废水中六价铬测定的预处理

废水中六价铬测定的预处理
废水中六价铬测定的预处理

1998年第11卷第3期 甘肃环境研究与监测总第43期

废水中六价铬测定的预处理

黄玉平

(江苏省东台市环境监测站 东台224200)

摘 要 通过多年对含铬废水的监测,总结出对不同行业,不同性质的含铬废水在监测前采用不同的予处理技术,以期得到准确可靠的监测数据,为环境管理提供高效服务。

关键词 含铬废水 监测 处理技术 铬的化合物常见的有三价和六价,其毒性与其存在价态有关,通常认为,六价铬的毒性比三价铬高100倍,且更易为人体吸收并在体内蓄积,所以,六价铬测定是污染源监督监测的重要项目之一,是一项重要的水质污染控制指标。但在进行污染源废水中六价铬测定时,因水样中含有悬浮物,色度等的干扰物质,往往影响测定结果的准确性。

含铬废水主要来源于电镀、皮革、颜料、油漆以及纺织印染等行业的工业废水,笔者通过多年的实践体会到,在进行污染源水样六价铬测定时,根据废水样的不同性质对所采集的样品进行相应的前处理,可有效的排除干扰物质的影响。

1 电镀废水的六价铬测定前处理

电镀行业治理设施处理前的废水,六价铬含量往往较高,所采集的样品随铬浓度的差异,有的呈淡黄色,有的呈深黄色,有的甚至呈棕黄色,色度与浓度一般表现为正相关。电镀废水的铬主要来自于镀件钝化后的清洗工序,由于工艺技术的要求,一般水体中其它成份的含量较少。废水样品颜色虽深,但水样清晰透明,对这部分水样测定时一般只需将样品进行适当的倍比稀释即可,稀释倍数根据水样黄色的深浅自行掌握,淡黄色水样一般需稀释10~100倍,深黄色水样的稀释倍数一般掌握在100~1000倍,棕黄色水样的稀释倍数通常都在1000倍以上,高浓度水样稀释时应遵循多级稀释的分析原则,不得一步到位,稀释后的水样在测定时经显色剂显色其吸光度一般控制在标准曲线的中段左右,以尽可能减少分析误差。

电镀废水经过治理设施净化处理后,六价铬测定时应根据治理设施设计工艺的不同和水样的实际感官状况选择相应的前处理,如采用硫酸亚铁还原剂处理六价铬废水,其主要原理就是将废水中六价铬离子还原成三价铬离子,然后加入一定量的氢氧化钠等碱性溶液使三价铬形成氢氧化铬沉淀去除,如果氧化还原反应完全,水样比较清晰可以直接分析,但如果废水中六价铬含量较高,加入的还原剂量不足,不能使六价铬充分还原,此时又过早的加入了碱性溶液,在碱性溶液中,六价铬就不能再与还原剂发生反应,此时的废水虽经治理设施处理,但因处理不完全,废水中仍有六价铬存在,对这部分废水在进行六价铬测定时,因水样中已加入一定量的还原剂和碱性溶液,水样的浊度一般都较高,直接加入显色剂显色,因浊度的影响,比色时误差较大,在实际操作时,可根据上述原理,对待测水样进行一定的前处理,具体方法为:取一定体积的待测水样,调整pH 至中性,继续

加入一定量的还原剂(还原剂可采用10%硫酸亚铁,亚硫酸盐等)使未反应完全的六价铬继续完全反应还原成三价铬,因三价铬与显色剂二苯碳酰二肼不反应,故将此管加入显

41—

色剂以后作为测定管的参比溶液,然后取同样体积的水样进行测定,还原剂不加,直接加显色剂显色,测定其样品溶液对参比溶液的吸光度,测出其废水中六价铬的含量,这样可自动扣除浊度对测定结果的影响。

2 制革废水六价铬测定的前处理

制革行业的含铬废水主要是采用铬鞣面革工艺中的铬鞣废水,该废水含有大量的三价铬和多脂肪固体废弃物,水样呈明显混浊,有时甚至呈半固体状态。这部分水样六价铬测定较难进行,通常采用锌盐沉淀分离法对待测水样进行前处理,其原理是使三价铬在碱性溶液中与六价铬分离,并使三价铬沉淀去除,保存六价铬于溶液中供测定。其操作步骤:取待测水样50m l或适量加水至50m l于150m l烧杯中,滴加0.2%氢氧化钠溶液调pH至7~8左右,然后不断搅拌,不断滴加氢氧化锌沉淀剂至溶液pH至9左右,再将此液转移至100m l容量瓶中,加水稀释至标线,用定线滤纸过滤,并弃去10~20m l初滤液,取其中50m l供六价铬测定,但在实际操作中,由于制革行业的废水有机物含量都比较高,水样虽经锌盐沉淀分离法处理后,有机物往往还是难以去除,由于有机物的存在,仍会干扰六价铬的测定,此时,可采用酸性高猛酸钾氧化法破坏有机物以后再测定,其方法取50m l待测滤液于200m l三角烧瓶中,加入1+1硫酸和1+1磷酸各0.5m l,摇匀,加4%高猛酸钾溶液数滴至溶液的紫红色不褪为止,加热煮沸至溶液体积蒸发至20m l左右,取下稍冷却,乘热用定量中速过滤纸过滤,并用热蒸馏水反复洗涤滤纸数次,合并滤液至50m l比色管中,加入1mL20%尿素混匀,再滴加2%亚硝酸钠溶液,每加一滴充分混匀,滴至高锰酸钾的紫红色刚褪为止,待溶液内气泡逸出,加水至50m l标线,直接加入显色剂测定即可。

