供热计算

供热计算
供热计算

六、城市供热工程规划

(一)城市热负荷计算

1.计算法

①采暖热负荷计算

Q=q·A·10-3(6-11)

式中,Q为采暖热负荷(MW),q为采暖热指标(W/m2,取60~67W/m2),A为采暖建筑面积(m2)。

②通风热负荷计算

Q T=KQn (6-12)

式中,Q T为通风热负荷(MW),K为加热系数(一般取0.3~0.5),Qn为采暖热负荷(MW)。

③生活热水热负荷计算

Qw=Kq w F (6-13)

式中,Qw为生活热水热负荷(W),K为小时变化系数,q w为平均热水热负荷指标(W/m2),F为总用地面积(m2)。当住宅无热水供应、仅向公建供应热水时,q w取2.5~3W/m2;当住宅供应洗浴用热水时,q w取15~20W/m2。

④空调冷负荷计算

Qc=βq c A10-3 (6-14) 式中,Qc为空调冷负荷(MW),β为修正系数,q c为冷负荷指标(一般为70~90W/m2),A为建筑面积(m2)。对不同建筑而言,β的值不同,详见表6-6。

表6-50 城市建筑冷负荷指标

建筑类型旅馆住宅办公楼商店体育馆影剧院医院冷负荷指标βq c 1.0q c 1.0q c 1.2q c0.5q c 1.5q c 1.2~1.6q c0.8~1.0q c 注:当建筑面积<5000m2时,取上限;建筑面积>10000m2时,取下限。

⑤生产工艺热负荷计算

对规划的工厂可采用设计热负荷资料或根据相同企业的实际热负荷资料进行估算。该项热负荷通常应由工艺设计人员提供。

⑥供热总负荷计算

将上述各类负荷的计算结果相加,进行适当的校核处理后即得供热总负荷,但总负荷中的采暖、通风热负荷与空调冷负荷实际上是同一类负荷,在相加时应取两者中较大的一个进行计算。

2.概算指标法

对民用热负荷,亦可采用综合热指标进行概算。

①民用建筑供热面积热指标概算值详见表6-51。

表6-51 城市民用建筑供暖面积热指标概算值

建筑物类型单位面积热指标(W/m2)建筑物类型单位面积热指标(W/m2)住宅58~64商店64~87办公楼、学校58~87单层住宅81~105

医院、幼儿园64~81食堂餐厅116~140旅馆58~70影剧院93~116

图书馆47~76大礼堂、体育馆116~163

注:1.总建筑面积大,外围护结构热工性能好,离户面积小,可采用表中较小的数值;反之,则采用表中较大的数值。

2.上表推荐值中,已包括了热网损失在内(约6%)。

②对居住小区而言,包括住宅与公建在内,其采暖热指标建议取值为60~67W/m2。

(二)城市集中供热热源选择

1.热源种类选择

①一般情况下,城市应以区域锅炉房作为其供热主热源。

②在有一定的常年工业热负荷而电力供应紧张的城市地区亦可应建设热电厂。

2.热源规模选择

城市主热源的规模应能基本满足供暖平均负荷的需要。我国黄河以北的城市供暖平均负荷可按供暖设计计算负荷的60%~70%计。

(三)城市集中供热热源选址

1.城市热电厂选址原则

(1)应符合城市总体规划要求,并征得规划部门和电力、环保、水利、消防等有关部门的同意。

(2)应尽量靠近热负荷中心,热电厂蒸汽的输送距离一般为3~4km。

(3)要有方便的水陆交通条件。

(4)要有良好的供水条件和保证率。

(5)要有妥善解决排灰的条件。

(6)要有方便的出线条件。

(7)要有一定的防护距离。

(8)应尽量占用荒地、次地和低产田,不占或少占良田。

(9)应避开滑坡、溶洞、塌方、断裂带、淤泥等不良地质地段。

(10)应同时考虑职工居住和上下班等因素。

(11)小型热电厂的占地面积可根据表6-52计算。

表6-52 城市小型热电厂占地参考值

规模(kW)2×15002×30002×60002×12000厂区占地面积(ha)21.5 2.0~2.8 3.5~4.5 5.5~7

2.城市热水锅炉选址原则

①靠近热负荷较集中的地区。

②便于引出管道,并使室外管道的布置在技术、经济上合理。

③便于燃料贮运和灰渣排除,并宜使人流和煤、灰、车流分开。

④有利于自然通风。

⑤位于地质条件较好的地区。

⑥有利于减少烟尘和有害气体对居住区和主要环境保护区的影响。全年运行的锅炉房宜位于居住小区和主要环境保护区的全年最小频率风向的上风侧;季节性运行的锅炉房宜位于该季节盛行风向的下风侧。

⑦应根据远期规划在锅炉房扩建端留有余地,不同规模热水锅炉的用地面积可参考表6-53进行计算。

表6-53 城市热水锅炉房参考用地面积

锅炉房总容量(MW)(Mkcal/h)用地面积(ha)锅炉房总容量(MW)(Mkcal/h)用地面积(ha)

5.8~11.6(5~10)0.3~0.558.0~11.6(50.1~100) 1.6~2.5

11~35(10.1~30)0.6~1.0116.1~232(100.1~200) 2.6~3.5

35.1~58(30.1~50) 1.1~1.5232.1~350(200.1~300)4~5

(四)城市供热管网形制选择

1.热水热力网宜采用闭式双管制。

2.以热电厂为热源的热水热力网,同时有生产工艺、采暖、通风、空调、生活热水多种热负荷,在生产工艺热负荷与采暖热负荷所需供热介质参数相差较大,或季节性热负荷占总热负荷比例较大,且技术经济合理时,可采用闭式多管制。

3.热水热力网满足下列条件、且技术经济合理时,可采用开式热力网。

①具有水处理费用较低的补给水源。

②具有与生活热水热负荷相适应的廉价低位能热源。

4.蒸汽热力网的蒸气管道,宜采用单管制。

当符合下列情况时可采用双管制或多管制。

①当多用户所需蒸汽参数相差较大或季节性热负荷占总热负荷比例较大,且技术经济合理时,可采用双管或多管制。

②当用户按规划分期建设时可采用双管或多管制,随热负荷发展分期建设。

(五)城市供热管网布置

1.城市供热管网平面布置原则

①其主要干管应力求短直并靠近大用户和热负荷集中的地段,避免长距离穿越没有热负荷的地段。

②尽量避开主要交通干道和繁华街道。

③宜平行于道路中心线,通常敷设在道路的一边,或者是敷设在人行道下面。尽量少敷设横穿街道的引入管,尽可能使相邻的建筑物的供热管道相互连接。如果道路是有很厚的混凝土层的现代新式路网,则采用在街坊内敷设管线的方法。

④当供热管道穿越河流或大型渠道时,可随桥架设或单独设置管桥,也可采用虹吸管由河底(或渠道)通过。具体采用何种方式,应与城市规划等部门协商并根据市容要求、经济能力进行统一考虑后确定。

