火灾的图像识别方法与应用

火灾的图像识别方法与应用
火灾的图像识别方法与应用

COPEN.CLICK()

M CIM S G=S PACE(50)

M CI=T HIS FORM.M CI

TYPES TR=[]

DO CASE

CASE T HIS FORM.T YPE=[WAV]

TYPEST R=[W AVEAU DIO]

CASE T HIS FORM.T YPE=[M ID]

TYPEST R=[S EQUENC ER]

CASE T HIS FORM.T YPE=[AVI]

TYPEST R=[AviVid eo]

CASE T HIS FORM.T YPE=[FLI]

TYPEST R=[An imationl]

CASE T HIS FORM.T YPE=[DAT]

TYPEST R=[M pegVid eo]

CASE T HIS FORM.T YPE=[M PG]

TYPEST R=[M pegVid eo]

ENDCASE

IF T HISFORM.T YPE=[CDA]

 SS=[OPEN CDAUDIO ALIAS M PLAY]

ELSE

 SS=[OPEN]+THISFORM.FNAM E.VALU E+[]+[AL IAS M PLAY T YPE]+TYPEST R

E NDIF

A=callfn(mci,SS,@mC IM SG,LEN(M CIM SG),0)

C PL AY.C LIC K()

M CIM SG=SPACE(50)

M CI=THISFORM.M CI

A=callfn(mci,"p lay mPLAY",@mcimsg,50,0)

C ST OP.CL ICK()

 M CIM SG=SPACE(50)

 M CI=THISFORM.M CI

 A=callfn(mci,"s top mPLAY",@mcimsg,50,0)

C CLOS.CLICK()

 M CIM SG=SPACE(50)

 M CI=THISFORM.M CI

 =callfn(mci,"close mPLAY",@mcims g,50,0)

C QUIT.CL IC K()

 T HISFORM.RELE ASE()

收稿日期:1997年9月20日火灾的图像识别方法与应用卢瑞祥 牟轩沁 纪 震

(西安交通大学图像处理与识别研究所 西安 710049)

摘 要 传统的火灾报警系统一般基于红外传感器和烟雾传感器,但在室外仓库和大型室内仓库等大空间场合的火灾报警中,上述方法并不能良好地适用。在火灾燃烧时火焰的红外图像序列往往具有相邻图像边缘不稳定但具有一定的相似性等可识别特征。因此图像识别的方法是大空间火灾自动报警的一种可行的解决方案。本文不仅提供了一个基于序列图像的火焰快速识别算法,也实际构成了一个使用微处理机的多通道火灾实时自动监控系统样机。

关键词 火焰识别 监控系统 图像序列

1 引言

火灾的巨大危害是不言而喻的。在现有的各种火灾报警和消防监控设备中,大都基于红外传感器和烟雾传感器。在室外仓库和大型室内仓库等大空间场合中,上述传感器信号由于空间的巨大而变得十分微弱,即使是高精度的传感器也会由于种种干扰噪声而无法工作。为解决此类场合的火灾报警问题,国外某些公司在九十年代初提出用紫外波段的图像传感器进行中远距离的火焰检测,并推出了相应产品。但此类系统并不具有自动识别的功能,模块也不具有可重构性,而且火焰的识别方法简单,识别误报率较高。

大量的实验结果表明,在火灾燃烧时,火焰的红外波段(波长>950nm)的不可见光辐射具有明显的可识别特征,如果通过传感器采集该辐射信号经光电转换成视频信号便可以对该特征进行识别,并且由于该视频信号可监控的区域大,可以较好地满足大空间场合的火灾监控的要求。我们通过高精度红外CCD图像传感器采集火灾现场的火焰红外辐射,将其转换为一定制式的黑白视频信号,再通过序列图像采集设备,将视频信号经过A/D转换后形成数字灰度图像序列[1],最后采用识别火焰序列图像特征的方法对火灾进行实时识别监控。

由于采用了950nm~2000nm波段的红外CCD传感器,仅有该波段的红外辐射形成视频信号,火焰燃烧时的红外辐射主要集中于以上波段范围,其它波长的干扰信号被极大地衰减。故当有火焰燃烧时经CCD 形成的视频信号中除强烈的火焰辐射造成的高亮度信号外,仅有很少量的红外干扰信号,而这些信号往往表

?