3 纺织印染废水六价铬测定的前处理纺织印染行业的废水,其六价铬主要是在使用酸性染料印染时产生的,在测定时往

往色度干扰较大,对色度的处理通常采用活性碳吸附沉淀后过滤分离,在加活性碳之前,首先必须调整待测水样的pH呈碱性,因在碱性条件下,大部分色度易被活性碳吸附。其方法取待测水样100m l于250m l三角烧瓶内,直接滴加2%氢氧化钠数滴至溶液pH为8左右,然后加入粒状活性碳0.5~1.0g,充分混匀并反复振摇三角烧瓶1~2m in后静置10m in左右,用定性滤纸过滤,弃去初滤液10~15m l,取其中50m l滤出液供测定使用。采用活性碳吸附分离法,对大多数染色废水都能达到吸附分离的目的,但在实际操作过程中也可能出现部分染色废水其色度不能被活性碳吸附或吸附不完全,此时,可取经活性吸附分离后的滤出液再采用锌盐沉淀分离法(方法同前)使其进一步沉淀分离后再测定。

在监测工作实践中,有时还会碰到一些来源不清的其它方面的水样,对这部分水样的前处理往往一时难以把握,碰到这种情况,根据多年的经验,通常可采用如下方法进行前处理,即将待测水样用氢氧化钠调pH至9左右,取其上清液适量于100m l烧杯中,加入2m l浓硫酸蒸发至冒白烟,若有黑色残渣出现,可滴加30%过氧化氢溶液至黑色残渣消除,加热至溶液清晰为止,冷却后用水稀释至10m l左右,用1+1氨水调pH至3左右,加入1+1硫酸,1+1磷酸各0.5m l,滴加0. 5%高锰酸钾溶液呈明显紫红色,加热煮沸2~3m in,且保持溶液呈明显紫色不褪为止,取下冷却,加入20%尿素1m l摇匀,逐滴加入2%亚硝酸钠溶液至紫色刚褪为止,待溶液内气泡逸尽,转入50m l比色管内直接加显色剂显色测定。

污染源样品复杂多变,在进行废水水样六价铬测定时,只有根据各种不同性质的水样,采用各种不同的预处理技术,才可能得到准确可靠的监测数据,为环境管理提供高效能服务。

5

1

六价铬测定方法

C r6+的测定(二苯碳酰二肼分光光度法) 1.适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定。 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2.原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3.试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液。 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4·7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。

六价铬的检测方法样本

六价铬的检测方法

目次 前言..................................................................... III 引言...................................................................... IV 1 范围 (1) 2 规范性引用文件 (1) 3 X射线荧光光谱法 (1) 3.1 原理 (1) 3.2 试剂和材料 (1) 3.3 仪器和设备 (2) 3.4 样品制备 (2) 3.5 分析步骤 (2) 3.6 结果分析 (3) 4 金属防腐镀层中六价铬定性试验 (3) 4.1 原理 (3) 4.2 试剂和材料 (4) 4.3 仪器和设备 (4) 4.4 样品制备 (4) 4.5 试验 (4) 5 金属防腐镀层中六价铬含量测定 (6) 5.1 原理 (6) 5.2 试剂和材料 (6) 5.3 仪器和设备 (6) 5.4 样品制备 (6) 5.5 分析步骤 (6) 5.6 结果计算 (7)

5.7 精密度 (8) 6 聚合物材料和电子材料中六价铬含量测定 (8) 6.1 原理 (8) 6.2 试剂和材料 (8) 6.3 仪器和设备 (9) 6.4 样品制备 (9) 6.5 分析步骤 (9) 6.6 结果计算 (10) 6.7 精密度 (11) 7 皮革材料中六价铬含量测定 (11) 7.1 原理 (11) 7.2 试剂和材料 (11) 7.3 仪器和设备 (11) 7.4 样品制备 (12) 7.5 分析步骤 (12) 7.6 结果计算 (13) 7.7 回收率和检出限 (14) 8 试验报告 (14) 附录A( 资料性附录) 紧固件镀层表面积计算方法 (15) A.1 紧固件表面积计算公式 (15) A.2 螺栓、螺母表面积计算数据 (15) 附录B( 规范性附录) 聚合物材料和电子材料中六价铬含量测定方法回收率的测定和检出限的确定 (18) B.1 回收率的测定 (18) B.2 检出限的确定 (18)