⑤和其它管线并行敷设或交叉时,为保证各种管道均能方便地敷设、运行和维修,热网和其它管线之间应有必要的距离。

⑥技术上应安全可靠,避开土质松软地区和地震断裂带、滑坡及地下水位高的地区。

2.城市供热管网的竖向布置

①一般地沟管线敷设深度最好浅一些,以减少土方工程量。为避免地沟盖受汽车等动荷重的直接压力,地沟的埋深自地面到沟盖顶面不小于0.5~1.0m;特殊情况下,如地下水位高或其它地下管线相交情况极其复杂时,允许采用较小的埋深,但不少于0.3m。

②热力管道埋设在绿化地带时,其埋深应大于0.3m。热力管道土建结构顶面至铁路轨基底间最小净距应大于1.0m;与电车路基底为0.75m;与公路路面基础为0.7m;跨越有永久路面的公路时,热力管道应敷设在通行或半通行的地沟中。

③热力管道与其它地下设备交叉时,应在不同的水平面上互相通过。

④地上热力管道与街道或铁路交叉时,管道与地面之间应保留足够的距离;此距离应根据不同运输类型所需高度尺寸来确定:汽车运输时为3.5m,电车时为4.5m,火车时为6.0m。

⑤热力管道地下敷设时,其沟底的标高应高于近30年来最高地下水位0.2m,在没有准确地下水位资料时应高于已知最高地下水位0.5m以上;否则,地沟要进行防水处理。

⑥热力管道和电缆之间的最小净距为0.5m。如电缆地带和土壤受热的附加温度在任何季节都不大于10℃、而且热力管道有专门的保温层,则可减小此净距。

⑦热力管道横过河流时,目前广泛采用悬吊式人行桥梁和河底管沟方式。

表6-54 城市热力网管道与建筑物、构筑物、其它管线的最小距离

建筑物、构筑物或管线名称与热力网管道最小水平

净距(m)

与热力网管道最小垂直净距(m)

建筑基础与DN≤250热力管沟0.5

建筑基础与DN≥300的直埋敷设闭式热力管道 2.5

建筑基础直埋敷设开式热力管道 3.0

铁路钢轨铁路外侧3.0轨底1.2

电车钢轨铁路外侧2.0轨底1.0铁路、公路路基边坡底脚或边沟的边缘 1.0

通讯、照明或10kV以下电力线路的电杆 1.0

桥墩(高架桥、栈桥)边缘 2.0

架空管道支架基础边缘 1.5

35~66kV高压输电线铁塔基础边缘 2.0

110~220kV高压输电线铁塔基础边缘 3.0

通讯电缆管线 1.00.15

通讯电缆(直埋) 1.00.15 35kV以下电力电缆和控制电缆 2.00.5

110kV电力电缆和控制电缆 2.0 1.0 P<150kPa的燃气管道与热力管沟 1.00.15 P为150~300kPa的燃气管道与热力管沟 1.50.15 P>800kPa的燃气管道与热力管沟 4.00.15 P在300~800kPa的燃气管道与热力管沟 2.00.15 P<300kPa的燃气管道与直埋热力管道 1.00.15 P<800kPa的燃气管道与直埋热力管道 1.50.15 P>800 Kpa的燃气管道与直埋热力管道 2.00.15给水管道 1.50.15

排水管道 1.50.15

续表6-54

建筑物、构筑物或管线名称与热力网管道最小水平

净距(m)

与热力网管道最小垂直净距(m)

地铁 5.00.8

电气铁路接触网电杆基础 3.0

乔木(中心) 1.5

灌木(中心) 1.5

道路路面0.7

铁路钢轨轨外侧3.0轨顶一般5.5,电气铁路6.55电车钢轨轨外侧2.0

公路路面边缘或边沟边缘轨外侧0.5

1kV以下的架空输电线路导线最大风偏时1.5热力管道在下面交叉通过,导线最

大垂度时1.0

1~10kV下的架空输电线路导线最大风偏时2.0热力管道在下面交叉通过,导线最

大垂度时2.0

35~110kV下的架空输电线路导线最大风偏时4.0热力管道在下面交叉通过,导线最

大垂度时4.0

220kV下的架空输电线路导线最大风偏时5.0热力管道在下面交叉通过,导线最

大垂度时5.0

330kV下的架空输电线路导线最大风偏时6.0热力管道在下面交叉通过,导线最

大垂度时6.0

500kV下的架空输电线路导线最大风偏时6.5热力管道在下面交叉通过,导线最

大垂度时6.5

树冠0.5(到树中不小于2.0)

公路路面 4.5

注:1.当热力管道埋深大于建构筑物基础深度时,最小水平净距应按土壤内摩擦角计算确定。

2.当热力管道与电缆平行敷设时,电缆处的土壤温度与月平均土壤自然温度比较,全年任何时候对于

10KV电力电缆不高出10℃、对35~110KV电缆不高出5℃时,可减少表中所列距离。

3.在不同深度并列敷设各种管道时,各管道间的水平净距不小于其深度差。

4.热力管道检查塞、“冂”型补偿器壁龛与燃气管道最小水平净距亦应符合表中规定。

5.条件不允许时,经有关单位同意,可减少表中规定的距离。

(六)城市热力管管径确定

1.热水热力管管径

不同供、回水温差条件下热水管径可按表8.4-64采用。

表6-55 城市热水管网管径估算表

热负荷(MW)

供、回水温差(℃)

203040(110~70)60(130~70)80(150~70)

流量

(t/h)

管径

(mm)

流量(t/h)

管径

(mm)

流量(t/h)

管径

(mm)

流量(t/h)

管径

(mm)

流量(t/h)

管径

(mm)

6.9830030020025015025010020075200 13.96600400400350300300200250150250 20.93900450600400450350300300225300 2

7.911200600800450600400400350300300 34.8915006001000500750450500400375350 41.8718006001200600900450600400450350 4

8.85210070014006001050500700450525400 55.02240070016006001200600800450600400

2.蒸汽热力管管径

蒸汽管道管径的确定与该管段内的蒸汽平均压力密切相关,可按表6-55估算。

表6-55 饱和蒸汽管道管径估算表

蒸汽压力(Mpa)

管径(mm)蒸汽流量(t/h)0.30.50.8 1.0

蒸汽压力(Mpa)

管径(mm)

蒸汽流量(t/h)

0.30.50.8 1.0

520017515015070500450400400 1025020020017580500500450 2030025025025090500500450 30350300300250100600500500 40400350350300120600600 50400400350350150600600 60450400400350200700700

注:1.过热蒸汽的管径也可按此表估算;

2.流量或压力与表中不符时,可以用内插法求管径。

3.凝结水热力管管径

凝结水水温按100℃以下考虑,其密度取值为1000kg/m3,其管径可按表6-57估算。

表6-57 凝结水管径估算表

凝结水流量(t/h)5102030405060708090100120150管径(mm)7080100125150150175175200200200250250

(七)城市热力站与制冷站的设置

1.城市热力站的设置原则

①应位于小区热负荷中心;但工业热力站应尽量利用原有锅炉房的用地。

②单独设置的热力站,其尺寸视供热规模、设备种类和二次热网类型而定。二次热网为开式热网的热力站,其最小尺寸为长4.0m、宽2.0m和高2.5m;二次热网为闭式热网的热力站,其最小尺寸为长7.0m、宽4.0m和高2.8m。

