冷却系统设计

冷却系统设计
冷却系统设计

目录

一、冷却系统说明

二、散热器总成参数设定及基本性能要求

三、膨胀箱总成参数设定及基本性能要求

四、冷却风扇总成参数设定及基本性能要求

五、橡胶水管参数设定及基本性能要求

一、冷却系统说明

内燃机运转时,与高温燃气相接触的零件受到强烈的加热,如不加以适当的冷却,会使内燃机过热,充气系数下降,燃烧不正常(爆燃、早燃等),机油变质和烧损,零件的摩擦和磨损加剧,引起内燃机的动力性、经济性、可靠性和耐久性全面恶化。但是,如果冷却过强,汽油机混合气形成不良,机油被燃烧稀释,柴油机工作粗爆,散热损失和摩擦损失增加,零件的磨损加剧,也会使内燃机工作变坏。因此,冷却系统的主要任务是保证内燃机在最适宜的温度状态下工作。

1.1 发动机的工况及对冷却系统的要求

一个良好的冷却系统,应满足下列各项要求:

1)散热能力能满足内燃机在各种工况下运转时的需要。当工况和环境条件变化时,仍能保证内燃机可靠地工作和维持最佳的冷却水温

度。

2)应在短时间内,排除系统的压力。

3)应考虑膨胀空间,一般其容积占总容积的4-6%;

4)具有较高的加水速率。初次加注量能达到系统容积的90%以上。

5)在发动机高速运转,系统压力盖打开时,水泵进口应为正压;

6)有一定的缺水工作能力,缺水量大于第一次未加满冷却液的容积;

7)设置水温报警装置;

8)密封好,不得漏水;

9)冷却系统消耗功率小。启动后,能在短时间内达到正常工作温度。

10)使用可靠,寿命长,制造成本低。

1.2 冷却系统的总体布置

冷却系统总布置主要考虑两方面:一是空气流通系统;二是冷却液循环系统。在设计中必须作到提高进风系数和冷却液循环中的散热能力。

提高通风系数:总的进风口有效面积和散热器正面积之比≥30%。对于空气流通不顺的结构,需要加导风装置使风能有效的吹到散热器的正面积上,提高散热器的利用率。

在整车空间布置允许的条件下,尽量增大散热器的迎风面积,减薄芯子厚度。这样可充分利用风扇的风量和车的迎面风,提高散热器的散热效率。一般货车芯厚不超过四排水管,轿车芯厚不超过二排水管。

在整车布置中散热系统中,还要考虑散热器和周边的间隙,散热器到保险杠外皮的最小距离100毫米,如果发动机的三元崔化在前端的话,还要考虑风扇到三元催化本体距离至少100毫米,到三元催化隔热罩距离至少80毫米。一般三元催化的隔热罩到本体大概有15毫米,隔热罩厚度为0.5-1毫米,一般材料为st12。

1.2.1散热器布置

货车散热器一般采用纵流水结构,因为货车的布置空间也较宽裕。而且纵流水结构的散热器强度及悬置的可靠性较好,轿车多采用散热器横流水结构,因为轿车车身较低,空间尺寸紧张。横流水结构散热器能充分地利用轿车的有限空间最大限度地增加散热器的迎风面积。散热器分成水冷和风冷两种冷却形式,风冷主要用在行驶在沙漠地带的车辆的冷却,但是决大多数的车辆采用水冷冷却形式。

散热器悬置布置:

散热器通常为四点悬置,也可以采用三点悬置。其中主悬置点为2个,辅助悬置点为2个或1个。所有悬置点应布置在同一个部件总成上,改善散热器受力情况,以尽量减少散热器的振动强度。主悬置点与其连接的部件总成之间以胶垫或胶套等柔性非金属材料过渡以达到减震的目的。主悬置点的胶垫压缩量一般为其自由高度的1/5左右。少数轿车因其整车的减振胶垫或胶套而进行刚性连接。

中,重型载货汽车由于散热器的质量大及使用环境较差,一般要在散热器的外部增加一个刚性较大的保护框架,以防止振动等外界力直接作用在散热器上。悬置点设置在框架上。轻型货车和轿车一般不加保护框架,悬置点设置在散热器的侧板或水室上。为提高散热器强度一些车散热器上加有十字拉筋。

1.2.2护风罩布置

护风罩的作用是确保风扇产生的风量全部流经散热器,提高风扇效率。护风罩对低速大功率风扇效率提高特别显著。

风扇与护风罩的径向间隙较小,风扇的效率越高。但间隙过小,车在行驶中由于振动会造成风扇与护风罩之间的干涉。风扇与护风罩之间的径向间隙一般控制在5mm-25mm。当风扇与护风罩之间的干涉。风扇与护风罩安装在同一零部件总成上(如同在底盘或同在车身上)其径向与相对运动,风扇与护风罩之间的间隙可以下线,否则取上限。风扇与护风罩的轴向位置一般为:风扇径向投影宽度的2/3在护风罩内,1/3在护风罩外,以增加导流减小背压。

在大批量生产的车型中多采用塑料护风罩。铁护罩多用于批量小或直径较大的车型中。

在某些车型中,特别是轿车,护风罩在常开有多个窗口并加以单向帘布。当车速较高,风扇停止运转时帘布打开减小护风罩的风阻,当风扇启功后,帘布关闭提高风扇效率。

1.2.3风扇布置

风扇直径大小应和散热器的形状相协调,条件允许时可增大风扇的直径,降低风扇转速。以达到减小功率消耗和降低噪音的目的。在某些散热器长,宽比例相差较大时,如轿车散热器,有时采用两个直径较小的风扇所取代。特别是要求转速较高的风扇中已全部采用塑料风扇。

电动风扇是由电动机来驱动风扇,电动机的启动与停止是受水温直接感应的

温度开关来控制。电动风扇具有起动温度与设定温度一致,布置位置灵活,不受发动机转速的影响,汽车在低速怠速时冷却效果好等优点,冷车启动时水温上升较快。但也多用于发动机横置的轿车。

1.2.4调温器布置

目前汽车上应用的调温器均采用蜡式感应体调温器。当冷却水温温度升高时蜡膨胀,调温器开启,冷却水流经散热器进行大循环。当冷却水的温度降低时蜡体积缩小,调温器关闭,冷却水不经过散热器,短路流经发动机刚体进行小循环。调温器一般布置在发动机的出水口处。要求调温器的泄漏量小,全开时流通面积大。增大调温器的流通面积可以通过提高调温器阀门的升程和增加阀门的直径来实现。国外较先进的调温器多通过提高阀门升程来增大流通面积,这样可以减少因增大调温器阀门直径带来的卡滞,密封不严等问题。但是增大调温器的升程,对调温器技术要求较高。有些发动机为增加调温器的流通面积多采用两只调温器并联结构。

1.2.5水泵布置

水泵的流量及扬程根据不同的发动机而定。流量一般为发动机额定功率的1.5-2.7倍。,扬程一般为0.7kpa-1.5kpa,扬程过高对冷却系统的密封性会产生不利的影响。水泵的可靠性主要取决于水封和轴承,轴承普遍采用轴连轴承及永久式润滑结构,水封采用陶瓷,碳化硅动环和石墨静环整体式水封。轴承的游隙及水封的气密性要严格控制。

1.2.6膨胀箱布置

尽量靠近散热器布置,使得水管长度最短;膨胀箱的高度要高于冷却系统所有部件。

1.2.7变速箱冷却布置

1.2.8中冷气布置

1.3冷却系统主要部件匹配设计要点

在整车总布置空间允许的条件下,尽量增大散热器的迎风面积。

在保证风量不变的条件下,可以适当增加风扇直径,降低风扇转速,减少噪声和功率消耗。

冷却系统的最高水温应以发动机的允许使用水温为标准。

调温器的全开温度应为发动机正常工作水温范围的中限,开启温度应为发动机正常工作水温范围的下限。但因调温器的自身特性,开启温度一般低于全开温度10摄氏度左右。

风扇离合器啮合温度应设定在调温器初开温度和全开温度的中间温度。但应注意硅油风扇离合器啮合温度与冷却水的实际温度间存在一定差异(水温是通过空气温度间接反应在风扇离合上),在设定硅油风扇离合器啮合温度时应充分考虑到这一点。

1.4冷却系统轮廓图(例子)