废水六价铬的检测

废水六价铬的检测 ROHS--EPA7196A六价铬检测方法-比色法 原子吸收分光光度法只能检测什么金属,不能检测价态,所以不严密 一、方法概要 在无特定高浓度的钼、钒和汞干扰物质下之酸性溶液中,六价铬与二苯基二氨(Diphenylcarbazide)反应生成紫红色物质,此反应相当灵敏,在波长540 nm下每摩尔铬原子约有40,000吸收指数,产生之紫红色物质在波长540 nm测其吸光度定量之。 二、适用范围 本方法适用于事业废弃物毒性特性溶出程序(TCLP)处理后萃出液中六价铬之检测。本方法检测六价铬浓度范围为0.5至50 mg/L,超过检量线范围,需稀释至适当倍数再行检测。 三、干扰 (一) 六价铬与二苯基二氨反应少有干扰,但当铬含量相对较低时,某些特定物质如六价钼或汞之盐类与试剂反应亦产生颜色而造成干扰;在特定之pH值下,此干扰并不太严重,钼及汞的浓度超过200 mg/L,才可能产生干扰效应。钒之干扰较强,但当浓度10倍于铬时,尚不至造成问题。 (二) 铁浓度大于1 mg/L会产生黄色,形成干扰,若选择适当的波长三价铁的颜色干扰较不严重。 四、设备 (一) 比色装置:可选择光径1 cm(含)或以上的540 ± 20 nm波长之分光光度计;或使用在波长约540 nm光径1 cm(含)或以上具有最大透光率的绿-黄色滤光镜之滤光光度计。 (二) pH计:能精确测量至± 0.2单位者。 五、试剂 所有检测时使用的试剂化合物除非另有说明,否则必须是分析试药级。若须使用其它等级试药,在使用前必须要确认该试剂的纯度足够高,使检测结果的准确度不致降低。(一) 试剂水:参照「事业废弃物检测方法总则」之规格。除非特别指定,否则本方法所指的水皆为试剂水。 (二) 六价铬储备溶液:溶解0.1414 g之重铬酸钾(已干燥处理)于水中,稀释至1,000 mL(1 mL = 50 μg Cr),亦可使用经确认之市售储备溶液。 (三) 六价铬标准溶液:取10.00 mL储备溶液以水稀释至100 mL(1 mL = 5 μg Cr)。 (四) 硝酸,10 %(v/v):取适量试剂水加入10 mL浓硝酸,最后定量至100 mL。 (五) 二苯基二氨(Diphenylcarbazide)溶液:溶解250 mg 1,5-二苯基二氨于50 mL丙酮,储存于棕色瓶中。溶液如褪色应弃置不用。

国标法测定水溶液六价铬

六价铬的测定二苯碳酰二肼分光光度法 Water quality-Determination of chromium(VI)-1.5Diphenylcarbohydrazide spectrophotometric method 1 适用范围 1.1本标准适用于地面水和工业废水中六价铬的测定。 1.2测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm 处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液。 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5氢氧化锌共沉淀剂 3.5.1硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4·7H2O)8g,溶于100ml水中。 3.5.2氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。3.7 铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg 六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.0

六价铬的测定方法(二苯碳酰二肼分光光度法)

GB/T 7467 六价铬的测定方法(二苯碳酰二肼分光光度法) 1 适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L 即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4?7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml 容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.00μg六价铬。使用当天配制此溶液。

含六价铬废水的离子交换法处理系统及工艺

说明书摘要 本发明公开了一种含六价铬废水的离子交换法处理工艺,它将废水调pH值、吸附、再生、维护和Cr6+离子的回收相结合,实现了含铬废水中的Cr6+离子自动化处理,本发明工艺的自动化程度高,处理效果好,可应用于大规模水处理;除铬柱设计成三柱或多柱,各离子交换柱之间设有可调节pH值的中间槽,在两柱或多柱串联工作时,中间过程可以调节PH值,使废水处理效果更好,可以克服常规离子交换过程中,由于离子浓度的变化产生的PH变化,从而造成树脂对离子的吸附能力下降的问题;出水水质可稳定保持Cr6+<0.5 mg/L;离子交换树脂可以得到有效维护,可长期稳定工作;再生液可回收,节约资源。

摘要附图

1、一种含六价铬废水的离子交换法处理工艺,其特征在于该方法包括如下步骤: (1)将含六价铬废水送入pH调节池,调pH值至1~6; (2)废水送入n-1根串联的离子交换柱吸附Cr6+离子,n取3~10中的自然数,相邻两根离子交换柱之间设有可调节pH值的中间槽,保持pH值在1~6,第n-1根离子交换柱的出水口检测Cr6+离子的浓度,第n-1根离子交换柱的出水口流出的液体即为Cr6+离子达到排放标准的废水; (3)当第n-1根离子交换柱的出水口的Cr6+离子浓度达到0.5mg/L时, 将第1根离子交换柱与其它n-2根离子交换柱断开; 第n根离子交换柱与其它n-2根离子交换柱串联,第2根离子交换柱变为第1根离子交换柱,第3根离子交换柱变为第2根离子交换柱,以此类推,直至第n根离子交换柱变为第n-1根离子交换柱,返回步骤(2); 同时,原始第1根离子交换柱进行pH调节池—除铬柱—pH调节池的循环吸附,最大循环吸附时间按下式计算:循环时间T=η×树脂穿漏时间T1-树脂再生时间T2,η取0.6~1;循环吸附结束后,将原始第1根离子交换柱按如下程序进行再生:排空柱中水至pH调节池—碱液洗柱后排入再生液槽—柱中剩余碱液反抽到稀碱槽—用水清洗柱—清洗水排入pH调节池—酸液循环洗柱,再生完全的原始第1根离子交换柱变为第n根离子交换柱待用。 2、根据权利要求1所述的含六价铬废水的离子交换法处理工艺,其特征在于上述n 根离子交换柱装有大孔强碱性阴离子交换树脂。 3、根据权利要求1所述的含六价铬废水的离子交换法处理工艺,其特征在于步骤(3)中树脂再生所用的碱液为4~10%(w/w)的氢氧化钠,所述的酸液为0.3~10%(w/w)的盐酸。 4、根据权利要求1所述的含六价铬废水的离子交换法处理工艺,其特征在于步骤(3)中碱液洗柱过程以1倍床体积/h的速度洗柱。 5、根据权利要求1所述的含六价铬废水的离子交换法处理工艺,其特征在于步骤(3)中再生液中的Na2CrO4,经阳离子交换树脂处理后成为H2CrO4进行再利用或进一步加工回收固体Na2Cr2O7。 6、根据权利要求1所述的含六价铬废水的离子交换法处理工艺,其特征在于离子交换柱中的树脂的工作交换容量下降到原值的0.8时,启动如下树脂维护程序:单根离子交换柱再生程序—维护液循环打入单根离子交换柱2~12小时—用水清洗柱—清洗水排入pH调节池—酸液循环洗柱1~2小时,按照此程序依次维护每根离子交换柱。 7、根据权利要求6所述的含六价铬废水的离子交换法处理工艺,其特征在于树脂