③一座供热面积10万m2的热力点,其建筑面积约为300m2;若同时供应生活热水,则建筑面积要增加50m2左右。对居住小区而言,一个小区一般设一个热力站。

2.城市制冷站的设置原则

①小容量制冷机用于建筑空调,位于建筑内部;大容量制冷机可用于区域供冷或供暖,设于冷暖站内。

②冷暖站的供热(冷)面积宜在10万m2范围之内。

采暖供热系统的应用

采暖供热系统的应用 采暖供热系统的应用 摘要:随着环保要求的提高和电力峰谷差的拉大,燃煤锅炉采暖受到严格限制,而其他采暖形式,如燃气采暖、电动采暖和蓄热的应用,开始受到关注。本文对热电联产、燃气锅炉、电炉、电动热泵以及蓄热的应用前景做初步的分析与探讨。关键词:采暖蓄热应用 中图分类号:F407.61文献标识码:A 文章编号: 一、引言近年来,我国大气污染日益严重,人们要求保护环境、净化天空的呼声日益增高,而北方冬季城市空气污染的重要来源是采暖燃煤锅炉所排放的粉尘和有害气体。与此同时,许多地区电力出现了相对过剩、电力峰谷差不断拉大的现象。例如,东北电网系统的最大峰谷差已是最大负荷的37%,而华北电网已达峰负荷的40%[1]。为解决电力系统的这种供需矛盾,电力系统用户侧和发电侧均采取了一定措施。在发电方面,一大批初投资巨大的抽水蓄能电站、运行费昂贵的燃油燃气尖峰电站相继建成并投入调峰运行,甚至一些高参数的大型火电厂也以被迫降低发电效率为代价而参与电力调峰。同时,电力系统也加强了用户侧管理。例如,采取分时电价,鼓励用户在电力低谷时多用电,在电力高峰时少用电。因此,在环保要求高的城市采暖供热中,燃煤锅炉房或燃煤炉灶将严格限制使用,取而代之的几种可能的采暖形式主要有集中供热的电锅炉、大型电动热泵和燃气锅炉房以及分散在用户房间内的家用燃气炉、电暖器。同时,为减小电力网发电的峰谷差,也可考虑在供热系统中设置蓄热装置,使得在满足采暖要求的同时,对电力负荷起到削峰填谷的作用。为此,本文将对上述采暖系统形式的应用作初步的分析与探讨。 二、各采暖系统应用分析1.传统采暖供热系统 传统的采暖供热系统主要有锅炉采暖系统和热电联产集中供热系统。

供热管径计算

当已知建筑面积时,供热指标按下列值选用 住宅 地暖:45~60w/m暖气包:60~70w/m 办公楼:60~80 w/m 旅馆:65~70 w/m 商店:65~75 w/m 厂房:80~100w/m 俱乐部:100~120 w/m 以上为华北地区采暖热指标 热负荷计算 Q=F×q×10(kw) 式中Q——-采暖热负荷(kw) F-—-采暖用建筑面积m q-——采暖热指标w/m 三、热水循环泵总流量按下式计算: G= 式中G=热水总流量(即循环泵总流量) △t—---供回水温差(即t-t) 1。163---常数 四、循环水泵得扬程计算: H=1.1×(H+H) 式中H--——循环水泵扬程(m)

H-—-换热设备压力降(Pa) H--—供热厂区中继站管道压力降(Pa) 五、补水泵流量计算: G=G×1%× 式中G—--补水泵流量 G—--循环水泵流量 1%--—正常补水量 4———事故补水量倍数值 3---水泵得工作系数 六、补水量扬程计算 H=1.1(H+H) 式中H—--补水泵扬程 ?1、1—-——管道阻力系数 ?H---资用压力(Pa) H—--楼层高度拆合压力(Pa) 七、供热用户得流量按下式计算 =0 式中---—流量 Q--—-计算热负荷k卡/时 C--—-谁得比热k卡/时(近视取1大卡/公斤℃) t---供水得温度℃ t——--—-回水温度℃

八、供热管径计算 D=18、8 式中D-----管道管径mm 18。8-—-——常数 Q------供热负荷 ——-平均流速(热水取0。8~2m/s) 九、散热器(暖气包)散热面积计算 F=×××(m) 式中F---散热面积 t---平均温度 t----室内设计温度 ----散热器得传热系数 -—--连接系数 --——安装系数 十、散热器得总片数 n=(片) 式中n----散热器得总片数 F——--散热器 f-—--每片散热器得总面积

采暖设计计算书1

设计题目:某住宅采暖系统设计

目录 第一章绪论 设计内容及原始资料、设计目的 第二章热负荷计算 围护结构基本传热量、附加传热量、 冷风渗透传热量计算 第三章散热器计算选型 散热器面积、片数计算、设备选型 第四章采暖系统水力计算 系统布置、水力计算 第五章设计成果 参考文献

第一章绪论 一、设计内容 本工程为哈尔滨市一民用住宅楼,住宅楼为六层,每一层有 8个用户,建筑总面积为 5740 ㎡。 二、原始资料 1.设计工程所在地区:哈尔滨 45°41′N 126°37 ′E 2.室外设计参数:冬季大气压 100.15KPa 供暖室外计算温度 -26℃ 冬季室外平均风速 3.8m/s 冬季主导风向东南风 供暖天数 179 天 供暖期日平均温度 -9.5℃ 最大冻土层深度 205cm 3.建筑资料 (1)建筑每层层高 3m; (2)建筑围护结构概况 外墙:砖墙,厚度为 240mm,保温层为水泥膨胀珍珠岩 l190mm,双面抹灰δ20mm;K0.45W/m2K 地面:不保温地面,K 值按地带划分,一共为四个地带; 屋顶:钢筋混凝土板,砾砂外表层 5mm,保温层为沥青膨胀岩l150mmK0.47W/(m2K) 外窗:单层钢窗,塑料中空玻璃(空气 12mm)K2.4 W/(m2K)

外门:木框双层玻璃门(高 2.0 米),K2.5W/m2.K。2100mm×1500mm,门型为无上亮的单扇门。 4.室内设计参数: 室内计算温度:卧室、起居室 18℃厨房 10℃ 门厅、走廊、楼梯间 16℃盥洗室 18℃ 三、设计目的 对该建筑进行室内采暖系统的设计,使其能达到采暖设计标准,同时符合建筑节能规范。 第二章热负荷计算 一、围护结构基本传热量 1.外围护结构的基本耗热量计算公式如下: Q= KF( tn- t w) a q ——围护结构的基本耗热量,W; K——围护结构的传热系数, F——围护结构的面积 tn——冬季室内计算温度 t w ——供暖室外计算温度 α——围护结构的温差修正系数 整个建筑的基本耗热量 Q1. j 等于它的围护结构各部分基本耗热量