1.散热器张紧板

2.六角法兰面螺栓

3.橡胶衬套

4.散热器总成

5.弹性卡箍

6.发动机出水管

7.弹性卡箍

8.水管-膨胀箱至散热器 9.水管卡片 10.六角法兰面螺栓 11.管夹 12.六角法兰面螺栓 13.膨胀箱总成 14.弹性卡箍 15.水管-膨胀箱至水泵 16.水管-发动机至膨胀箱 17.弹性卡箍 18.发动机进水管 19.弹

性卡箍 20.弹性卡箍 21.暖风机进水管 22.弹性卡箍 23.暖风机出水管 24.橡胶软垫 25.六角法兰面螺栓 26.风扇电机带护风圈总成

二、散热器总成布置及设计参数

1 设计参数

散热器散热量的计算

散热器正面积概念、散热器的总散热面积、散热器的散热系数

2 主要设计参数的决定因素和最优化的目标。

冷却系统散走的热量Qw,受许多复杂因素的影响,很难精确计算,初估Qw 时,可以用下列经验公式估算。其中Qw与A─传给冷却系统的热量占燃料热能的的百分比,对汽油机A=0.23~0.30;ge─内燃机燃油消耗率(千克/千瓦·小时);Ne─内燃机功率(千瓦);h n─燃料低热值,h n=43100千焦/千克有关。

传热系数K是评价散热效能的重要参数。提高散热系数可以改善三热效能,减少尺寸和材料消耗。传热系数受散热器芯部结构、水管中冷却水的流速、通过散热器的空气流速、管带材料以及制造质量(特别是焊接质量)等许多因素的影响。散热器的另一质量指标是空气阻力P,它主要取决与散热器芯的结构和尺寸。散热器的传热系数和空气阻力,只能是通过专门的试验才能实现。

影响传热系数最主要的因素是通过散热器芯的空气流速,当空气流速提高时,传热系数增大,但同时使空气阻力按平方关系更急剧的增长,使风扇功率消

耗很快增加。当散热器外形尺寸不变时,增加散热带的间距,可以提高传热系数,但是由于散热面积减少,总散热量反而下降。

3 环境条件

环境温度45℃,日照950W/M2

系统设置最低温度 -35℃。

在试验压力0.35Mpa和0.01Mpa下,不允许有泄露

4 基本设计要求

关于散热器的规格,因以下的理由,应根据供应商的推荐决定其规格。

1.虽然有散热器的设计计算公式(参考),但最近的倾向是不通过计算公式来决定散热器的参数。

另外,因为试验经验得出的系数较多,所以理论数据与实际不符。

2.从最近的散热器的技术、倾向及成本等考虑的话,从散热器供应商所设定的标准件中选择合适的规格更有利。

三膨胀箱总成设计

1设计原则

冷却液在发动机冷却回路流动,随温度升高体积膨胀,为吸收这部分膨胀体积而设置了膨胀箱。具有膨胀箱的冷却系统根据膨胀箱有无加压分为两种:系统A:在加压系统内具有冷却液的膨胀空间(膨胀箱),冷却液循环到膨胀空间中,进行气液分离。膨胀箱应耐热、耐压,位置高于散热器并保持系统内压力适宜。

系统B:在加压系统内具有冷却液的膨胀空间(膨胀箱),仅在溢流至膨胀箱时进行气液分离。膨胀箱耐热性、容量、位置要求低些。

膨胀箱由两个注塑件组成,通过焊接(热焊、超声波焊接)组成一体。形式不一

膨胀箱盖要求

附录

四冷却风扇总成设计

1设计要点

为了加强足够的空气量通过散热器,必须在冷却空气道中安置风扇。在水冷内燃机机上,一般采用轴流式风扇,其结构简单,在系统中布置方便,在低压头下风扇风量大。

2主要设计参数的决定因素和最优化的目标。

风扇的外径略小于散热器芯部的宽度和高度,其值在0.3~0.7米之间,风扇轮毂半径与风扇外径比称为轮毂比,一般取0.2~0.25左右,风扇叶片长与风扇外径之比0.34~0.36之间。风扇叶片所扫过的圆环面积与散热器芯部正面积之比为0.45~0.60。

风扇叶轮叶数z和叶宽度b由风扇计算确定。当z 和 b 增加时,扇风量和风压都增加,但风扇功率消耗也增加。轮叶宽度从叶根到叶顶逐渐减小,不仅从轮叶强度考虑合理,而且有助于提高风扇效率。

因为风扇的排量、风压和功率消耗分别与风扇的转速一次、二次、三次成正比,所以提高转速是增加风量和风压的有效方法,但功率的消耗也急剧增加。而且风扇转速太高,会发生很大的尖锐噪音。

在散热器与风扇之间要设导流风罩,并且必须密封导风罩与散热器的联结处,防止风扇抽风时,外界空气从不密封处短路流入风扇,使流过散热器的风量减少,使散热器的散热效果下降。

2详细设计要求和试验要求

2.1 电机应符合本标准及成文程序批准的图纸及设计文件制造。

2.2 使用环境条件

在表1所列的环境条件下,电机应能正常工作。

表1 电机工作环境

2.3 外观、装配质量及测试技术指标

2.3.1 外观质量检查

电机表面不应有锈蚀,涂敷层剥落,碰伤和划痕,紧固件应牢固,铭牌标志的字迹和内容应清楚无误。

2.3.2 电机轴向间隙测试

电机轴向间隙不大于0.4mm。

2.3.3 风扇跳动量检查

风扇的径向跳动量不大于1.5mm,轴向跳动量不大于2mm。

2.3.4 主要尺寸检查

主要尺寸按图纸检查应合格。

2.3.5 工作电压检查

在9 V ~15V直流电压下,电机应能正常运转,无异常声响。

2.3.6 旋向检查

从轴伸端看,电机应按顺时针方向旋转。

2.3.7 负载特性

12 V±0.1 V直流电压下,电机各档转速及风扇总成最大电流消耗符合图纸技术要求规定。

2.3.8 绝缘介电强度

在70℃,500V、50Hz正弦交流电压状态下,持续1s应无击穿及表面放电现象。

2.3.9 剩余静不平衡量要求

风扇总成剩余静不平衡量不大于40g·mm。

2.3.10 风量检测要求

在指定风压及12V±0.1V直流电压下,各档风压应符合图纸技术要求规定。

2.3.11 噪声试验

12V±0.1V直流电压,风扇总成带冷凝器和散热器的工况下,单风扇、双风扇最大声压级不大于75dB(A)。

2.3.12 过电压试验要求

试验电压16.5VDC,通电1h,试验后电机应能正常工作。

2.3.13 短时过电压要求

试验电压24VDC,历时2min,试验后电机应能正常工作。

2.3.14 无载循环空气贮存

在-40℃±2℃下存放1h,转换1h,+110℃±2℃下存放1h,试验后电机应能正常工作。

2.3.15冷起动性能要求

0℃条件下存放5h,试验后立即通以12V直流电压,电机应能立刻起动并在30s内达到额定转速。

2.3.16 盐雾要求

工作室温度35℃时,经受5%Nacl溶液,试验6h后,镀锌层无腐蚀现象;连续96h,试验后的金属件可抗8级以上锈蚀,连续144h后,通以12V±0.1V直流电,测试电机负载特性应与第3.3.7款项之规定相同。

2.3.17 振动要求

经受振幅A=±0.5mm,频率f=5 Hz ~60 Hz ~5Hz,循环持续时间约1min,历时24h的垂直方向振动后,在12 V±0.1V直流电压下,测电机负载特性应与第3.3.7款之规定相同,且紧固件无松动。

2.3.18 抗干扰要求

12 V±0.1V直流电压下,风扇或风扇总成工作时对随车无线电设备产生的干扰限值应满足下表2中规定之范围,当用户有特殊要求时,干扰度应符合图样的规定。

表2 风扇电机电磁干扰限值

2.3.19 最大水稳定性要求

风扇电机在水流冲击作用下运转,总检验时间为144h。每小时接通时间为15s,在风扇电机不转时,以30s/h冲击。在电机上的水喷射直径d≈100mm,水压p≈1.5bar,吹风管到目标的距离s≈500mm,吹风管形式采用lechler公司的DR112型,鼓风和固定与在汽车的装入位置相符,试验后通以直流电压12 V±0.1V,电机负载特性应符合3.3.7款中有关规定。