含六价铬废水的处理回收研究

离子交换法处理含铬废水 摘要:含铬废液pH=3-4时,流量为10BV/h时,采用双阴离子交换柱串联全饱和工艺处理回收含六价铬废水,出水能满足国家排放标准,穿透体积大。利用阳离子交换树脂柱除去再生液中的钠离子,去除率可达到83%,纯化后的含六价铬溶液能再次投入使用。关键词:六价铬;离子交换;回收 Abstract: The pH of Cr6 +wastewater was 3-4, flow rate was 10BV/h. Two negatively charged ion-exchange resin columns were serialized and saturated to recover Cr6+ wastewater. The permeability was high and processed water could meet national discharge standards. Then positively charged ion-exchange resin was employed to remove Na+ in the recovered water, and 83% of Na+ could be removed. After that the purified Cr6+solution could be reused. Keywords:Cr6+ ;ion-exchange ;recovery 铬是环境污染及影响人类健康的有害元素之一。六价铬为食入性毒物,饮水中超标400倍时,会发生口角糜烂、腹泻、消化紊乱等症状,引起呼吸急促,咳嗽及气喘,短暂的心脏休克,肾脏、肝脏、神经系统和造血器官的毒性反应等,更可能造成遗传性基因缺陷,并对环境有持久危险性。 六价铬一般分离方法有离子交换树脂、电渗析、电解氧化还原法、还原沉淀法、石灰絮凝和吸附法等几种手段。本文研究了六价铬在阴、阳离子交换树脂柱上的行为和分离条件,提出以离子交换为主的废水中铬形态分离及分析的系统流程,并研究了对六价铬的纯化和回收。 1、实验部分 1.1实验流程 废水首先通过活性炭柱,废水中存在杂质被活性炭柱吸附。此活性炭柱的流出液,然后依次通过串联的碱式(OH-型)强阴离子树脂柱进行交换反应。含六价铬废水净化回收流程示意图见图1。

镀铬废水中六价铬测定操作规程

镀铬废水中六价铬测定操作规程 适用范围 本规程对六价铬测定的安全操作步骤进行了规定,适用于地面水和工业废水中的六价铬的测定。 当试份体积为50ml,使用光程10mm的比色皿,测量范围为最低检出浓度为0.004mg/L,测定上线浓度为1.0mg/L。 引用标准 GB 7467-87 水质六价铬的测定二苯碳酰二肼分光光度法水和废水监测分析方法(第四版增补版) 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,其最大吸收波长为540nm。 4 仪器 一般实验室仪器 1901双光束紫外可见分光光度计 5 药品及试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸馏水或同等纯度的水,所有试剂均不含铬。 5.1 丙酮 5.2 1+1硫酸溶液:将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。

5.3 1+1磷酸溶液:将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 5.4 4g/L氢氧化钠溶液:将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 5.5 氢氧化锌共沉淀剂 5.5.1 硫酸锌:8%(m/V)硫酸锌溶液:称取硫酸锌(Z n SO4·7H2O)8g 溶于100ml水中。 5.5.2 氢氧化钠2%(m/V)溶液:称取2.4g氢氧化钠,溶于120ml 水中。 5.5.3 用时将5.5.1和5.5.2两溶液混合。 5.6 40g/L高锰酸钾溶液:称取高锰酸钾4g,在加热和搅拌下溶于水,最后稀释至100ml。 5.7 铬标准贮备液:称取于110℃干燥2h的重铬酸钾(K2Cr2O7优级纯)0.2829±0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 5.8 (1.00ug/ml)铬标准溶液(I):吸取5.00ml铬标准贮备液,置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.00ug 六价铬。使用当天配制此溶液. 5.9 (5.00ug/ml)铬标准溶液(II):吸取25.00ml铬标准贮备液,置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含5.00ug六价铬。使用当天配制此溶液 5.10 200g/L尿素溶液:将尿素20g溶于水并稀释至100ml。

不同pH值对六价铬测定(二苯碳酰二肼分光光度法)的影响(精)