浅谈采暖系统的分类及各种形式的选用

采暖系统就是设在建筑物内部向建筑物输入一定的热量以保持建筑物内部要求的温度,满足生活和各种工作环境对温度的要求的系统。笔者认为在采暖设计中首先需对各种采暖系统的特点比较熟悉,然后在实际工程中才能设计出合理的系统,达到建筑物对室内温度的要求。采暖系统总的来说可分为热水散热器采暖系统,蒸汽散热器采暖系统,辐射采暖系统,热风采暖系统。在这几个大的分类系统中,每个系统又可分为几种形式,每种形式又有各自不同的适应场所。现就对这几种系统形式谈一下自己的认识。 热水散热器采暖系统按系统的循环动力分类,可分为重力(自然)循环系统和机械循环系统。按供水温度分类,可分为高温水采暖系统和低温水采暖系统。高温水采暖系统供水温度高于100℃,低温水采暖系统供水温度低于100℃。按供回水的方式分类,可分为上供下回式,上供上回式,下供下回式,下供上回式,上供中回式等。按散热器的连接方式,可分为垂直式与水平式系统。按连接散热器的管道数量分类可分为单管系统与双管系统。按并联环路水的流程分类,可分为同程式系统与异程式系统。蒸汽采暖系统按照供汽压力可分为高压蒸汽采暖系统、低压蒸汽采暖系统和真空蒸汽采暖系统。根据立管的数量可分为单管蒸汽采暖系统和双管蒸汽采暖系统。根据蒸汽干管的位置可分为上供式、中供式和下供式。根据凝结水回收动力可分为重力回水和机械回水。辐射采暖系统按热媒种类可分为低温热水辐射采暖,中温热水辐射采暖,高温热水辐射采暖,电热式和燃气式。热风采暖可分为集中送风,管道送风,悬挂式和落地式暖风机等形式。 热水散热器采暖系统一般用于民用建筑中。下面就其各种形式特点及适用场所加以一一说明。重力循环系统不需要外来动力,它是靠供回水的密度差产生的压力差作为循环动力,因而作用压头小,所需管径大,但运行时无噪声,管理简单。只适用于没有集中供热热源、对供热质量有特殊要求的小型建筑物中。机械循环的循环动力来自水泵,它适用于大中型集中供热的建筑。高温水采暖系统的散热器表面温度高,易烫伤皮肤,烤焦有机灰尘,卫生条件及舒适度较差,热水容易发生气化,但可节省散热器用量,供回水温差较大,可减少管道系统管径,降低输送热媒所消耗的电能,主要用于对卫生要求不高的工业建筑及其辅助建筑中。低温热水系统优缺点正好与高温水系统相反,主要用于民用建筑。上供下回式系统的供回水干管分别设置于系统最上面和最下面,布置管道方便,排气顺畅,是用的最多的系统形式。上供上回式系统的供回水干管均位于系统最上面,采暖干管不与地面设备及其它管道发生占地矛盾,主要用于设备和工艺管道较多、沿地面布置干管发生困难的工厂车间。下供下回式系统供回水干管均位于系统最下面。这种系统可减轻系统的竖向失调,有利于水力平衡,低层需要设管沟或有地下室以便于布置两根干管,顶棚下无干管比较美观,可以分层施工,分期投入使用。住宅建筑分户采暖系统的干管布置及顶棚下不宜或不能布置干管的建筑一般采用这种形式。下供上回式系统的供水干管在系统最下面,回水干管在系统的最上面,与上供下回式相比,底层散热器平均温度升高,从而减少底层散热器面积。当热媒为高温水时,底层散热器供水温度高,然而水静压力也大,有利于防止水的汽化。上供中回式系统的供水干管布置在系统最上面,回水干管布置在底层散热器的上面,一般用在底层地面上不易布置管道的建筑,此种系统不用再设置地沟。垂直式系统是指不同楼层的各散热器用垂直立管连接的系统;水平式系统是指同一楼层的散热器用水平管线连接的系统。水平式系统一般用于公用建筑的大空间中不易布置采暖立管的场所。在住宅分户采暖系统中各个用户的户内系统一般采用水平式系统。单管系统又分为顺流式和单管跨越式。单管跨越式可调节单

采暖系统水力计算之令狐文艳创作

在《供热工程》P97和P115有下面两段话:可以看出对于单元立管平均比摩阻的选择需要考虑重力循环自然附加压力的影响,试参照下面实例,分析对于供回水温60/50℃低温热水辐射供暖系统立管比摩阻的取值是多少? 实例: 附件6.2关于地板辐射采暖水力计算的方法和步骤Array(天正暖通软件辅助完成) 6.2.1水力计算界面: 菜单位置:【计算】→【采暖水力】(cnsl)菜单 点取【采暖水力】或命令行输入“cnsL”后,会执行本命令,系统会弹出如下所示的对话框。 功能:进行采暖水力计算,系统的树视图、数据表格和原理图在同一对话框中,编辑数据的同时可预览原理图,直观的实现了数据、图形的结合,计算结果可赋值到图上进行标注。 快捷工具条:可在工具菜单中调整需要显示的部分,根据计算习惯定制快捷工具条内容; 树视图:计算系统的结构树;可通过【设置】菜单中的【系统形式】和【生成框架】进行设置; 原理图:与树视图对应的采暖原理图,根据树视图的变 化,时时更新,计算完成后,可通过【绘图】菜单中的

【绘原理图】将其插入到dwg中,并可根据计算结果进行标注; 数据表格:计算所需的必要参数及计算结果,计算完成后,可通过【计算书设置】选择内容输出计算书; 菜单:下面是菜单对应的下拉命令,同样可通过快捷工具条中的图标调用; [文件] 提供了工程保存、打开等命令; 新建:可以同时建立多个计算工程文档; 打开:打开之前保存的水力计算工程,后缀名称为.csl;保存:可以将水力计算工程保存下来; [设置] 计算前,选择计算的方法等; [编辑] 提供了一些编辑树视图的功能; 对象处理:对于使用天正命令绘制出来的平面图、系统图或原理图,有时由于管线间的连接处理不到位,可能造成提图识别不正确,可以使用此命令先框选处理后,再进行提图; [计算] 数据信息建立完毕后,可以通过下面提供的命令进行计算; [绘图] 可以将计算同时建立的原理图,绘制到dwg图上,也可将计算的数据赋回到原图上; [工具] 设置快捷命令菜单; 6.2.2采暖水力计算的具体操作: 1.下面以某住宅楼为例进行计算:住宅楼施工图如下:

供热管网各参数计算常用公式

供热管网各参数计算 常用公式

供热管网各参数常用计算公式 1比摩阻R (P/m )——集中供热手册P 196 R = 6.25×10-2×52d G ρλ 其中:λ—— 管道摩擦系数(查动力管道手册P345页) λ= 1/(1.14+2×log K d )2 G —— 介质质量流量(t/h ) 或:R=d 22 λρν=6.88×10-3×25.525 .02d K G ρ ρ—— 流体介质密度(kg/m 3) d —— 管道内径(m ) K ——管内壁当量绝对粗糙度(m ) 2、管道压力降△P (MPa ) △P = 1.15R (L+∑Lg )×10-6 其中:L —— 管道长度(m ) ∑Lg ——管道附件当量长度(m ) 3、管道单位长度热损q (W/m ) q = 其中:T 0 —— 介质温度(℃) λ1 —— 内层保温材料导热系数(W/m.℃) λ2 —— 外层保温材料导热系数(W/m.℃) D 0 —— 管道外径(m ) D 1 —— 内保温层外径(m ) D 2 —— 外保温层外径(m ) α—— 外表面散热系数[α=1.163×(10+6?)] ?—— 环境平均风速。预算时可取α=11.63 Ln —— 自然对数底 4、末端温度T ed (℃) 2122011012121)16(D D D Ln D D Ln T αλλπ++-