106

? 计算机应用研究1998年

现为固定的图像模式,可以采用简单的算法加以分类,

从而使火焰的识别率大大提高,并且减少了处理的数据量,提高了检测识别的速度。

在可靠的火焰识别算法的基础上,我们构造了一个实用的自动火灾监控系统。在该系统中为了提高系统的检测效率,采用了多路时分复用技术,使同一个图像识别处理器可以分时处理多路监控信号。经过样机的大量现场实验证明了火焰识别算法以及系统的可行性。

2 火焰的图像识别方法

火焰的序列图像具有如下几个特征:相邻帧图像的边缘不稳定;相邻帧图像具有稳定的相似性;图像的相似度在一定的区间内变化;图像中火焰焰芯部位的灰度大于火焰其它部位的灰度。而在红外衰减后的视频信号中,干扰信号表现的模式主要为快速移动的固定亮点和大面积的红外光照变化。因此,在火焰的识别中,可以首先进行火焰的干扰模式与非干扰模式的分类,再在非干扰的图像模式下识别出火焰的某个特征即可判定为火焰(图1略)。

设数字化的序列图像为{f i (x ,y )},i=1,N ,(x ,y )为图像中各个像素的坐标,N 为图像序列的帧数,在实际系统中,N 应大于2。对于每帧数字图像有(x ,y )∈ , 为整个图像的面积。对于每通道的图像信号,有一稳定的基准图像,令其为{f 0(x ,y )}。系统以基准图像表示该通道的正常情况。对于图像序列的各帧图像有,

i (x ,y )= {f i (x ,y )}-{f 0(x ,y )} ,i =1,N ,(x ,y)∈

{ i (x ,y )}为一个差值图像序列,表示原图像序列{f i (x ,y)}与基准{f 0(x,y )}的差别,现在{ i (x ,y)}上对当前的原图像的模式进行判别。

首先对{ i (x ,y )}进行二值化,分割{ i (x,y)}的变化区域。在二值化时,考虑到一般火焰的红外照度范围,在有火焰时其灰度值较高,且有一个较复杂的中间灰度的红外满反射区域,我们采用了如下方法:统计{ i (x ,y)}的直方图为PHS(r),以一小窗口对P HS(r )进行平滑,平滑后在PHS (r )上从高往低扫描,检测到第一个波谷点即可设定为二值化阈值。

以该阈值对{ i (x ,y )}进行二值化,得到{b i (x ,y)},其中为1的像素表示原始图像序列{f i (x ,y )}与基准图像{f 0(x ,y )}的有显著差别的区域。我们认为该区域即为可能的火焰区域。在实际系统中{b i (x ,y)}中存在一些由不可测因素引入的孤立点。这些孤立点可以运用形态学的膨胀和腐蚀运算滤除,进而使区域得到更好的描述。但这样的运算量太大,无法进行实时处理[2]。本文中使用了四邻域遍历的方法[3],对{b i (x ,y )}

进行四邻域遍历,滤除孤立点的影响后,得到{b i ⌒

(x ,

y )}。

对{b i ⌒

(x ,y )}中为1的像素进行标记,我们得到序列图像中每帧中可能的火焰区域 i ,i=。

预处理

令S i 为 i 的面积。对于S i 的取值范围,我们有如下结论:

1)若S i ≤阈值1,则该变化区域为噪声点。

2)若S i ≥阈值2,则该变化区域为大面积的红外光线变化。

3)若阈值1≤S i ≤阈值2,则变化区域为可疑的火焰区域。模式分类

当发现可疑的火焰区域后,我们采用计算相邻帧变化图像的相似度的方法对火焰与干扰模式进行简单的分类。相邻帧变化图像的相似度定义为:

i =

(x ,y )∈

b ⌒

i (x ,y )∩b ⌒

i+1(x ,y )

(x ,y )∈

b ⌒

i (x ,y )∪b ⌒

i+1(x ,y )

,i=对于各个 i ,统计其均值 =1

N -1

N-1i=1

i ,我们有以

下的判定规则:

1)若 ≤阈值1,则图像模式为快速运动的亮点。

2)若 ≥阈值2,则图像模式为固定红外发光区域。

3)若阈值1≤ ≤阈值2,则图像模式为火焰。3 监控系统构成

在一个较可靠的火焰图像识别方法的基础上,本文研制了自动火灾监控样机系统。该系统由以下模块构成:每通道的红外CCD 图像传感器、多路视频切换器、高速图像采集卡、IO 控制卡1、微处理机、IO 控制卡2、报警装置和U P S 不间断电源等。微处理机通过IO 控制卡1控制多路视频切换器选择16路红外视频信号之一进入高速图像采集卡,图像采集卡将模拟视频信号转换数字图像信号。微处理机通过对数字图像信号的智能识别判定该通道的图像是否为火焰图像,如果是则通过IO 控制卡2控制报警装置发出声光报警信息。系统的结构和连接见图2。

本系统通过微处理机上的软件系统进行监控流程控制、通道图像的智能识别和人机交互等功能。在软件系统中,系统使用了菜单驱动和分时处理等技术,使系统在允许人机交互的同时不影响对各个通道的实时监控。

图2 系统结构示意图

?

107?第1期卢瑞祥等:火灾的图像识别方法与应用

4 实验结果

我们在下述条件下进行了模拟点火试验:在室外安装本系统,红外CCD 图像传感器距火源的水平距离为60m ,其安装高度为8m,在火源点采用直径400mm 的大油盘点火,燃料分别采用柴油、汽油、正庚烷+甲苯(占10%)等三种,其重量分别为柴油800g 、汽油800g 、正庚烷650g ,在白天和夜间点火时分别采用照度为99000Lux 的太阳光及照度为400L ux 的400瓦金卤灯作干扰源。点火实验的结果如下表:

表1 室外点火实验结果

试验

次数柴油

汽油正庚烷

累计次数累计误报累计漏报平均报警时间白天10次10次10次30次3次0次 4.8秒夜间

10次

10次

10次

30次

1次

0次

3.3秒

5 结束语

通过红外图像的自动识别对火灾进行监控是自动

消防监控领域的一个新的方法。实验证明本文所述的

基于红外图像序列的火焰识别方法和自动火灾监控系统样机对于一般大空间场合的火灾监控是有效的。当监控的环境较为复杂时,监控的性能将有一定的影响,报警的误判率较高。解决复杂监控环境下的火灾的图像识别问题需要对火焰的图像模式进行进一步的研究。一个思路是在频域而非空域上求火灾图像相似度

i ,并可建立一个 i 的随机过程模型[4]

,在该模型的基础是火灾的现场图像序列进行分类。当然方法的复杂度对监控的实时性有相当的影响,在选择火焰识别方

法时必须在两者间进行权衡。

参考文献

1 王积分、张新荣,计算机图像识别,中国铁道出版社,北京,

1988,pp.234-266

2 唐常青等,数学形态学方法及其应用,科学出版社,北京,

1990,pp .76-86

3 Rosenfeld ,Dig ital Pictu re Process ing,Academic Pres s,

1976,pp .366-369

4 田捷等,实用图像分析与处理技术,电子工业出版社,北

京,1995,pp.316-319

收稿日期:1997年7月8日

自动借贷款机人机界面的设计与实现

王利光 张建军 刘 枫 陈 涛

(黑龙江大学EAST 公司 哈尔滨150080)