不同pH值对六价铬测定(二苯碳酰二肼分光光度 法)的影响 从以上三个反应式看出,当pH值减小的时候,溶液的酸度增加,的浓度增大,平衡反应会向右进行从而导致Cr(Ⅵ)的含量下降,Cr(Ⅲ)的含量则升高,因此吸光度值降低会计毕业论文范文。 3.2结果分析采用灰色系统模型一阶一维模型GM(1化学论文,1)对已知实验序列数据进行处理分析。设X0=[X(0)(1),X(0)(2),X(0)(3),……,X(0)(n)]为一列原始数据,作一次累加生成:X(1)=[X(1)(1),X(1)(2),X(1)(3),……,X(1)(n)] =[X(0)(1),X(0)(1)+X(0)(2),……,X(0)(1)+X(0)(2)+……+X(0)(n)] 将实验原始数据进行一次累加,以 3.0ml的水样为例,步骤如下:X(0)=[0.07,0.068,0.064,0.055,0.058,0.047,0.049,0.047,0.049,0.04,0.034,0.03,0.03,0.019] 对X(0)作一次累加生成数列 X(1)=[X(0)(1),X(0)(1)+X(0)(2),……,X(0)(1)+X(0)(2)+……+X(0)(n)] =[0.07,0.138,0.202,0.257,0.315,0.362,0.411,0.458,0.507,0.547,0.581,0. 611,0.641,0.66] 以加酸量为横坐标,X(1)数列为纵坐标,使用EXCEL作图,并通过计算得到直线方程组公式(3): Y=- 0.001x2+0.067x+0.071,x=1,2; Y=- 0.003x2+0.377x+0.273,x=3,4,……13。(3)采用公式(3)计算出3.0ml 水样在不同酸度下的吸光度分别为:0.07,0.067,0.064,0.051,0.058化学论文,0.054,0.050,0.046,0.042,0.038,0.034,0.030,0.026,0.022。该数据与X(0)作T检验和F检验,检验其是否存在显著性差异。F检验:令原始测量数据的标准差为S1计算所得为0.014716,计算数据的标准差为S2计算所得0.014739,F=S2 /S1=1.001563,查F表得F0.05(12,12)=2.69,则F<F0.05(12,12),说明两组数据无显著性差异,精密度较好。t检验:两样本含量分别为n1,n2 ,查t值表得t0.05(26)=2.056,因此,|t|<2.056,说明根据公式(3)计算所得数据的系统误差较小,准确度良好。 利用GM(1,1)模型计算得到水样不同加酸量吸光度直线方程式表8,并经显著性检验符合要求。表8不同加酸量的吸光度公式 加酸量 直线方程 3ml Y=-0.001x2+0.067x+0.071 5ml Y=-0.001x2+0.112x+0.118

六价铬的测定方法(二苯碳酰二肼分光光度法)

六价铬的测定方法(二苯碳酰二肼分光光度法)GB/T 7467 1 适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为 0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法 的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L 即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm 处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度 的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液

将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4?7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。 称取于110?干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829?0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含 1.00μg六价铬。使用当天配制此溶液。 3.9 铬标准溶液。 称取25.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含5.00μg六价铬。使用当天配制此溶液。 3.10 尿素:200g/L尿素溶液。

六价铬废水检测方法

离子交换法 该方法利用一种高分子合成树脂进行离子交换,应用离子交换法处理含铬废水是使用离子交换树脂对废水中六价铬进行选择性吸附,使六价铬与水分离,然后再用试剂将六价铬洗脱下来,进行必要的净化,富集浓缩后回收利用。 需要知道的是,使用该方法处理镀铬废水比较容易,但处理其他含铬废水则比较困难,且投资费用大、操作管理复杂,一般的中小型企业运用会比较困难。 电解法 电解还原处理含铬废水是利用铁板作阳极,在电解过程中铁溶解生成亚铁离子,在酸性条件下,亚铁离子将六价铬离子还原成三价铬离子。 使用电解法占地面积较小、耗电不大,但是铁板的耗量较多,且产生的污泥中混有大量的氢氧化铁,利用价值低,需妥善处理。 六价铬废水排放标准 工业排放污水中六价铬含量不能超过0.5mg/L; 金属中六价铬的含量则是不能超过0.1mg/kg; 电机电子设备自2008年起就规定不得含有六价铬; 六价铬废水处理方法 还原法 该方法主要针对含有六价铬的废水,在废水中加入还原剂把六价铬还原为三价铬;

其特点是技术成熟、处理量大,但使用该方法时会产生大量的污泥,造成二次污染。 化学药剂法 这是对比了众多方法之后,较看好的一种。直接在废水中投加重金属捕捉剂,通过多种螯合基团等重金属离子螯合,产生疏水性结构而沉淀;同时,在体型结构的高分子作用下,通过絮集和网捕作用显著提高沉淀速度和去除率,从而摆脱了线性螯合沉淀的缺点。 深圳市华太检测有限公司现有场所面积3000多平方米,满足开展相应检验检测工作的需要。注册资金500万,拥有700余万元的固定资产,拥有国内先进的微机控制伺服泵源万能试验机,压力试验机,甲醛测试试件平衡预处理恒温恒湿室,甲醛释放量测试气候箱(智能式)、气相色谱质谱联用仪(GC-MS)、气相色谱仪(GC)、电感耦合等离子体发射光谱仪(ICP-OES)、原子吸收光谱仪、原子荧光光谱仪等大型仪器设备280多台,能满足现有检测项目的要求。