2.3.20 寿命要求

该试验旨在对电机及各零件的寿命进行全面考核,总运转时间为1000h,检验电压为直流电压13.0 V±0.2V。不许风泄漏,接通时间为45s,断开时间为15s,(但至少要等到停止状态后再重新起动),寿命试验后,转速、电流消耗及声压级应满足图纸规定。

2.3.20.1 单速风扇的运转

a) 在100℃,相对湿度12%情况下,运转400h;

b) 在50℃,相对湿度95%情况下,运转600h。

2.3.20.2 双速风扇的运转

a) 在100℃,相对湿度12%情况下,高速运转400h;

b) 在50℃,相对湿度95%情况下,高速运转400h;

c) 在50℃,相对湿度95%情况下,低速运转200h。

2.3.20.3 三速风扇的运转

a) 在100℃,相对湿度12%情况下,高速运转400h;

b) 在50℃,相对湿度95%情况下,中速运转400h;

c) 在50℃,相对湿度95%情况下,低速运转200h。

五橡胶水管参数

发动机冷却回路中的水管具有吸收发动机振动和散热器相对运动的作用。因此,耐热性、耐臭氧性、耐压性、对冷却液的适应性及柔软性是水管应具有的性能。在实际使用中,壁厚4mm以上的橡胶硬度为60~70HS。从柔软性方面考虑,中间加强型管子用60HS,纯橡胶为70HS。从管子连接处的密封考虑,管子内径比与其连接管的外径小1mm,胶管两端与其它管相连接时,应有30mm的插入量。

1、散热器橡胶水管结构参数

1.1结构:内胶层、骨架层、外胶层

1.2材料品种:内胶层:EPDM、骨架层:聚脂线1500D×1、外胶层:EPDM

1.3基本规格尺寸:内径Ф24 + 0.5

-1、Ф27、Ф30、Ф33~Ф38、壁厚4 + 0.5

-0

或5±0.3

1.4技术要求:

水管成品性能

2、暖风机橡胶水管开发指南 2.1结构:内胶层、骨架层、外胶层

2.2材料品种:内胶层:EPDM 、骨架层:聚脂线1000D ×1、外胶层:EPDM 2.3基本规格尺寸:内径Ф13 +0.3

-0.5、Ф16、Ф19 壁厚4 +0.5

-0 2.4技术要求:

成品性能

工业循环冷却水系统设计规范标准

《》 条文说明 1总则目录 1.01为了控制工业循环冷却水系统由水质引起的结垢、污垢和腐蚀,保证设备的换热效率和使用年限,并使工业循环冷却水处理设计达到技术先进、经济合理,制定本规。 1.02本规适用于新建、扩建、改建工程中间接换热的工业循环冷却水处理设计。 1.03工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1 总则全文 1.0.1本条阐明了编制本规的目的以及为了达到这一目的而执行的技术经济原则。 在工业生产中,影响水冷设备的换热器效率和使用寿命的因素来自两个方面,一是工艺物料引起的沉积和腐蚀;二是循环冷却水引起的沉积和腐蚀。后者是本规所要解决的问题。 因循环冷却水未加处理而造成的危害是很严重的,例如,某化工厂,原来循环水的补充水是未经过处理的深井水,每小时的循环量9560t。由于井水硬度大、碱度高,每运行50h后,有50%的碳酸盐在设备、管道沉积下来,严重影响换热器效率。据统计,空分透平压缩机冷却器,在运转3个月后,结垢厚度达20㎜。打气减少20%。该厂不少设备、在运转3个月后,必须停车酸洗一次,不但影响生产,而且浪费人力、物力。为了防止设备管道产生结垢,该厂在循环水中直接加入六偏磷酸钠、EDTMP和T—801水质稳定剂之后,机器连续3年运行正常。虽然每年需要增加药剂费用2万元,但综合评价经济效益还是合算的。又如某石油化工厂,常减压车间设备腐蚀与结垢现象十分严重,Φ57×3.5面碳钢排管平均使16-20个月后,垢厚达15-40㎜。后经投加聚磷酸盐+膦酸盐+聚合物的复合药剂进行处理,对腐蚀、结垢和菌藻的控制取得了良好的效果。每年可节约停车检修费用约60万元,延长生产周期增产的利润约70万元。减少设备更新费用约4.7万元。现将该厂水质处理前后的冷却设备更新情况列表如下: 某厂冷却设备更新情况统计(单位:台)表1 从上述情况可以看出,循环冷却水采取适当的处理方法,能够控制由水质引起的

汽车冷却系统设计要求

汽车冷却系统设计要求

汽车冷却系统设计 ——叶海见 汽车冷却系统设计 (2) 一、概述 (3) 二、要求 (3) 三、结构 (3) 四、设计要点 (6) (一)散热器 (6) (二)散热器悬置 (6) (三)风扇 (6) (四)副水箱 (8) (五)连接水管 (8) (六)发动机水套 (8) 五、设计程序 (8) 六、匹配 (8) 七、设计验证 (9) 八、设计优化 (9)

一、概述 二、汽车对冷却系统的要求 (一)汽车对冷却系统有如下几点要求 1、保证发动机在任何工况下工作在最佳温度范围; 2、保证启动后发动机能在短时间内达到最佳温度范围; 3、保证散热器散热效率高,可靠性好,寿命长; 4、体积小,重量轻,成本低; 5、水泵,风扇消耗功率小,噪声低; 6、拆装、维修方便。 (二)冷却系统问题对汽车的影响 1、冷却不足时,会导致内燃机过热,充气系数下降,燃烧不正常(爆燃、早燃等),机油变质和烧损,零部件摩擦和磨损加剧(如活塞、活塞环和缸套咬伤,缸盖发生热疲劳裂纹等),引起内燃机的动力性、经济性、可靠性全面恶化。 2、冷却过剩时(40~50℃),汽油机混合气形成不良,机油被燃油稀释;柴油机工作粗暴,散热损失增加,零部件磨损加剧(比正常工作温度工作时大好几倍),也会使内燃机工作变坏。 三、冷却系统布置选型 (一)冷却系统结构 1、分类: 液体蒸 发 简单蒸发冷 却 以加注冷却液来补偿冷却介 质蒸发损失的蒸发冷却。

冷却冷 却 带辅助水箱 的蒸发冷却 用辅助水箱补充冷却介质的 蒸发冷却。 带冷凝器的 蒸发冷却 蒸发的冷却介质在冷凝器中 凝结后,通。过冷却回路流 回到发动机加水箱的蒸发冷 却。 循 环 冷 却 对流冷却 利用热虹吸作用使冷却液自 然循环的冷却方式。 强 制 冷 却 开式强 制冷却 冷却介质不进行再循环的强 制。冷却方式。 单循环 强制冷 却 冷却介质在冷却水箱、冷却 塔、管式冷却器、散热器等 中进行冷却的强制冷却方 式。 双循环 强制冷 却 利用副回路(外循环)中的 冷却液在热交换器中对发动 机冷却介质进行再冷却的强 制冷却方式。 空气冷却自然空气冷却 利用自然空气循环的冷却方 式。 强制空气冷却 利用风扇迫使空气循环的冷 却方式。 2、常用结构:

船舶冷却水系统设计指导

编制大纲: 需要补充的内容:1,水泵(定速离心泵,变频泵);2,温控阀;3,节流孔板;4,热平衡计算的理论公式,温升热量水量公式;5,特殊案例的区分(温控阀,板冷,变频泵对整个冷却系统形式选定的影响;分离封闭式,高低温混流式,配置变频海水泵没有温控阀的中央式。)6,利用目前的实船进行计算公式的验证,还有一些经验系数的反推导(特别是一些厂家自己的经验系数)7,膨胀水箱;8,补充开发设计需要的部分,参考《船舶管舾装设计工艺实用手册》 前言(目的) 以《船舶设计实用手册---轮机分册》---国防工业出版社为蓝本,将其中的冷却水系统做了进一步内容扩展和深化描述,提供给详细设计人员参考。 参考《船舶管舾装设计工艺实用手册》,补充一部分工程计算公式; 系统发展核心: 1,稳定调节; 2,节省能源,余热循环利用; 3,节省成本,替代方案的方式; 关键词: 将冷却水稳定可靠的输送到需要冷却的设备中:这个可靠和稳定来源于几个参数:稳定的压力,稳定的流量,稳定的温度,稳定的水质(这个水质包含化学成分稳定不结垢,物理成分稳定,极少气泡,气泡会影响热交换器的效率)