T ed = T 0 - GC L L q g 310)(-?+ 其中:T 0 —— 始端温度(℃) L —— 管道长度(m ) Lg —— 管道附件当量长度(m ) G —— 介质质量流量(t/h ) C —— 介质定容比热(kj / kg.℃) 5、保温结构外表面温度T s (℃) T s = T a + α π2D q 其中:Ta ——环境温度(南方可取Ta =16℃) 6、管道冷凝水量(仅适用于饱和蒸汽)G C (t/h ) G C = γ3 106.3-?qL 其中:γ——介质汽化潜热(kj / kg ) 7、保温材料使用温度下的导热系数λt (W/m.℃) λt =λo +2 )(B A T T K + 其中:λo ——保温材料常态导热系数 T A —— 保温层内侧温度(℃) T B —— 保温层外侧温度(℃) K —— 保温材料热变系数 超细玻璃棉K=0.00017 硅酸铝纤维K=0.0002 8、管道直径选择d (mm ) 按质量流量计算:d = 594.5 ωρG 按体积流量计算:d = 18.8ωνG 按允许单位比摩阻计算:d = 0.0364×52 R G ?νλ 其中:G —— 介质质量流量(t/h ) G v —— 介质体积流量(m 3/h ) ω —— 介质流速(m/s ) ρ —— 介质密度(kg/m 3)

采暖系统水力计算

在《供热工程》P97和P115有下面两段话:可以看出对于单元立管平均比摩阻的选择需要考虑重力循环自然附加压力的影响,试参照下面实例,分析对于供回水温60/50℃低温热水辐射供暖系统立管比摩阻的取值是多少?

实例:

附件6.2关于地板辐射采暖水力计算的方法和步骤(天正暖通软件辅助完成) 6.2.1水力计算界面: 菜单位置:【计算】→【采暖水力】(cnsl)菜单点取【采暖水力】或命令行输入“cnsL”后,会执行本命令,系统会弹出如下所示的对话框。 功能:进行采暖水力计算,系统的树视图、数据表格和原理图在同一对话框中,编辑数据的同时可预览原理图,直观的实现了数据、图形的结合,计算结果可赋值到图上进行标注。 快捷工具条:可在工具菜单中调整需要显示的部分,根据计算习惯定制快捷工具条内容;树视图:计算系统的结构树;可通过【设置】菜单中的【系统形式】和【生成框架】进行设置; 原理图:与树视图对应的采暖原理图,根据树视图的变化,时时更新,计算完成后,

可通过【绘图】菜单中的【绘原理图】将其插入到dwg中,并可根据计算结果进行标注;数据表格:计算所需的必要参数及计算结果,计算完成后,可通过【计算书设置】选择内容输出计算书; 菜单:下面是菜单对应的下拉命令,同样可通过快捷工具条中的图标调用; [文件] 提供了工程保存、打开等命令; 新建:可以同时建立多个计算工程文档; 打开:打开之前保存的水力计算工程,后缀名称为.csl; 保存:可以将水力计算工程保存下来; [设置] 计算前,选择计算的方法等; [编辑] 提供了一些编辑树视图的功能; 对象处理:对于使用天正命令绘制出来的平面图、系统图或原理图,有时由于管线间的连接处理不到位,可能造成提图识别不正确,可以使用此命令先框选处理后,再进行提图; [计算] 数据信息建立完毕后,可以通过下面提供的命令进行计算; [绘图] 可以将计算同时建立的原理图,绘制到dwg图上,也可将计算的数据赋回到原图上; [工具] 设置快捷命令菜单; 6.2.2采暖水力计算的具体操作: 1.下面以某住宅楼为例进行计算:住宅楼施工图如下:

供热管径计算

供热管径计算 当已知建筑面积时,供热指标按下列值选用住宅 地暖:45~60w/m2暖气包:60~70 w/m2 2 办公楼:60~80 w/m 旅馆:65~70 w/m2 商店:65~75 w/m2 厂房:80~100 w/m2 俱乐部:100~120 w/m2 以上为华北地区米暖热指标热负荷计算 3 Q=FX qx 10 (kw) 式中Q---米暖热负荷(kw) F---米暖用建筑面积m? 一 2 q---采暖热指标w/m 三、热水循环泵总流量按下式计算: G=1.163 t n 吨/ 式中G二热水总流量时(即循环泵总流量) △ t—供回水温差(即t g-t n) 1、163---常数 四、循环水泵的扬程计算: H=1、1X (H1+H2)

式中H----循环水泵扬程(m) H 1 ---换热设备压力降(Pa) H 2---供热厂区中继站管道压力降(Pa) 五、补水泵流量计算: 4 G A =Gx 1%x 3 4---事故补水量倍数值 3---水泵的工作系数 六、补水量扬程计算 H B =1、1(H 1+H 2 ) 式中 H B ---补水泵扬程 1、1----管道阻力系数 H 1 ---资用压力(Pa) H 2---楼层高度拆合压力(Pa) 七、供热用户的流量按下式计算 q =0 3 t n 式中q ----流量 n Q----计算热负荷 k 卡/时 C----谁的比热 k 卡/时(近视取1大卡/公斤C ) 供热管径计算 供热管径计算 式中G A ---补水泵流量 G---循环水泵流量 1%---正常补水量 t n t n t n

t g---供水的温度 C t n——回水温度C 八、供热管径计算 式中D——管道管径mm 18、8-----常数 Q------供热负荷 W---平均流速叹(热水取0、8~2m⑸九、散热器(暖气包)散热面积计算 Q F=k ( t p t n) X 1 X 2 X 3(m2) 式中F---散热面积 t p---平均温度 t n----室内设计温度 散热器的传热系数 1---- 2------ 连接系数 3----安装系数 十、散热器的总片数 n=Ff(片) 式中n----散热器的总片数 F——散热器 f----每片散热器的总面积 供热管径计算

采暖管道水力计算

采暖供热管道水力计算表说明 1 电算表编制说明 1.1 采暖供热管道的沿程损失采用以下计算公式: ΔP m =L λρ?v 2 d j ?2 (1.1) ;式中:△Pm——计算管段的沿程水头损失(Pa) L ——计算管段长度(m); λ——管段的摩擦阻力系数; d j ——水管计算内径(m),按本院技术措施表A.1.1-2~A.1.1-9编制取值; 3 ρ——流体的密度(kg/m),按本院技术措施表A.2.3编制取值;v —— 流体在管内的流速(m/s)。 1.2 管道摩擦阻力系数λ 1.2.1采用钢管的采暖供热管道摩擦阻力系数λ采用以下计算公式: 1 层流区(R e ≤2000) λ=