六价铬的测定

实验六 六价铬的测定 一、实验目的 (1)学会六价铬的水样采集保存、预处理及测定方法。 (2)学会各种标准溶液的配制方法和标定方法。 二、概述 铬(Cr )的化合物常见的价态有三价和六价。在水体中,六价铬一般以- 24CrO 、HCrO - 4二种阴子形式存在,受水中pH 值、有机物、氧化还原物质、温度及硬度等条件影响,三价铬和六价铬的化合物可以互相转化。 铬是生物体所必需的微量元素之一。铬的毒性与其存在价态有关,通常认为六价铬的毒性比三价铬高100倍,六价铬更易为人体吸收而且在体内蓄积。但即使是六价铬,不同化合物的毒性也不相同。当水中六价铬浓度为1mg/L 时,水呈淡黄色并有涩味,三价铬浓度为1mg/L 时,水的浊度明显增加,三价铬化合物对鱼的毒性比六价铬大。 铬的工业来源主要是含铬矿石的加工、金属表面处理、皮革鞣制、印染等行业。 三、水样保存 水样应用瓶壁光洁的玻璃瓶采集。如测总铬水样采集后,加入硝酸调节pH<2;如测六价铬,水样采集后,加NaOH 使pH 为8~9;均应尽快测定,如放置不得超过24h 。 四、干扰及清除 含铁量大于1mg/L 水样显黄色,六价钼和汞也和显色剂反应生成有色化合物,但在本方法的显色酸度下反应不灵敏。钼和汞达200mg/L 不干扰测定。钒有干扰,其含量高于4mg/L 即干扰测定。但钒与显色剂反应后10min ,可自行褪色。 氧化性及还原性物质,如:ClO —、Fe 2+、SO 32-、S 2O 32-等,以及水样有色或混浊时,对 测定均有干扰,须进行预处理。 五、方法的选择 铬的测定可采用二苯碳酰二胼分光光度法、原子吸收分光光度法和滴定法。清洁的水样可直接用二苯碳酰二肼分光光度法测六价铬。如测总铬,用高锰酸钾将三价铬氧化成六价铬,再用二苯碳酰二肼分光光度法测定。 六、测定方法(二苯碳酰二肼分光光度法) 1. 实验原理 在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色络合物,其最大吸收波长为540nm ,吸光度与浓度的关系符合比尔定律。反应式如下: 如果测定总铬,需先用高锰酸钾将水样中的三价铬氧化为六价,再用本法测定。 O =C NH —NH —C 6H 5 NH —NH —C 6H 5 二苯碳酰二肼 +Cr 6+→O =C NH —NH —C 6H 5 N = N —C 6H 5 苯肼羟基偶氮苯 +Cr 3+→紫色络合物

废水中六价铬的测定

废水中六价铬的测定 摘要:文章提出一种前处理简单、操作方便、灵敏度高的测定高色度含铬废水中六价铬的分析方法。使用聚合氯化铝作为絮凝剂,利用三价铬在弱碱性条件下易产生沉淀的特点,实现样品溶液中三价铬与六价铬的定量分离,应用火焰原子吸收法测定溶液中的六价铬。实际样品中六价铬的加标回收率在95.8%~98.12%之间,定量分析下限为0.105 mg/ L。 关键词:六价铬;高色度含铬废水;原子吸收;沉降分离;聚合氯化铝 六价铬是致癌物质,属于第一类环境污染物,其排放受到严格控制。六价铬(铬酸盐、重铬酸盐)主要是通过电镀、表面处理、制革、冶金等工业废水(含铬废水)的排放而进入环境,污染水体和土壤环境,对人类健康和生态环境造成严重威胁。含铬工业废水中六价铬的测定是环境监测中的重要工作。目前测定六价铬的分析方法主要有分光光度法、原子吸收法(AAS)、高效液相色谱法(HPLC)、电感耦合等离子体原子发射光谱法(ICP-AES)、电感耦合等离子体质谱法(ICP-MS)、流动注射/质谱法(FI-MS)等。其中,分光光度法是水中六价铬的经典分析方法,准确可靠而且灵敏度较高,操作简单,成本低廉,得到广泛应用,但是遇到混浊、色度较高(特别是红色)的样品时,方法受到限制,此时通常使用锌盐沉淀法分离干扰物,若经沉淀分离后仍存在有机物干扰,则需进一步使用高锰酸钾氧化法破坏有机物后再行测定。然而,在实际工作中,常遇到高色度样品不能通过锌盐沉淀/高锰酸钾氧化法有效解决基体干扰问题,如含有高浓度染料的含铬工业废水,分光光度法无法满足六价铬定量分析的需求。原子吸收法测定水中铬基本上不受共存有机物的影响,操作简单,但必须预先将六价铬与三价铬分离后才能测定。本文工作使用聚合氯化铝作为絮凝剂,利用三价铬离子在弱碱性条件下易产生沉淀的特点,实现样品溶液中三价铬与六价铬的定量分离,然后应用火焰原子 吸收法测定溶液中的六价铬。 1实验部分 1.1仪器与试剂 日立Z-5000型原子吸收分光光度计,工作条件:铬空心阴极灯,灯电流6 mA,波长35 913 nm,光谱通带0.4 nm;观测高度7 cm;乙炔2.8 L/min,压缩空气15.0 L/min。Mp220型酸度计(瑞士Mettler公司)。 六价铬标准使用液(100 mg/L):取10.0 mL 1 000 mg/L六价铬标准溶液(国家标准物质中心),以去离子水稀释至100 mL。 三价铬溶液(1 000 mg/L):称取1.0244 g的Cr(Cl)3•6H2O(99.8%,

水中六价铬的测定-二苯碳酰二肼分光光度法

一、实验目的 (1)掌握分光光度法测定六价铬的原理和方法。 (2)熟悉分光光度计的使用。 二、实验原理 在酸性介质中,六价铬与二苯碳酰二肼(DPC)反应,生成紫红色络合物,于540nm波长处进行比色测定。