冷却水系统 目录 1,范围 2,冷却水系统的基本形式 3,系统形式的选择 4,冷却水系统实例 5,中央冷却系统热平衡计算 6,冷却水系统的主要设备配置要点 7,制淡装置(造水机) 8,具有冰区航行船级符号船舶的冷却水系统特殊要求9,海水进水阀操纵位置的要求 10,冷却水系统的温控阀 11,冷却水系统的节流孔板 12,冷却水系统的泵 13,冷却水系统的膨胀水箱

冷却水系统 1,冷却水系统的基本形式 冷却水系统的基本形式见表1, 注解: (1),所谓开式和闭式冷却水系统是指柴油机本身冷却水系统而言。开式系统是指柴油机本身直接用舷外海水或者江水冷却。如今除江河小船之外,基本不采用开式系统。海拖(海洋港口拖轮)还在使用海水直接冷却柴油机。(潜在问题:船内海水泄露,在及柴油机连接的弹性管配置不正确时容易出现,已有其他公司的海拖因为这个弹性管破裂造成沉船) (2),在闭式系统中,柴油机是用淡水冷却,而淡水在经过热交换器用舷

机械系统设计大作业

《机械系统设计》 课程大作业—I 棒料校直机功能原理设计 院(系) 专业 学生 学号 班号 2015年4月

棒料校直机功能原理设计 1 设置棒料校直机功能原理设计的目的 功能原理设计是机械系统设计的最初环节,主要是针对产品的主要功能提出一些原理性构思,也就是针对产品的功能进行原理性设计! 针对某一产品的主要功能,设计人员在进行了大量相关资料查阅之后,应设计出几种不同的功能原理方案来,以便从中选出较理想的一个为下一步总体设计奠定基础。针对产品主要功能而进行的功能原理设计这一步,在整个设计中是非常重要的一环。一个好的功能原理设计应既有创新构思,同时又能满足用户的需求。 因此,在培养学生的机械系统设计能力时,不仅要注重机构和结构设计的培养和训练,而且更应注重功能原理设计的培养和训练。由于功能原理设计有其自身的特点和工作内容,因此,本大作业将主要针对功能原理设计进行。 2棒料校直机功能原理设计目的 棒料校直是机械零件加工前的一道准备工序。若棒料弯曲,就要用大棒料才能加工出一个小零件,如图1所示,这种加工方式材料利用率不高,经济性差。故在加工零件前需将棒料校直。 图1 待校直的弯曲棒料

3 设计数据与要求 请根据以下设计数据,进行棒料校直机的功能原理设计。 1) 棒料材料:需校直的棒料材料为45钢 2) 工作环境及环保要求:室内工作,希望冲击振动小、噪声小; 3) 工作寿命:使用期限为10年,每年工作300天,每天工作16小时; 4) 设备保养维护要求:每半年作一次保养,大修期为3年。 5) 棒料校直机原始设计数据如表1所示。 表1 棒料校直机原始设计数据 4棒料校直机功能原理设计过程 功能原理方案设计的任务是:针对某一确定的功能要求,去寻求一些物理效应并借助某些作用原理来求得一些实现该功能目标的解法原理来;或者说,功能原理设计的主要工作内容是:构思能实现功能目标的新的解法原理。这一步设计工作的重点应放在尽可能多地提出创新构思上,从而使思维尽量“发散”,以力求提出较多的解法供比较和优选。此时,对构件的具体结构、材料和制造工艺等则不一定要有成熟的考虑,故只需用简图或示意图的形式 5 棒料校直机功能原理设计要求 1) 用黑箱法寻找总功能的转换关系,给出棒料校直机的黑箱图; 2) 对棒料校直机进行总功能分解,绘制“技术过程流程图”和“总功能分解图”; 3) 建立棒料校直机的“功能结构图” 4) 寻找原理解法和原理解组合。 6 设计参考资料 教材中第二章机械系统总体设计中“露天矿开采挖掘机的原理方案设计” 7 作业成绩及其与本门课程总成绩的关系 满分4分,记入100分的总课程成绩。 根据表1任选一组进行设计。

循环冷却水旁滤和加药系统设计方案

目录 第一部分设计前言 (1) 第二部分设计水质水量及设计原则 (2) 2.1、设计水质水量 (2) 2.1.1、原水水质水量 (2) 2.1.2、供水的水质水量 (2) 2.1.3、补水的水质(采用自来水,供参考) (3) 2.2、标准与规范 (3) 2.3、设计原则 (3) 2.4、设计范围 (4) 第三部分工艺的确定及流程说明 (4) 3.1、工艺的确定 (4) 3.2、工艺流程及工艺说明 (5) 3.2.1、工艺流程方框图 (5) 3.3、循环冷却水水量计算平衡表 (6) 3.4、系统工艺流程说明 (7) 第四部分主要设备介绍 (9) 4.1、在线磷酸盐分析仪(阻垢剂) (9) 4.2、次氯酸钠投加装置 (10) 4.3、硫酸投加装置 (10) 4.4、管道混合器 (10) 4.5、絮凝剂加药装置 (10) 4.6、重力式无阀过滤器 (11) 第五部分电气系统控制简要说明 (12) 第六部分主要设备仪表参数 (14) 一、主要设备参数 (14)

二、电气系统及检测仪表参数 (17) (电配箱内配套电器) (19)

第七部分设备材料清单 (20) 第八部分安装接口事项及文件交付 (21) 8.1、安装接口事项 (21) 8.2、文件交付 (21) 8.3、文件的单位及语言 (21) 第九部分质量保证和技术服务 (23) 9.1、质量保证 (23) 9.2、工程技术服务 (23)

3000t/h循环冷却水旁滤系统 设计方案 第一部分设计前言 随着工业的发展和生活的需要,水的用量急剧增加。因此,节约水资源如同节约能源,保护环境一样,成了当务之急。节约用水最大的潜力是节约工业冷却水,采用循环冷却水是节约水资源的一条重要途径,但循环冷却水结垢、腐蚀比较严重,容易滋生菌藻,以致影响设备的传热效率,威胁设备的使用寿命,因此对循环冷却水进行水质稳定处理是必不可少的。 本设计方案就是:通过一系列的过程控制,在达到要求的浓缩倍数(K=4.0)的情况下,满足循环冷却水系统的过程要求。其循环冷却水工程主要有以下过程控制: 1、投加一定量的阻垢剂,减少循环冷却水对冷介质的热交换器的腐蚀,并控制其腐蚀速率达到国家标准; 2、通过对系统自动补充洁净的水源以平衡由于:蒸发、风吹、排污等水量的损失,以维持循环冷却水的水量平衡,进而维持循环水的电导率等相对恒定; 3、通过在线控制,自动投加一定量的杀菌剂,以防止微生物的滋生,减少生物污泥量和减少对系统管路、换热器等的腐蚀; 4、通过旁路净化系统,使循环冷水的悬浮物(SS)浓度处于相对低值,以减少系统的结垢趋势; 通过上述过程的控制,可实现以下目的: 1、达到循环冷却水要求的浓缩倍数,从而节约大量的水源,并且可降低生产成

第七章-冷却系统设计

第七章冷却系统设计 在注塑过程中,对模具型腔进行填充的塑胶熔体温度达220°--230°,甚至更高,这使得模具工作一段时间之后,其模具温度将会很高,而顶出来的已成形的塑胶产品温度也只有五六十度。在高速生产成形的情况下,如何保证制品在很短的时间内达到适宜顶出的温度?这里就必须考虑一个冷却的问题。使得模温保持在一定的范围之内,从而不至于影响制品的成型质量和生产效率。因此,模具里面就出现了冷却系统。 高温塑料熔液进入模腔,经过冷却固化,才能得到所需制品.成型周期中一半以上时间用于对制品的冷却,可见其对提高生产效率的重要意义;由于制品形状复杂,壁厚不均,充模顺序不同等因素,使塑料在固化过程中,不同位置温度不一样,这种热交换产生的应力会直接影响制品尺寸精度及外观.冷却系统的设计理念就是保持与塑料特性,制品质量相适应的温度.最大限度消除或减少这种应力,改善塑料的物理性能,得到高质量制品;冷却系统以冷却水道(运水)为主.其工作目的不仅仅使模具冷却,而且要把成型过程中塑料熔液带给模具的高温不断散发掉,使模具保持恒定温度,控制塑料熔液冷却速度(冷却速度太快会影响填充,太慢会因温度过高引起制品产生缺陷和使成型周期加长.) 模具的冷却方法有水冷却、空气冷却、油冷却等, 1、用水冷却模具,这种方式最常见,运用最多。 2、用油冷却模具,不常见。 3、用压缩空气冷却模具。 4、自然冷却。对于特简单的模具,注塑完毕之后,依据空气中与模具的温差来冷却。本章我们将以最普通的冷却方式―――水冷却,来讲述模具设计中冷却系统的设计。