64 Re 2 紊流区(R e >2000)一般采用柯列勃洛克公式 1 ?2. 51K /d j =?2lg?+?λ?Reλ3.72 ?K 68? ?λ=0.11?+??d ?j Re? 0. 25 ???? 简化计算时采用阿里特苏里公式 雷诺数 Re= v ?d j γ 以上各式中 λ——管段的摩擦阻力系数;Re ——雷诺数; d j ——管子计算内径(m),钢管计算内径按本院技术措施表A.1.1-2取值;

- K ——管壁的当量绝对粗糙度(m),室内闭式采暖热水管路K =0.2×103m,室外供热管网 - K =0.5×103m ; v ——热媒在管内的流速,根据热量和供回水温差计算确定(m/s); ,根据供回水平均温度按按本院技术措施表A. 2.1取值。γ—— 热媒的运动粘滞系数(m2/s) 1.2.2塑料管和内衬(涂)塑料管的摩擦阻力系数λ,按下式计算: λ={ d j ? b 1. 312(2 lg 3. 7??b 0. 5?+ lg Re s?1?2 ?? 3. 7d j lg K ?????? }2

热量计算公式

供热简单知识 1.供热系统:供热系统分一次和二次供热系统,一次由热源单位来提供热源,二次是经过换热站对用户采暖供热(蒸汽系统除外),我公司分东西部供热系统。 2.热量计算公式:Q=C*G(T2-T1)÷1000 二次网流量选择原则:G=KW*0.86*1.1/(T2-T1) (地热温差取10℃;分户改造取15℃;二次网直连取25℃)。 采暖期用热:Q*24*167*0.64 分户估算水量:一般情况下为3-3.5KG/㎡ 老式供暖水量:一般情况下为2-2.5KG/㎡ 地热供暖水量:一般情况下为3.5-5KG/㎡,根据外网负荷确定。 根据45W,50W,55W计算流量情况能得出调整水平关系。可以实际计算。 3.一、二次网的热量相等: Q1=Q2,C1*G1*(T22-T21)=C2*G2*(T22'-T21'),水C1=C2, 一次网温差一般取45℃,直连系统一般选用25℃。但要和设计联系在一起,高值也可取65℃。从公式看出温差和流量决定一、二次网热量计算。 4.板式换热器系统阻力正常范围应在5-7mH2O

5.民用建筑室内管道流速不大于1.2m/s。 6.压力与饱和水温度关系: 7.单位换算:W=1J/S 例子:45W/㎡的采暖期的耗热量 45*3600*24*167*0.64=0J 变成GJ: 0÷00=0.41555GJ/㎡ 8.比摩阻:供热管路单位长度沿程阻力损失。若将大管径改为小一号管径,比摩阻增加1-2倍。 9.集中供热管网布置与敷设:管网主干线尽可能通过热负荷中心;管网力求线路短直;管网敷设应力求施工方便,工程量少;在满足安全运行、维修简便前提下,应节约用地;在管网改建、扩建过程中,应尽可能做到新设计的管线不影响原有管线正常运行;管线一般应沿路敷设,不应穿过仓库、堆场以及发展的预留地段;尽可能不通过铁路、公路及其他管线、管沟等,并适当注意整齐美观等,还有许多这里不做介绍。 管网布置有四种形式: A:枝装布置,B:环装布置,C:放射布置,D:网络布置。

供热管径计算

供热管径计算标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

当已知建筑面积时,供热指标按下列值选用住宅 地暖:45~60w/m2暖气包:60~70 w/m2办公楼:60~80 w/m2 旅馆:65~70 w/m2 商店:65~75 w/m2 厂房:80~100 w/m2 俱乐部:100~120 w/m2 以上为华北地区采暖热指标 热负荷计算 Q=F×q×103 (kw) 式中Q---采暖热负荷(kw) F---采暖用建筑面积m2 q---采暖热指标w/m2 三、热水循环泵总流量按下式计算:

G=n t t 163.1Q ?? 式中G=热水总流量 时吨 (即循环泵总流量) △t----供回水温差(即t g -t n ) 常数 四、循环水泵的扬程计算: H=×(H 1+H 2) 式中H----循环水泵扬程(m ) H 1---换热设备压力降(Pa ) H 2---供热厂区中继站管道压力降(Pa ) 五、补水泵流量计算: G A =G ×1%×34 n t 式中G A ---补水泵流量 n t G---循环水泵流量 n t 1%---正常补水量 n t 4---事故补水量倍数值

3---水泵的工作系数 六、补水量扬程计算 H B=(H1+H2) 式中 H B---补水泵扬程n t 管道阻力系数 H1---资用压力(Pa) H2---楼层高度拆合压力(Pa)七、供热用户的流量按下式计算 q =03 n t 式中q ----流量n t Q----计算热负荷 k卡/时 C----谁的比热 k卡/时(近视取1大卡/公斤℃) t g---供水的温度℃ t n------回水温度℃ 八、供热管径计算

供热采暖系统管理规范详细版

文件编号:GD/FS-7330 (管理制度范本系列) 供热采暖系统管理规范详 细版 The Daily Operation Mode, It Includes All Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify The Management Process. 编辑:_________________ 单位:_________________ 日期:_________________

供热采暖系统管理规范详细版 提示语:本管理制度文件适合使用于日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 1范围 本标准规定了供热企业(单位)的岗位职责、规章制度建设和标准化管理、运行管理、维修管理、质量管理、安全管理、服务管理、经营管理和档案信息管理等工作的要求。 本标准适用与锅炉房、热力站、室外供热管线和室内采暖系统的管理。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否

使用这些文件的最新版本。凡是不注日期的引用为文件,其最新版本适用于本标准。 GB/T16811工业锅炉水处理设施运行效果与监测 CJJ/T88城镇供热系统安全技术规程 JB/T10354工业锅炉运行规程 DB11/097低硫散煤及制品 DB11/139锅炉污染物综合排放标准 DB11/381既有居住建筑节能改造技术规程 DB11/T466供热采暖系统维修管理规范 3管理工作总体目标 3.1供热企业(单位)应在保障供热质量的同时,规范对采暖用户的服务。 3.2供热企业(单位)应采用节能技术措施,实现供热系统的节能减排,保障各项环保指标达标。