三、使用仪器规格及实际用量 (1) 分光光度计 (2) 具塞比色管、移液管、容量瓶等。 (1) (1+1)硫酸::将浓硫酸缓慢加入到同体积水中,混匀。 (2) (1+1)磷酸:将浓磷酸缓慢加入到同体积水中,混匀。 (3) 铬标准贮备液(0.100 mg-Cr6+/mL):经120℃烘干2小时的重铬酸钾: 0.2829g溶于水中,定容至1000mL。 (4) 铬标准使用液(1.00 μg-Cr6+/mL):取5 mL铬标准贮备液于500mL容量瓶中,定容。 (5) 二苯碳酰二肼(C13H14N4O)溶液:称取二苯碳酰二肼0.2g溶于50mL丙酮中,加水稀释至100mL. 四、实验步骤 (1) 水样预处理:本试验由于时间限制,将水样作为不含悬浮物、低浊度的清洁地表水,进行直接测定。但在实际环境监测中需要根据不同水样性质进 行预处理。 (2) 标准曲线的绘制:取5支50mL比色管,依次加入0,1,3,5,7 mL铬标准使用液,用水稀释至标线,分别加入(1+1)硫酸0.5 mL和(1+1)磷酸0.5 mL,摇匀。加入2 mL 显色剂溶液摇匀。静置5-10分钟后,放入比色皿中于 540nm处测吸光度值。以加入0 mL铬标准使用液的溶液作为参比。注意: 为了测量准确,测定时应用同一个比色皿,浓度由低到高测定,且每次测 完都应用蒸馏水清洗,再用待测液润洗2-3次。以吸光度为纵坐标,相应六 价铬含量为横坐标绘制标准曲线。 (3) 水样的测定:各取50mL水样和50mL自来水于比色管中,分别加入(1+1)硫酸0.5 mL和(1+1)磷酸0.5 mL,摇匀。加入2 mL 显色剂溶液摇匀。静 置5-10分钟后,放入比色皿中于540nm处测吸光度值。根据所测吸光度从标 准曲线上查得六价铬含量。 (4) 分光光度计的使用: (a) 打开点源,预热30min,将光镜选择杆调到正确位置; (b) 仪器归零:调整波长选择钮至540nm,灵敏度置于“1”,选择开关置于“T”,开盖调“0%T”显示“00.0”,闭盖(装有参比) 调“100%T”显示“100.0”。 (c) 吸光度测定:按MODE键使功能显示为ABSORBANCE,显示吸光度的值,拉动样品室拉杆,将待测液拉入光路,此时显示值即为待 测液的吸光度。注意:每次测量时都应对仪器进行调零。 五、主要结果计算及分析(可另附纸) Cr6+(mg/L)=m/V 式中 m—从标准去线上查得的Cr6+含量(μg); V—水样的体积(mL)

水中六价铬的测定分光光度法

水中六价铬的测定—分光光度法 废水中铬的测定常用分光光度法,其原理基于:在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色化合物,其最大吸收波长为540nm,吸光度与浓度的关系符合比尔定律。如果测定总铬,需先用高锰酸钾将水样中的三价铬氧化为六价铬,再用本法测定。 一.实验目的 掌握分光光度法测定六价铬的原理和方法; 二.六价铬的测定 1.仪器 ①分光光度计、比色皿(1cm) ②50mL具塞比色管、移液管、容量瓶等。 2.试剂 (1)丙酮。 (2)(1+1)硫酸。 (3)(1+1)磷酸。 (4) 0.2%(m/V)氢氧化钠溶液。 (5)铬标准贮备液:称取于120℃干燥2h的重铬酸钾(优级纯)0.2829g,用水溶解,移入1000mL容量瓶中,用水稀释至标线,摇匀。每毫升贮备液含0.100mg六价铬。 (6)铬标准使用液:吸取5.00mL铬标准贮备液于500mL容量瓶中,用水稀释至标线,摇匀。每毫升标准使用液含1.00μg六价铬。使用当天配制。 (7) 二苯碳酰二肼溶液:称取二苯碳酰二肼(简称DPC,C13H14N4O)0.2g,溶于50mL丙酮中,加水稀释至100mL,摇匀,贮于棕色瓶内,置于冰箱中保存。颜色变深后不能再用。 3.测定步骤 (1)水样预处理: 对不含悬浮物、低色度的清洁地面水,可直接进行测定。 (2)标准曲线的绘制:取9支50mL比色管,依次加入0、0.20、0.50、1.00、2.00、4.00、6.00、8.00和10.00mL铬标准使用液,用水稀释至标线,加入1+1硫酸0.5mL和1+1磷酸0.5mL,摇匀。加入2mL显色剂溶液,摇匀。5~10min 后,于540nm波长处,用1cm或3cm比色皿,以水为参比,测定吸光度并做空白校正。以吸光度为纵坐标,相应六价铬含量为横坐标绘出标准曲线。 (3)水样的测量:取适量(含Cr6+少于50μg)无色透明或经预处理的水样于50mL比色管中,用水稀释至标线,以下步骤同标准溶液测定。进行空白校正后根据所测吸光度从标准曲线上查得Cr6+含量。 4.计算 Cr6+(mg·L-1)=m/V 式中:m—从标准曲线上查得的Cr6+量,μg; V—水样的体积,mL; 第 1 页共1 页