6.1 常用冷却方式介绍 用水冷却模具,其实也就是在模具当中钻些管道通过水流进行冷却,简称“运水”设计。运水设计虽说理解上简单,但具体设计还颇需要仔细考虑一番:譬如,冷却管道该如何布置才能达到优化的目的?等等,下面我们将详细讲解。 6.1.1 直通式水路 直通式水路可分为直通模板式和直通模板模仁式两种。这两种方式存在一个很小的差别,但这个差别往往是初学者最容易犯的错误。这个差别就是水管接头固定的位置不一样:直通模板式水路水管接头固定在模板上,而直通模板模仁式水路的水管接头固定在模仁上,这样的话,才能密封,不致于漏水。由于水管接头位置不一样,其样式也有一些变化。主要是锁定螺纹部分。如下图。 图 图 直通式水路还有其它的形式,如图所示:

电子信息系统机房项目冷却水系统设计

在现代科学技术高度发展的社会里,计算机越来越广泛地应用于各个领域。计算机系统只有可靠的运行,才能发挥其效益,而计算机的可靠运行,需要一个比较严格的物理环境。如供电、配电、温度、湿度、洁净度等,这样就需要有一个现代化的机房系统满足计算机对环境的要求。各种类型的互联网数据中心(IDC ,Internet Data Center ),企业数据中心,灾备中心(或称灾备恢复中心,BRC,business recovery center )等都属于电子信息系统机房(数据中心),在国民经济及人们的日常生活中,越来越发挥其重大作用。在电子信息系统机房项目中,温度要求恒定,常年需要使用制冷设备,冷却水系统设计和冷却塔设计有一定特点。 1. 电子信息系统机房(数据中心)项目制冷特点及节能需求 1.1 电子信息系统机房项目发热及制冷特点。 电子信息系统机房项目的发热主要来源于机房内的服务器、网络设备等IT 设备在运行过程中散发的热量,以及变电所、配电室、UPS 电池室等电气设备运行过程中散发的 热量。这些设备发热的特点是设备集中,发热量大,连续运行,并且一年四季发热量基本保持恒定。要保持机房内和电气房间内的空气温度在一定的范围内,这就需要大量的冷风将热量带走。数据中心一般采用机房专用空调,这是考虑到IT 设备的特点,在相同制冷量的基础上,风量远大于舒适性空调,能够迅速、有效地带走IT 设备散发的热量。由于IT 设备和电气设备一年四季发热量基本保持恒定,使得数据中心项目对制冷量的需求一年四季也基本保持恒定,制冷系统需要常年稳定运行。 1.2 机房冷通道、热通道的设置与节能。 由于整个制冷系统需要常年运行,如何节能显得尤为重要。在工艺设备布置上,当机柜内的设备为前进风/ 后出风方式冷却时,机柜采用面对面、背对背的布置方式。机柜面对面布置形成冷风通道,背对背布置形成热风通道,配合合理布置送回风口取得合理气流组织,提高空调设备的使用效率,能够降低空调设备的功耗。 冷通道内温度可以设置为18?27 C,相应热通道温度可以设置为29?38 C,此运行工 况完全能够保证机柜正常运行,且提高了回风温度后,可以提高末端空调水-空气侧换热效率。冷、热通道的分隔,使得制冷系统可以采用中温冷冻水供冷,这样便提高冷冻机效率,整个制冷系统实现节能运行。中温冷冻水常采用供水温度12 C ~13 C,回 水温度17 C ~18 C,根据具体项目不同技术参数要求。合理选择中温冷冻水供回水温度,与冷冻机相匹配,可以节能。一般是采用温差为6C的大温差供回水,这样可以 减小循环水量,缩小管道直径。 2. 冷却水系统设计 2.1 冷却塔自由冷却的使用与节能由于数据中心项目的机房可以采用中温冷冻水,这就使得利用冷却塔冬季自由冷却以及过渡季节部分自由冷却有一定的可实施性及方便性。当采用闭式冷却塔时,冬季

循环水系统设计

循环水系统设计 1.1循环水系统设备组成 循环水系统作用为为窑炉、xx通道、xx设备提供降温冷却水。为了满足上述设备的不间断冷却水的供应,循环水系统分为水泵系统,柴油机泵系统和自来水系统三个小系统,以备设备故障,停电停水故障使上述设备出现无法冷却导致火灾发生。以下对系统进行逐个分解。 水泵系统和柴油机泵系统是组合在一起的,其中有水箱一个,电水泵两台,保安过滤器两台,板式换热器两台减压阀两套,安全阀一套,冷冻水一路,纯水补水管路一路,各型号阀门若干,不锈钢管道若干。 自来水系统是由自来水管道,保安过滤器一台组成,接入水泵系统的供水管道上。1.1循环水系统工作原理 整个循环水系统采用一用三备的工作方式,通过西门子S7100PLC冗余控制方式,水泵将纯水由水箱抽至保安过滤器,经过再次过滤后,纯水进入板式换热器与冷冻水进行热交换,使纯水温度降至10℃,然后经过减压阀降压至设备所需要的压力,供窑炉,xx通道,xx设备降温,回水由回水管道流入水箱进行循环使用。当其中一台水泵故障时,PLC控制系统自动切换至另一台水泵进行运行,两台水泵都故障时,系统自动启动柴油机,由柴油机带动柴油机水泵进行工作。当上述三台水泵全部故障时,设备管理人员手动开启自来水供水阀门,用自来水给设备紧急降温冷却。 循环水水质管理:动力部化验室每天对循环水水质进行检测,发现硬度、电导率等参数超标时通知设备管理人员进行换水,保证水质在规定的规格范围之内。 控制系统操作 本系统是采用西门子S7100冗余控制方式,系统可靠性高。控制柜上有“手动/自动”转换开关,可以在手动自动状态下运行,注意,手动状态一般用于调试阶段,正常运行不用手动,一定要用自动。自动状态下有两种运行方式:单动和联动。正常生产时用联动,程控运行。运行之前先观察冷却水水箱液位,如果低液位低于设定液位1.1米,电磁阀自动打开补水,补至1.6米自动停止。