供热煤耗计算公式

供汽量锅炉效率总耗标准煤发电量发电标煤耗供热标准煤耗供热量供热比站用电量供电标煤耗 发电标煤耗热电比机组热效率318140.84288.5272181.68488.605383799.9218287329.40.886149.740.370.268937351335.274.3 279040.83761.4592164.01428.554863332.9043476596.50.886145.060.360.261298011297.375.1 294590.83971.0732168.33452.436853518.63635808650.886149.460.3810.268779691334.473.58 251600.83391.568128.61386.4123005.15669064.20.886141.60.4440.300452531491.769.6 00.800000000000 56280.8758.654445.7286.435879672.21852115448.90.886117.80.310.189********.6277.01 279270.83764.5596200.93428.90813335.651576659.60.886150.180.2850.213461461059.876.16 255680.83446.5664193.07392.678143053.8882670184.20.886149.180.2730.203386411009.876.49 286110.83856.7628198.63439.41313417.349778537.20.886145.380.2870.221221921098.375.93 259460.83497.5208194.01398.483533099.0372771221.80.886147.780.2730.20539331019.776.42 237160.83196.9168160.73364.234772832.6820365100.40.8861430.3090.226612811125.175.78 1100.775.92 294080.83964.1984203.73451.653583512.54482807250.886150.420.2950.221692232006年35吨 25558.2730.872733445.25516167.22392.528743052.7264270157.50.886144.509090.3260.2345718701164.675.12 269560.83633.6688187.03413.99533219.673573994.20.886148.640.2990.22135413109975.93 183700.82476.276121.64282.12992194.146150425.70.886134.760.3250.231938431151.575.64 215410.82903.7268161.41330.830722572.89608591300.886144.720.2840.204962961017.676.43 300220.84046.9656179.65461.083513585.8820982410.40.886148.680.3520.256656561274.275.06 298740.84027.0152177.68458.810493568.2047182004.10.8861510.3620.25822293128275.02 278220.83750.4056169.2427.295493323.1101176371.40.886147.740.3520.252538711253.875.15 272630.83675.0524162.51418.710273256.3421374836.90.886147.80.3650.2576521279.275.04 288800.83893.024173.67443.544453449.4795579275.60.886150.520.360.25539498126875.08 266680.83594.8464167.05409.572143185.2742673203.70.886150.080.350.245179371217.375.31 244080.83290.1984139.38374.862642915.33576670000.886141.960.3850.268950091335.374.81 293690.83958.9412172.38451.054613507.8865980617.90.886145.80.3560.261662961299.174.95 1222.375.29 246680.83325.2464153.89378.855772946.3906367713.70.886143.040.3420.246186092005年35吨 26320.0830.83547.94723163.79404.228773143.7184672248.60.886146.228330.3440.2467249301224.975.31 615790.88300.8492483.06945.741837355.107371690340.8861106.970.2510.19578144972.0176.75 570000.87683.6438.72875.416696808.183311564650.886197.910.2570.199********.6776.62 597450.88053.626448.02917.574917136.0510********.8861106.60.2690.204806691016.876.44

地暖设计管径确定

地暖设计管径确定 1、地暖盘管管径的确定 1.1.1一般说来,地暖盘管管径不需要计算,在大多数民用建筑中,用De20(DN15)的管径就可以满足要求。查《地面辐射供暖技术规程》附录A “单位地面面积的散热量和向下传热损失”选择合适的平均水温和地暖盘管的间距就可以满足要求。请注意:附录A给出计算条件是加热管公称外径为20mm、填充层厚度为50mm、聚苯乙烯泡沫塑料绝热层厚度20mm、供回水温差10℃时PE-X管或PB管时数据。表中给出了地面为水泥或陶瓷、塑料类材料、木地板、铺厚地毯几种情况下“单位地面面积的散热量和向下传热损失”。如果是其他材料,如PE-RT 、PP-R和PP-B,按照《地面辐射供暖技术规程》3.4.2条要求,应通过计算确定单位地面面积的散热量和向下传热损失(可参阅该规程“3.4地面散热量的计算”进行精确计算)。实际上,在缺乏相关专业资料的情况下,附录A也可以作为其他管材设计时的参考数据。 1.1.2举例说明:某20℃房间计算热指标为40 W/m2地面层为木地板,平均水温40℃时,当平均水温40℃时,选用DN15的PE-X时可查附录A.1.3确定单位地面面积的散热量和向下传热损失。如下表(这是附录A.1.3的一部分),间距300即满足要求(66.8-26.3=40.5满足要求房间耗热量40W/m2的要求)

1.1.3顺便加以说明:选择地暖盘管时,管材、管径确定之后,还要根据采暖系统设计运行温度、压力选择壁厚,这样地暖管才算选完。这部分请参看《地面辐射供暖技术规程》“附录B加热管的选择”。这里也给出一个范例:一般六层住宅楼,平均水温40℃时,用壁厚2mm,DN15的PE-RT管子就可以了。 2、立管管径的确定朋友们应该还记得负荷计算的方法。 假设我们已经通过负荷计算确定了建筑物各部分的负荷。下面先介绍一个公式。流量计算公式:GL=0.86×∑Q/(tg-th)Kg/h 其中:GL—流量,Kg/h;∑Q—热负荷,W;tg、th—供回水温度,℃。我们把计算的负荷与供回水温度代入上边的公式,就可以得出相应的流量。 接下来接着介绍一个参数:比摩阻,可以简单的理解为一米管道的阻力。室内采暖系统的经济比摩阻应控制在60~120Pa/m。 室内采暖立管常采用焊接钢管。可以在暖通专业的设计手册(如:《供

供热管网各参数计算常用公式

供热管网各参数常用计算公式 1比摩阻R(P/m)——集中供热手册P 196 R = 6、25×10-2×52d G ρλ 其中:λ—— 管道摩擦系数(查动力管道手册P345页) λ= 1/(1、14+2×log K d )2 G —— 介质质量流量(t/h) 或:R=d 22 λρν=6、88×10-3×25.525.02d K G ρ ρ—— 流体介质密度(kg/m 3) d —— 管道内径(m) K ——管内壁当量绝对粗糙度(m) 2、管道压力降△P(MPa) △P = 1、15R(L+∑Lg)×10-6 其中:L —— 管道长度(m) ∑Lg ——管道附件当量长度(m) 3、管道单位长度热损q(W/m) q = 其中:T 0 —— 介质温度(℃) λ1 —— 内层保温材料导热系数(W/m 、℃) λ2 —— 外层保温材料导热系数(W/m 、℃) D 0 —— 管道外径(m) D 1 —— 内保温层外径(m) D 2 —— 外保温层外径(m) α—— 外表面散热系数[α=1、163×(10+6?)] ?—— 环境平均风速。预算时可取α=11、63 Ln —— 自然对数底 4、末端温度T ed(℃) T ed = T 0 - GC L L q g 310)(-?+ 其中:T 0 —— 始端温度(℃) L —— 管道长度(m) Lg —— 管道附件当量长度(m) G —— 介质质量流量(t/h) C —— 介质定容比热(kj / kg 、℃) 5、保温结构外表面温度T s(℃) 2122011012121 )16(D D D Ln D D Ln T αλλπ++-

T s = T a + α π2D q 其中:Ta ——环境温度(南方可取Ta =16℃) 6、管道冷凝水量(仅适用于饱与蒸汽)G C (t/h) G C = γ3 106.3-?qL 其中:γ——介质汽化潜热(kj / kg) 7、保温材料使用温度下的导热系数λt (W/m 、℃) λt =λo +2 )(B A T T K + 其中:λo ——保温材料常态导热系数 T A —— 保温层内侧温度(℃) T B —— 保温层外侧温度(℃) K —— 保温材料热变系数 超细玻璃棉K=0、00017 硅酸铝纤维K=0、0002 8、管道直径选择d(mm) 按质量流量计算:d = 594、5 ωρG 按体积流量计算:d = 18、8ωνG 按允许单位比摩阻计算:d = 0、0364×52 R G ?νλ 其中:G —— 介质质量流量(t/h) G v —— 介质体积流量(m 3/h) ω —— 介质流速(m/s) ρ —— 介质密度(kg/m 3) ΔR —— 允许单位比摩阻(Pa/m) 9、管道流速ω(m/s) ω= π ρ29.0d G 其中:G —— 介质质量流量(t/h) ρ —— 介质密度(kg/m 3) d —— 管道内径(m) 10、安全阀公称通径(喉部直径)选择DN(mm)

