 国际贸易学International Trade 劳动经济学Labor Economics 统计学Statistics 数量经济学Quantitative Economics 中文学科、专业名称英文学科、专业名称 国防经济学National Defense Economics 法学Law 法学Science of Law 法学理论Jurisprudence 法律史Legal History 宪法学与行政法学Constitutional Law and Administrative Law 刑法学Criminal Jurisprudence 民商法学(含劳动法学、社会保障法学) Civil Law and Commercial Law (including Science of Labour Law and Science of Social Security Law ) 诉讼法学Science of Procedure Laws

论文《人工智能》---文献检索结课作业

人工智能 【摘要】:人工智能是一门极富挑战性的科学,但也是一门边沿学科。它属于自然科学和社会科学的交叉。涉及的学科主要有哲学、认知科学、数学、神经生理学、心理学、计算机科学、信息论、控制论、不定性论、仿生学等。人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等1。 【关键词】:人工智能;应用领域;发展方向;人工检索。 1.人工智能描述 人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学2。人工智能是计 算机科学的一个分支,它企图了解智 能的实质,并生产出一种新的能以人 类智能相似的方式作出反应的智能 机器,该领域的研究包括机器人、语 言识别、图像识别、自然语言处理和 专家系统等。“人工智能”一词最初 是在1956 年Dartmouth学会上提出 的。从那以后,研究者们发展了众多 理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复 1.蔡自兴,徐光祐.人工智能及其应用.北京:清华大学出版社,2010 2元慧·议当人工智能的应用领域与发展状态〖J〗.2008

专业英语阅读 翻译文章

C o m m e n c e m e n t o f t h e Commercial Operation of 600M W U n i t , "H i ro n o N o. 5Thermal Power Station of The Tokyo Electric Power Co., Inc." Commercial operation of The Tokyo Electric Power Co., Inc. Hirono No. 5 Thermal Power Station commenced in July 2004. This plant is a 600 MW coal-fired supercritical power plant. The main line-up of the plant, which features a steam turbine and a boiler, are supplied by Mitsubishi Heavy Industries, Ltd. (MHI). MHI set up this plant with a range of such key equipment along with ancillary facilities such as control systems, a flue gas treatment system, a wastewater treatment system, and stacks. This report gives a brief overview of the advanced technologies applied to the steam turbine and boiler of this plant supplied by MHI. 1. Introduction The Hirono No. 5 Thermal Power Station began com-mercial operation in July 2004. It is a 600 MW coal-fired,supercritical power plant that operates under the high-est global standards for steam conditions (24.5MPa x 600/600o C). The steam turbine has various advanced MHI tech-nologies, including the first 600 MW class two-casing turbine, high- and intermediate-pressure combined cas-ing developed by utilizing high temperature materials and cooling structures to cope with the ultra supercritical steam condition, 48 inch steel integral shroud blade (ISB), a new type of condenser, and a single shell deaerator cum storage tank. The boiler adopted in this plant has MHI's advanced technologies. They are reduced emission of NOx and unburned carbon with the A-PM burner and MRS pul-verizer. In addition, the vertical waterwall furnace that uses high temperature compatible materials and rifled tubes are adopted. Further, the plant is very much streamlined through the use of such simple systems and equipment as de-scribed below: (1) unification of air duct and flue gas duct into a single line through the adoption of a maximum capacity class fan, (2) unification of all feed water heaters into a single line, (3) unification of circulating water pumps into a single line, and (4) adoption of a plant starting system that does not rely on the boiler circulating pump. Since the plant is located in a narrow site adjacent to existing units operated using oil and gas, the overall arrangement of the plant has been improved by consult-ing with the Owner and is arranged in a more compact manner. Advanced MHI technologies have also been adopted in ancillary facilities. This includes the use of a dry se-lective catalytic NOx removal system, a high performance flue gas treatment system based on the harmonious de-sign of a double contact flow scrubber type flue gas desulfurization system with a low-low temperature dry electrostatic precipitator, an overall waste water treat-ment system, and self-supporting group stacks. In this way, MHI has drawn upon all of its competencies in es-tablishing this plant. 2. Steam turbine Figure 1Figure 1 shows an external view of the Hirono No. 5 steam turbine. Fig. 1 View of the 600 MW Hirono No.5 steam turbine HIROMASA MOMMA*1 TAKAYUKI SUTO*1RYUJI IWAMOTO*3 JUNICHI ISHIGURO*1TOSHIHIRO MIYAWAKI*2TSUYOSHI NAKAHARA*4

英文文献及翻译(计算机专业)

NET-BASED TASK MANAGEMENT SYSTEM Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Wisdom ABSTRACT In net-based collaborative design environment, design resources become more and more varied and complex. Besides common information management systems, design resources can be organized in connection with design activities. A set of activities and resources linked by logic relations can form a task. A task has at least one objective and can be broken down into smaller ones. So a design project can be separated into many subtasks forming a hierarchical structure. Task Management System (TMS) is designed to break down these tasks and assign certain resources to its task nodes.As a result of decomposition.al1 design resources and activities could be managed via this system. KEY WORDS:Collaborative Design, Task Management System (TMS), Task Decomposition, Information Management System 1 Introduction Along with the rapid upgrade of request for advanced design methods, more and more design tool appeared to support new design methods and forms. Design in a web environment with multi-partners being involved requires a more powerful and efficient management system .Design partners can be located everywhere over the net with their own organizations. They could be mutually independent experts or teams of tens of employees. This article discusses a task management system (TMS) which manages design activities and resources by breaking down design objectives and re-organizing design resources in connection with the activities. Comparing with common information management systems (IMS) like product data management system and document management system, TMS can manage the whole design process. It has two tiers which make it much more f1exible in structure. The 1ower tier consists of traditional common IMSS and the upper one fulfills

相关文档
最新文档