真空中频感应熔炼炉循环冷却水系统设计探述

真空中频感应熔炼炉循环冷却水系统设计探述 发表时间:2018-04-28T15:00:59.310Z 来源:《建筑学研究前沿》2017年第33期作者:陈松 [导读] 随着近年来科学仪器的不断发展和普及,各种配套产品也得到了突飞猛进的发展。 广东先导稀材股份有限公司 摘要:随着近年来科学仪器的不断发展和普及,各种配套产品也得到了突飞猛进的发展,其中冷却水循环就是其中的一种,它的作用是通过温度相对较低的水来把仪器所产生的热量带走,从而使仪器部分的温度保持在一个较低的水平。基于此,本文就从真空中频感应熔炼炉循环冷却水系统设计展开分析。 关键词:真空炉;循环冷却水系统;设计 1、真空炉循环冷却水系统概述 真空炉的冷水系统包括以下6部分的进、出口冷却系统:各种真空泵,感应线圈,集电系统和铜排,电容器组,炉体(炉盖、炉座),冷阱、捕集器。在真空炉的熔炼过程中,循环冷却水水质的好坏,温度的高低,压力的高低等,都对设备能否正常运行起着至关重要的作用。 某车间有4台真空炉:2台25 kg真空炉,1台50 kg真空炉,1台300kg真空炉。车间生产品种多,产量小,为非连续式生产。4台真空炉均用于正常生产,但4台设备同时运行的机率较小,主要运行300kg真空炉,25kg及50kg真空炉用于生产小规格特种钢锭、电极棒以及实验研究。该文介绍的是该车间真空炉的循环冷却系统设计。 2、循环冷却水系统设计(如图1) 2.1冷却池及冷却塔 4台设备共用一个冷却池。该冷却池约60m3,设置了排水孔及低水位自动补水装置。当水位过高时,水自动从排水孔中排出。水位低于设定的水位值时,自动补水。冷却池分为冷水池和热水池两个区域。热水池的水经过冷却塔冷却后再回到冷水池,供生产使用。冷却池上方检修口上加盖板,防止杂物进入水池中。冷却水通过水塔喷淋冷却后通过回水池进入炉内循环水路,故选用100m3/h无填料喷雾式冷却塔,实际冷却总量可调至120m3/h。冷却水进塔压力在0.08~0.15MPa。冷却塔湿球温度在28℃时,进水温度t1≥45℃,出水温度 t2≤35℃,冷却温差≥10℃。 2.2水泵 循环冷却系统共有4台泵。进水泵两台,一用一备;回水泵一台;应急柴油泵1台。考虑到车间场地及嘈音等因素,在室外修建泵房,所有泵均安装在泵房内,方便管理和维护。在熔炼过程中,如果泵出现故障或是突然断电等原因导致冷却水中断,无法对感应线圈、扩散泵及中频电源等重要部件进行冷却,会对设备造成严重的损害并可能发生安全事故,所以,循环水泵设计为一用两备,两台自吸式水泵和一台柴油泵。两台自吸式水泵可以随时切换,柴油泵则作为应急装置一并纳入循环系统中。根据设备的冷却水需求量,循环水泵流量设计为100m3/h。考虑到管损等因素,泵的扬程选择为32m。冷却水池在地平面以下,循环水泵选择自吸泵,并增加底阀,作为双重保险。 熔炼过程中,如果突然断水,熔炼必须中止,应急水的主要作用是对感应线圈、扩散泵和中频电源等重要部件进行冷却,使其尽快冷却以保护设备,以细水长流为冷却原则。故柴油泵流量设计为30m3/h,扬程30m。在断电后,柴油泵获取断电信号,马上自动启动,进行供水。柴油泵需严格按要求进行日常的维护保养,保证在出现特殊情况时柴油泵能正常工作。从真空炉出来的冷却水为无压力回水,故需要在管路中设置1台泵,用于将回水泵入冷却塔中。 2.3管路设计 布置一根主进水管道DN150,统一分配给4台设置。车间以运行300kg真空炉为主,且300kg真空炉用水量最大。当大、小设备同时运行时,为避免300kg真空炉回水倒流进其他小设备,在室内布置2根回水管道,其中一根DN150的回水管专用于300kg真空炉的回水,另一根DN150的回水管用于另外3台设备的回水,留有足够的坡度,使回水顺畅,并在回冷却塔之前汇总。进、回水管道刷不同颜色的油漆以示区别,方便检修。4台设备同时运行的机率不大,故冷却水实际总需求量<100m3/h。炉内冷却水的流速一般保证在1~1.5m/s:水速过快,会使感应线圈表面温度过低,形成凝露,导致圈内短路;水速过慢,水温过高,会加速水中无机物的沉淀,使铜管内部结垢。所以在泵的出水管及设备的总进水管处均设置了调节阀及压力表,便于调节流量及进水压力,使冷却水保持一个适中的流速。每台设备均设计了单独的水箱,水箱中有多路进水管道和回水管道,将冷却水分送至所需的各个冷却点位,再分不同的管道回到水箱,进入回水管道。由于是重力回水,操作人员可以很直观地通过观察回水流量,触摸回水温度等方法来判断设备内部的冷却水路是否畅通。尤其是真空炉的中频电源柜中有很多小管径的冷却管道,容易堵塞,造成某些部件的烧损,从而影响设备的正常运行,故在中频电源的外部也设置这样的水箱,并入总循环管路中。 图1 2、保证水质的相关措施 冷却水太硬,会加速设备内部冷却管道的结垢,使铜管被腐蚀并短路;冷却水中含有杂质,会使管道堵塞,达不到冷却效果而导致电气元件被烧毁。系统中采用了以下措施来保证冷却水质。 2.1软水器的使用。厂区所用的自来水,除硬度超标,其他指标均能满足冷却水质要求。系统中选择了一台全自动软水器对自来水进行处理。当含有硬度离子的原水通过交换器树脂层时,水中的钙、镁离子与树脂内的钠离子发生置换,树脂吸附了钙、镁离子而钠离子进入

冷却系统练习题

练习题 一、填空题 1.发动机的冷却方式一般有()和()。 2.发动机冷却水的最佳工作温度一般是()°C。 3.冷却水的流向与流量主要由()来控制的。 4.散热器芯的结构形式有()和()两种。 5.强制冷却水在发动机内进行循环的装置是() 6.闭式水冷系广泛采用具有(散热器盖或空气-蒸汽阀)的散热器。 二、选择题 1.使冷却水在散热器和水套之间进行循环的水泵旋转部件叫做(A ) A.叶轮 B.风扇 C.壳体 D.水封 2.节温器中使阀门开闭的部件是(B) A.阀座 B.石蜡感应器 C.支架 D.弹簧 3.冷却系统中提高冷却液沸点的装置是(A) A. 水箱盖 B.散热器 C.水套 D.水泵 4.水泵泵体上溢水孔的作用(C) A.减少水泵出水口工作压力 B.减少水泵进水口工作压力 C.及时排出向后渗漏的冷却水 D.便于检查水封工作情况 5.如果节温器阀门打不开,发动机将会出现(D)的现象。 A.温升慢 B.热容量减少 C.不能启动 D.怠速不稳定 6.采用自动补偿封闭式散热器结构的目的,是为了(C) A.降低冷却液损耗 B.提高冷却液沸点 C.防止冷却液温度过高蒸汽引

入管喷出伤人 D.加强散热 7.加注冷却水时,最好选择(D )。 A.井水 B.泉水 C.雪雨水 D.蒸馏水 8.为在容积相同的情况下获得较大的散热面积,提高抗裂性能,散热器冷却管应选用(B)。 A. 圆管 B.扁圆管 C.矩形管 D.三角形管 9.发动机冷却系统中锈蚀物和水垢积存的后果是(C) A.发动机温升慢 B.热容量减少 C.发动机过热 D.发动机过低 10.当发动机机体温度超过90°C时,冷却水(C) A.全部进行小循环 B.全部进行大循环 C.大、小循环同时进行 D.不一定 三、判断题 1.发动机在使用时,冷却水的温度越低越好。() 2.风扇工作时,风是向散热器方向吹的,这样有利于散热。() 3.任何水都可以直接作为冷却水加注。() 4.采用具有空气-蒸汽阀的散热器盖后,冷却水的工作温度可以提高至100°C以上而不“开锅”。() 5.发动机工作温度过高时,应立即打开散热器盖,加入冷水。() 6.蜡式节温器失效后,发动机易出现过热现象。() 7.膨胀水箱中的冷却液面过低时,可直接补充任何牌号的冷却液。() 8.膨胀水箱的安装位置应高于发动机及散热器。() 四、简答题

打孔机的结构原理设计(机械系统设计大作业)

机械系统设计 课程作业 打孔机的设计) 一、设计任务书. (1) 二、确定总共能(黑箱) (3) 三、确定工艺原理 (3) (一)机构的工作原理: (3) (二)原动机的选择原理 (3)

(三)传动机构的选择和工作原理 (4) 四、工艺路线图 (5) 五、功能分解(功能树) (5) 六、确定每种功能方案,形态学矩阵 (6) 七、系统边界 (8) 八、方案评价 (8) 九、画出方案简图 (9) 十、总体布局图 (11) 十一、主要参数确定 (12) 十二、循环图 (17) 一、设计任务书

表1

、确定总共能(黑箱) ~220V 噪声 发热 图1 三、确定工艺原理 (一)机构的工作原理: 该系统由电机驱动,通过变速传动将电机的 1450r/min 降到 主轴的2r/min ,与传动轴相连的各机构控制送料,定位,和 进刀等工 艺动作,最后由凸轮机 通过齿轮传动带动齿条上下 平稳地运动,这样动力头也就能带动刀具平稳地上下移动从 而保证了较高的加工质量。 (二)原动机的选择原理 (1)原动机的分类 原动机的种类按其输入能量的不同可以分为两类: A. —次原动机 此类原动机是把自然界的能源直接转变为机械能,称为一 次原动机。 属于此类原动机的有柴油机,汽油机,汽轮机 和燃汽机等。 B.二次原动机 此类原动机是将发电机等能机所产生的各种形态的能量转 变为机械能,称为二次原动机。 属于此类原动机的有电动机, 液压马达,气压马达,汽缸和液压缸等。 (2) 选择原动机时需考虑的因素: 1:考虑现场能源的供应情况。 2:考虑原动机的机械特性和工作制度与工作相匹配。 3:考虑工作机对原动机提出的启动,过载,运转平稳等方 面的要求。 被加工工件 黑箱 有孔的工件