含六价铬废水方案

有限公司 含铬废水处理工程实施方案 二零一一年十二月

有限公司 含铬废水处理工程 一、工程概况: 某某有限公司是一家从事电镀行业的生产企业,该企业最大日产含铬废水20 m3/d,来自两个生产车间,每个10m3/d;现有配套200 m3/d废水处理站,现根据甲方要求,在车间内设置含铬废水预处理设施,对含铬废水进行车间处理,达到相关标准后排至现有污水处理站再次处理后外排。 二、设计依据: 1.甲方提供的废水水质水量情况 2.《中华人民共和国环境保护法》 3.《污水综合排放标准》GB8978-1996 4.《工业企业设计卫生标准》(GBZ1-2010) 5.该项目的环评报告及环境主管部门的批复 6.其他有关的设计规范和标准等 三、设计资料: 1、废水水质水量: 根据甲方提供的资料,该含铬废水每天最大外排量20m3。 2、排放标准 由于本项目为改造项目,排放标准仍执行原有标准,不做调整,六价铬执行《污水综合排放标准》GB8978-1996中车间排口相关规定。

四、设计原则: 1、设计满足环境保护的各项规定,采用工艺成熟、性能稳定、管理方便、运行灵活、适应性强的处理工艺,确保高浓度污水处理后可满足后续处理单元的要求。根据工程的具体情况和特点,结合当地实际,采用成熟可靠的污水处理工艺,积极慎重地采用新技术、新材料、新装备,实用性与先进性兼顾; 2、在设计中充分考虑二次污染的防治,处理构筑物及设备要耐腐蚀,低噪声,不致影响厂外的居民;污水处理工程的管理、运行和维修方便,劳动强度低; 3、污水处理系统有较长的寿命;污水处理工艺要具有较高的可靠性、稳定性、连续性,耐冲击负荷; 4、处理系统能自动运行,正常连续运行费用低;污水处理流程要简单、可靠,占地面积小,投资少,运转费用低; 5、新增的污水预处理系统的操作运行以自动和手动相结合的方式来控制,手动和自动都可单独完成控制,并显示工作状态和故障报警。 五、改造方案 针对废水处理存在的以上问题,并与现场操作人员详细沟通,我方经认真思考提出以下整改意见: 在现有场地条件下,在将两个车间的废水集中收集后,排至新增集水井,设置一座预处理装置处理后排至现有污水处理站,新增处理设施是在现有污泥干化池的基础上改造的,利用现有一座污泥干化池,保留另外两座,将现有污泥干化池加高至总深度2米,并做防渗处理,池内增加搅拌设备用于还原反应,主导工艺采用焦亚硫酸钠还原法进行处理。

六价铬测试作业指导书

六价铬测试作业指导书 (二苯碳酰二肼分光光度法) 1 方法原理 在酸性溶液中,六价铬与二苯碳酰二肼反应,生成紫红色化合物,其最大吸收波长为540nm,摩尔吸光系数为4×104。 2 干扰及消除 铁含量大于1mg/L水样显黄色,六价钼和汞也和显色剂反应生成有色化合物,但在本方法的显色酸度下反应不灵敏。钼和汞达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L 即干扰测定。但钒与显色剂反应后10min,可自行褪色。 氧化性及还原性物质,如:ClO-、Fe2+、SO32-、S203-等,以及水样有色或混浊时,对测定均有干扰,须进行预处理。 3 仪器 分光光度计,10mm、30mm比色皿。 4 试剂 丙酮、(1+1)硫酸、(1+1)磷酸、0.2%氢氧化钠溶液、氢氧化锌共沉淀剂、4%高锰酸钾溶液、铬标准贮备液、铬标准溶液、20%尿素溶液、2%亚硝酸钠溶液、显色剂。 5 步骤 5.1 样品预处理 5.1.1 样品中不含悬浮物,低色度的清洁地表水可直接测定。 5.1.2 色度校正:如水样有色但不太深,则另取一份水样,在待测水样中加入各种试液进行同样操作时,以2ml丙酮代替显色剂,最后以此代替水作为参比来测定待测水样的吸光度。 5.1.3 锌盐沉淀分离法:对混浊、色度较深的水样可用此法预处理。取适量水样(含六价铬少于100μg)置150ml烧杯中,加水至50ml,滴加0.2%氢氧化钠溶液,调节溶液pH值为7-8。在不断搅拌下,滴加氢氧化锌共沉淀剂至溶液pH值为8~9。将此溶液转移至100ml 容量瓶中,用水稀释至标线。用慢速滤纸干过滤,弃去10~20ml初滤液,取其中50.oml滤液供测定。 5.1.4 二价铁、亚硫酸盐、硫代硫酸盐等还原性物质的消除:取适量水样(含六价铬少于50μg)置于50ml比色管中,用水稀释至标线,加入4ml显色剂,混匀。放置5min后,加入(l+1)硫酸溶液lml,摇匀。5~10min后,于540m波长处,用10或30mm的比色皿,以水作参比,测定吸光度。扣除空白试验吸光度后,从校准曲线查得六价铬含量。用同法作校准曲线。 5.1.5 次氯酸盐等氧化性物质的消除:取适量水样(含六价铬少于50μg)置于50ml比色管中,用水稀释至标线,加入(1+1)硫酸溶液0.5ml,(1+1)磷酸溶液0.5ml,尿素溶液1.0m1,

六价铬的测定 二苯碳酰二肼分光光度法

六价铬的测定方法(二苯碳酰二肼分光光度法) 1 适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4?7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.0 0μg六价铬。使用当天配制此溶液。 3.9 铬标准溶液。 称取25.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含5. 00μg六价铬。使用当天配制此溶液。 3.10 尿素:200g/L尿素溶液。 将尿素〔(NH2)2CO〕20g溶于水并稀释至100ml。 3.11 亚硝酸钠:20g/L溶液。

相关文档
最新文档