供热采暖系统负荷计算

3.3 供热采暖系统负荷计算 3.3.1 对采暖热负荷和生活热水负荷分别计算后,应选两者中较大的负荷确定为太阳能供热采暖系统的设计负荷,太阳能供热采暖系统的设计负荷应由太阳能集热系统和其他能源辅助加热/换热设备共同负担。 3.3.2太阳能集热系统负担的采暖热负荷是在计算采暖期室外平均气温条件下的建筑物耗热量。建筑物耗热量、围护结构传热耗热量、空气渗透耗热量的计算应符合下列规定: 1 建筑物耗热量应按下式计算: Q H = Q HT + Q INF -Q IH 式中 Q H——建筑物耗热量,W; Q HT——通过围护结构的传热耗热量,W; Q INF——空气渗透耗热量,W; Q IH——建筑物内部得热量(包括照明、电器、炊事和人体散热等),W。 2通过围护结构的传热耗热量应按下式计算: Q HT=(t i-t e)(∑εKF) 式中 Q HT——通过围护结构的传热耗热量,W; t i——室内空气计算温度,按《采暖通风与空气调节设计规范》GB50019中的规定范围的低限选取,℃;

t e——采暖期室外平均温度,℃; ε——各个围护结构传热系数的修正系数,参照相关的建筑节能设计行业标准选取; K——各个围护结构的传热系数,W/(㎡*℃) F——各个围护结构的面积,㎡。 3空气渗透耗热量应按下式计算 Q INF=(t i-t e)(CpρNV) 式中 Q INF——空气渗透耗热量,W; Cp——空气比热容,取0.28W*h/(kg*℃); ρ——空气密度,取t e条件下的值,kg/㎡; N——换气次数,次/h; V ——换气体积,m3/次。 3.3.3其他能源辅助加热/换热设备负担在采暖室外计算温度条件下建筑物采暖热负荷的计算应符合下列规定; 1 采暖热负荷应按现行国家标准《采暖通风与空气调节设计规范》GB50019中的规定计算。 2 在标准规定可不设置集中采暖的地区或建筑,宜根据当地实际情况,适当降低室内空气计算温度。 3.4.2 太阳能集热器的设置应符合下列规定:

(完整版)水力计算

室内热水供暖系统的水力计算 本章重点 ? 热水供热系统水力计算基本原理。 ? 重力循环热水供热系统水力计算基本原理。 ? 机械循环热水供热系统水力计算基本原理。 本章难点 ? 水力计算方法。 ? 最不利循环。 第一节热水供暖系统管路水力计算的基本原理 一、热水供暖系统管路水力计算的基本公式 当流体沿管道流动时,由于流体分子间及其与管壁间的摩擦,就要损失能量;而当流体流过管道的一些附 件 ( 如阀门、弯头、三通、散热器等 ) 时,由于流动方向或速度的改变,产生局部旋涡和撞击,也要损失能量。前者称为沿程损失,后者称为局部损失。因此,热水供暖系统中计算管段的压力损失,可用下式 表示: Δ P =Δ P y + Δ P i =R l + Δ P i Pa 〔 4 — 1 〕 式中Δ P ——计算管段的压力损失, Pa ;

Δ P y ——计算管段的沿程损失, Pa ; Δ P i ——计算管段的局部损失, Pa ; R ——每米管长的沿程损失, Pa / m ; l ——管段长度, m 。 在管路的水力计算中,通常把管路中水流量和管径都没有改变的一段管子称为一个计算管段。任何一个热水供暖系统的管路都是由许多串联或并联的计算管段组成的。 每米管长的沿程损失 ( 比摩阻 ) ,可用流体力学的达西.维斯巴赫公式进行计算 Pa/m ( 4 — 2 ) 式中一一管段的摩擦阻力系数; d ——管子内径, m ; ——热媒在管道内的流速, m / s ; 一热媒的密度, kg / m 3 。 在热水供暖系统中推荐使用的一些计算摩擦阻力系数值的公式如下: ( — ) 层流流动 当 Re < 2320 时,可按下式计算;

供热系统的组成及特点

供热系统的组成及特点 供热、供燃气空调与通风工程刘艳涛20151031305 一、供热系统的组成 供暖系统由热源、热媒输送管道和散热设备组成。 热源:制取具有压力、温度等参数的蒸汽或热水的设备。 热媒输送管道:把热量从热源输送到热用户的管道系统。 散热设备:把热量传送给室内空气的设备。 二、供热系统的分类和特点 供暖系统有很多种不同的分类方法,按照热媒的不同可以分为:热水供暖系统、蒸汽供暖系统、热风采暖系统;按照热源的不同又分为热电厂供暖、区域锅炉房供暖、集中供暖三大类等。 热水供暖系统 水为热媒的供暖系统的优点:其室温比较稳定,卫生条件好;可集中调节水温,便于根据室外温度变化情况调节散热量;系统使用的寿命长,一般可使用25年。 热水为热媒的供暖系统的缺点:采用低温热水作为热媒时,管材与散热器的耗散较多,初期投资较大;当建筑物较高时,系统的静水压力大,散热器容易产生超压现象;水的热惰性大,房间升温、降温速度较慢;热水排放不彻底时,容易发生冻裂事故。 热水供暖系统按其作用压力的不同,可分为重力循环热水供暖系统和机械循环热水供暖系统两种,机械循环热水供暖系统是用管道将锅炉、水泵和用户的散热器连接起来组成一个供暖系统。 在供暖系统中,各个散热器与管道的连接方式称为散热系统的形式。热水供暖系统中散热系统的形式可分为垂直式和水平式两大类。 (1)垂直式 指将垂直位置相同的各个散热器用立管进行连接的方式。它按散热器与立管的连接方式又可分为单管系统和双管系统两种;按供、回水干管的布置位置和供水方向的不同也可分为上供下回、下供下回和下供上回等几种方式。 (2)水平式 指将同一水平位置(同一楼层)的各个散热器用一根水平管道进行连接的方式。它可分为顺序式和跨越式两种方式。顺序式的优点是结构较简单,造价低,但各散热器不能单独调节;跨越式中各散热器可独立调节,但造价较高,且传热系数较低。 水平式系统与垂直式系统相比具有如下优点。 ①构造简单,经济性好。 ②管路简单,无穿过各楼层的立管,施工方便。 ③水平管可以敷设在顶棚或地沟内,便于隐蔽。 ④便于进行分层管理和调节。 但水平式系统的排气方式要比垂直式系统复杂些,它需要在散热器上设置冷风阀分散排气,或在同层散热器上串接一根空气管集中排气。

相关文档
最新文档