工业循环冷却水处理设计规范2007

工业循环冷却水处理设计规范 中华人民共和国国家标准 GB50050--2007 工业循环冷却水处理设计规范 Code for design of industrial recirculating cooling water treatment 中华人民共和国建设部 关于发布国家标准《工业循环冷却水处理设计规范》的公告 中华人民共和国建设部公告第742号 现批准《工业循环冷却水处理设计规范》为国家标准,编号为GB50050-2007,自2008年5月1日起实施。其中,第3.1.6(2、4、5、6)、3.1.7、3.2.7、6.1.6、8.1.7、8.2.1、8.2.2、8.5.1(1、2、3、4、5、6、7)、8.5.4条(款)为强制性条文,必须严格执行。原《工业循环冷却水处理设计规范》GB50050-95同时废止。本标准由建设部标准定额研究所组织中国计划出版社出版发行。 中华人民共和国建设部 二〇〇七年十月二十五日 1 总则 1.0.1 为了贯彻国家节约水资源和保护环境的方针政策,促进工业冷却水的循环利用和污水资源化,有效控制和降低循环冷却水所产生的各种危害,保证设备的换热效率和使用年限,减少排污水对环境的污染,使工业循环冷却水处理设计做到技术先进,经济实用,安全可靠,制定本规范。 1.0.2 本规范适用于以地表水、地下水和再生水作为补充水的新建、扩建、改建工程的循环冷却水处理设计。 1.0.3 工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1.0.4 工业循环冷却水处理设计应不断地吸取国内外先进的生产实践经验和科研成果,积极稳妥地采用新技术。 1.0.5 工业循环冷却水处理设计除应按本规范执行外,还应符合国家有关现行标准和规范的规定。 2 术语、符号 2.1 术语 2.1.1 循环冷却水系统Recirculating Cooling Water System 以水作为冷却介质,并循环运行的一种给水系统,由换热设备、冷却设备、处理设施、水泵、管道及其它有关设施组成。 2.1.2 间冷开式循环冷却水系统(间冷开式系统)Indirect Open Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与大气直接接触散热的循环冷却水系统。2.1.3 间冷闭式循环冷却水系统(闭式系统)Indirect Closed Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与冷却介质也是间接传热的循环冷却水系

机械系统设计教案

第1课(3课时) 课程基本介绍: ⑴与《机械设计》课程的基本区别: 研究对象的基本不同,研究方法的基本区别 ⑵课程的训练目的和方法: 因为同学们均为四年级,大家所从事的毕业设计研究方向不同,所以教学目的为尽可能对每个同学所从事的具体工作有所帮助。 训练方法包括较多的讨论课,讨论以每人的大作业为基础,要求采用书面作业结合多媒体(以PowerPoint形式)表现手段,每人分别介绍自己的作业,教师加以点评。 ⑶考核的基本办法: 以教学过程检查和期末考试相结合的方式:大作业4个,每个占10分,共40分,课堂点名10次,每次2分,共20分,考试占40分。 正式教学开始 1.绪论 教学重点:帮助同学建立系统论的观点,从《机械设计》课程的零部件设计的思路建立机械系统的设计理念,激发对机械系统设计的兴趣。 教学难点:机械系统的体系 1.1机械与机械系统 1.1.1系统的概念

举例说明: 例1:本人的硕士研究课题:一个液压回转系统的研究 重点说明:从机械零件的最佳设计角度能实现的效果与从系统的角度能完成的效果比较。 引申出系统设计思想与零件设计的很大区别。 例2:自动控制技术的发展历程: 从自动控制技术的发生、发展,以及从导弹、宇航一直到民用的发展历程,介绍系统化的设计思想和思路。 例3:系统论在经济学和人文科学领域的一些应用: 以房地产发展为例,尝试说明系统论在经济学上的一些应用。 1.1.2机械系统的基本组成 子系统:动力系统、传动系统、执行系统、操纵及控制系统 举例说明: 例1:汽车 例2:《机械设计》中所有人均完成的千斤顶 1.2机械系统设计的任务 1.2.1从系统的观点出发 重点:与外部环境的相互影响,以汽车设计为例 1.2.2合理确定系统功能

打孔机结构原理设计(机械系统设计大作业)

机械系统设计 课程作业(打孔机的设计)

一、设计任务书 (1) 二、确定总共能(黑箱) (2) 三、确定工艺原理 (3) (一)机构的工作原理: (3) (二)原动机的选择原理 (3) (三)传动机构的选择和工作原理 (3) 四、工艺路线图 (4) 五、功能分解(功能树) (4) 六、确定每种功能方案,形态学矩阵 (5) 七、系统边界 (6) 八、方案评价 (6) 九、画出方案简图 (7) 十、总体布局图 (9) 十一、主要参数确定 (10) 十二、循环图 (14)

一、设计任务书 表1

二、确定总共能(黑箱) (一)机构的工作原理: 该系统由电机驱动,通过变速传动将电机的1450r/min降到主轴的2r/min,与传动轴相连的各机构控制送料,定位,和进刀等工艺动作,最后由凸轮机通过齿轮传动带动齿条上下平稳地运动,这样动力头也就能带动刀具平稳地上下移动从而保证了较高的加工质量。 (二)原动机的选择原理 (1)原动机的分类 原动机的种类按其输入能量的不同可以分为两类: A.一次原动机 此类原动机是把自然界的能源直接转变为机械能,称为一次原动机。属于此类原动机的有柴油机,汽油机,汽轮机和燃汽机等。 B.二次原动机 此类原动机是将发电机等能机所产生的各种形态的能量转变为机械能,称为二次原动机。属于此类原动机的有电动机,液压马达,气压马达,汽缸和液压缸等。 (2)选择原动机时需考虑的因素: 1:考虑现场能源的供应情况。 2:考虑原动机的机械特性和工作制度与工作相匹配。 3:考虑工作机对原动机提出的启动,过载,运转平稳等方面的要求。 4:考虑工作环境的影响。

冷却水系统设计选用及施工说明

冷却水系统设计选用及施工说明 1空调冷却水系统的定义与分类 1.1空调冷却水系统的定义:吸收空调制冷设备冷凝器排热,并将此热量排入大气,低温水体,低温土壤,传递给显热回收装置,传递给水——水热泵机组或是几种状态兼而有之的循环水系统. 1.2空调冷却水系统分类 1.2.1按照流经空调制冷设备冷凝器的冷却水是否与大气接触分为开式冷却水系统 和闭式冷却水系统. 1.2.2按照空调制冷设备冷凝器排热渠道分为单一型系统(如仅通过冷却塔向大气排热)和耦合型系统(如设有冷却塔的井水抽灌型与埋管型地源热泵系统) 1.2.3按照冷却水低位热能是否利用分为单纯冷却型(冷凝热不利用)和热回收型.1.2,4冬季供冷型,冬季不经空调制冷设备由冷却塔直接制备空调冷水. 2空调冷却水系统设计原则 2.1系统形式的确定 2.1.1除非水质要求严格,冷却水宜采用开式系统. 2.1.2对井水抽灌型地源热泵空调系统.当按设计制热工况负荷确定的水浑流量不能满足设计制冷工况的排热要求时,经技术经济分析可考虑采用耦合式冷却水系统.2.,.3对地埋管地源热泵空调系统,属于下列条件之一时,应采用耦合式冷却水系统:1)当按制热设计工况负荷确定的地埋管换热器热交换能力不能 满足制冷设计工况的排热要求时; 2)空调设备全年向土壤的总排热量大于总取热量25%时. 2.1.4空调制冷设备制冷工况运行时间长,且有集中生活热水需要,可采用热回收空调冷却水系统,常用形式有两种:一种是空调制冷设备设有专门用于热回收的冷凝器,用于自来水预热;一种是设有热泵热水机组的空调冷却水系统. 2.1.5空调系统冬季有供冷需求,当地冬季气象参数能使冷却塔出水温度满足冬季空调系统要求,且持续时间足够长时,宜考虑采用能实现冷却塔冬季直接供冷的冷却水系统形式. 2.2系统的设计要点 2.2.1空调冷却水系统由空调制冷设备水冷式冷凝器,循环水泵、冷却塔,除污器和水处理装置等组成.通常无需设置冷却水箱或水池. 2.2.2提倡实现冷却塔风机的集中控制.以在系统部分负荷运行时,能充分利用冷却塔组的自然冷却能力,减少冷却塔风机的运行时间.降低能耗. 2.2.3通过共用集管连接的冷却塔.其冷却水管道系统的设计应实现各塔间的流量平衡.并使接水盘水位相同。 2,2.4通过共用集管连接的多台空调制冷设备与多合冷却塔组成的冷却水系统的设 计应采取措施,避免系统在“减”合数运行时,冷却水在冷却塔与冷凝器处的‘旁流’:即冷却水流过风机不工作的冷却塔和停止工作的冷机冷凝器. 2.2.5冷却塔的设置位置,应保证: 1)其接水盘的最低水位成为冷却水系统的最高点; 2)额定流量运行时冷却水循环泵进口处不应产生负压;

机械系统设计大作业

机械系统设计大作业 学号: 姓名: 班级:机械工程

目录 第1章总体方案设计 (1) 1.1 研究给定的设计任务 (1) 1.2设计任务抽象化 (1) 1.3确定工艺原理方案 (1) 1.4定转子热管冷却方案设计 (2) 1.5功能分解功能树 (2) 1.6确定每种功能方案 (3) 1.7方案评价 (3) 1.7.1评分法 (3) 1.7.2模糊评价法 (4) 第2章变频一体机冷却系统的总体设计 (5) 2.1定子方案简图 (5) 2.2转子方案简图 (5) 第3章主要参数选定 (8) 3.1热管材料选择 (8) 3.2热管参数选择 (9)

第1章总体方案设计 1.1 研究给定的设计任务 表1.1 设计任务书 编号名称一体机冷却系统设计单位中国石油大学起止时间现在至毕业答辩设计人员实验室人员设计来源赵老师所定课题 设计要求 1 功能主要功能:实现对矿用变频一体机的冷却 2 适应性工作对象:变频一体机,变频器,电抗器冷却类型:热管冷却 环境:潮湿,瓦斯等防湿、防爆的场所 3 性能所选电机:3300kw矿用变频一体机冷却范围:电子转子和定子的冷却 4 工作能力冷却电机,延长电机寿命,使电机更稳定 5 可靠度99% 6 使用寿命10年 7 经济成本10000元 8 人机工程电机结构设计和冷却结构设计 9 安全性有漏电保护 1.2设计任务抽象化 图1.1系统黑箱 主要是将电机内部的热传输到电机外部,对于定子和转子冷却的设计,最重要的是转子的热如何通过热管传输到外部。 1.3确定工艺原理方案 典型的热管由管壳、吸液芯和端盖组成,将管内抽成负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。管的一端为

电动机水冷却结构设计..

煤矿井下用隔爆型三相异步电动机水冷却结构设计 姜瑞杰 2008级机电一体化专业 摘要对煤矿井下用隔爆型三相异步电动机水冷却系统及结构的设计进行探讨。围绕电动机温度场分析、热平衡计算、冷却系统水流参数计算、冷却水箱结构设计几个方面,并结合实践阐述了相关设计理论和设计方法。 关键词煤矿井下用隔爆型三相异步电动机:水冷却系统;水冷式结构 0 引言 煤矿井下设备采用的隔爆型三相异步电动机其冷却系统常采用水冷式结构(通常为ICW37)。这是基于煤矿井下特殊的环境条件和煤矿设备特殊的运行状况决定的。煤矿井下水冷式电动机具有以下特点: (1)煤矿井下作业场狭窄,设备留给时机的安装空间较小,环境空气流动性差。电动机采用风(空气)冷却结构,效果受到很大影响。尤其是在采掘面,当煤块、粉尘等堆积物阻塞电动机外部的通风散热通道时,电动机通风散热状况将更加恶劣。而采用水冷静却结构,则避免了这个缺点。煤矿井下一般不缺压力源,水的导热系数远远大于空气。只要时机的水冷静系统流道结构设计合理,其冷却效果和可靠性优于风冷静式电动机。

(2)煤矿井用电动机因受设备安装要求限制,往往要求有较小的外形体积和简单的外形结构。水冷式电动机结构上没有风扇、风罩、散热片等零件,并且水道布置在封闭的壳体之内,因此其外形简约,体积小于相同功率的风冷式电动机。 (3)煤矿井下采掘、运输等设备,因其特殊的工作条件,往往负荷波动很大,所用电动机超负荷运行状况进有发生,造成电动机温升增高。另外在设计这些设备使用的电动机时,考虑到其外形体积和功率大小两方面要求,往往采用减小电动机定、转子铁心外径,加长定、转子铁心长度的设计方案。由典型的时机温升设计理论可知,铁心较长的时机其热负荷往往偏高,温升计算误差也较大,这两方面的原因致使电动机的温升处于不可靠状态。尽管采用提高电动机绝缘等级的方法进行弥补,但电动机使用寿命也将大打折扣。而水冷式结构的电动机具有较好的冷却效果,可弥补电动机温升设计误差及超负荷运行带来的缺点。 (4)水冷式电动机无风扇、风罩等零件,因此不会产生风摩损耗和噪声,并且冷却水箱还具有吸振减振效果,这些又形成了电动机效率较高、噪声低、振动小的优点。 从以上分析可以看出水冷却系统在煤矿井下用电动机上的重要作用,因此对其系统和结构的设计研究必要。目前国内许多电机厂家都积累了各自在此方面的宝贵经验,亟待进行理论性的整理和提高。本文试对此问题展开初步探讨。

循环水冷却系统的设计与运行

循环水冷却系统的设计与运行 随着城市建设的发展,越来越多的公共建筑内设置了中央空调系统,循环水冷却系统成为不可缺少的部分。本文仅以珠海市珠光大厦为例,浅谈设计施工、调试运行中的体会。 统将众多小型水冷式空调机联系起来,由冷却塔和循环水泵集中提供循环冷却水,组成集中冷却的分散机组系统,市场占有率迅速提升,该系统省却了冷冻主机、冷冻水泵其机房、无需冷冻水管保温,智能化控制,操作方便,调节简单,便于实现楼字自控,空调机采用水冷直接蒸发式,能效比高,EER达4—5,比一般系统节能30%,长短期性能价格比均有较大优势,且设置灵活简便。机组运行可靠性高,对

循环水冷却系统的重要性要求更高了。 2系统控制与节能 系统中冷却塔、冷冻主机、冷却泵及冷冻泵应是一一对应开启的,应采用电动阀控制水流,不得让水流经过已停机部分的管道,而影响处理效率。开机的顺序是:冷却水泵、电动阀、冷却塔、冷冻主机,停机的顺序则相反,且冷冻机停机 般取 下: hm 本大厦采用的阻燃超低噪音横流集水型玻璃钢组合冷却塔。冷却流量是指在设计工况和气象参数条件下的名义流量,选型时,根据冷却塔的热工特性曲线,结合循环冷却水的水量、水温和当地的气象条件,经过计算来确定选用型号和台数,并留有适当储备系数以满足循环水系统安全保证率的要求。倒棱台塔型及高效填料对于冷却塔的功效很有帮助,广州马利新菱公司的产品不错,其布水喷头也很有特

色。 冷却水量w计算采用公式: 式中Qc为冷却塔排走热量,压缩式制冷机取负荷的1.3倍,吸收式制冷机取负荷的2倍;C为水的比热; t为冷却塔的进出水温差。冷却塔的补给水量Q计算采用公式:Q=N*k*⊿t /(N 进入扩散器后进一步增压,到达塔体顶部时,由高效挡水器做汽水分离,热气排出塔外,冷却水落至填料层与进入塔内的空气进行二次热交换,使循环冷却水达到良好的降温效果。 4水质稳定处理 冷却塔出水口上应设过滤网。系统中应设置过滤器以保护水泵和冷冻主机。

相关文档
最新文档