摘 要 本文给出了在日本银行系统中一种新的计算机应用技术,介绍了在Windo ws 95环境下,以多媒体技术设计完成了无人值守自动借贷款机人机界面。关键词 自动借贷款机 界面 W indo w 951 引言

随着计算机技术的不断发展,许多原来由人完成的工作现在都由计算机来实现了。这样,人与计算机之间的联结就越来越紧密。我们设计完成的无人值守借贷款机人机交互界面正是在这一前提下完成的。自动借贷款机的机械与电气控制部分分别由日本东京大场兴产株式会社和N EC 电气公司完成,我们为其开发了人机交互界面。该机器自1997年1月出现在东京街头,至今已有60余台交付使用。由于可以就近操作,无须特意去银行,不仅提高了银行的效率,也给用户带来了便利。还因为没有人与人的面谈交涉,不仅极好地保护了个人隐私,同时也免除了与人直接借贷款的尴尬与窘迫,给用户带来了心理上的安全感,还具有

很好的保密性。

我们设计完成的人机界面是在日语Window s95[1]

平台上利用V isual C ++ 4.0语言[2]、[3]

以多媒体技术[4]来实现的。高分辨率摄象机所摄取内容(主要为用户头像)、阅读器阅读内容(身份证及汽车驾驶执照等)及全部交互信息都显示在屏幕上。因而操作简便灵活,使人机界面极亲切友好。

2 系统的组成

任何用户从银行借贷款时都将履行以下手续: 用户提出借贷申请,说明借贷款数量、用途、并确定还款日期,同时应回答银行方面提出的相关问题。 用户向银行方面提供自己的身份证明、工作单位、收入情况、家庭情况、可抵押财产,同时提供担保人的相关材料。

银行将确认用户提供的全部信息,在确认无误

?108? 计算机应用研究1998年

图像识别方法和设备的制作流程

本技术的实施方式提供了一种图像识别方法。该方法包括:对待识别图像进行特征提取,得到多个特征向量;确定每个特征向量对应的类别;针对每个特征向量,分别计算其所对应的类别下各样本图像的分数;将计算得到的同一样本图像的分数累加,得到该同一样本图像的分值;将分值最高的样本图像对应的图像标识作为待识别图像的识别结果。通过上述图像识别方法,有效提取多个特征来表征待识别图像,提取的特征不受图像中物体的特性所影响,能够实现对图像的有效识别,适用范围广;且通过计算样本图像分数的方式得到识别结果,综合考虑了特征的重要性,能够获得较好的识别精度。此外,本技术的实施方式提供了一种图像识别装置。 权利要求书 1.一种图像识别方法,包括: 对待识别图像进行特征提取,得到多个特征向量; 确定每个特征向量对应的类别; 针对所述每个特征向量,分别计算其所对应的类别下各样本图像的分数;

将计算得到的同一样本图像的分数累加,得到该同一样本图像的分值; 将分值最高的样本图像对应的图像标识作为所述待识别图像的识别结果; 按照以下公式计算样本图像的分数: 其中,S表示当前样本图像的分数,A表示平均每个类别下的样本图像特征向量个数,B表示所述当前样本图像所属的类别下的所有图像标识出现次数之和,C表示所述当前样本图像所属的类别下,所述当前样本图像对应的图像标识出现次数,D表示放缩因子。 2.根据权利要求1所述的图像识别方法,其中,确定每个特征向量对应的类别,包括: 分别计算所述特征向量与预先存储的多个聚类中心向量的距离,其中,所述聚类中心向量与所述类别一一对应; 确定与所述特征向量距离最近的聚类中心向量对应的类别为所述特征向量对应的类别。 3.根据权利要求1所述的图像识别方法,其中,对待识别图像进行特征提取,得到多个特征向量,包括: 利用滑动窗口遍历所述待识别图像; 针对所述滑动窗口所处的每个区域,计算该区域的特征向量。 4.根据权利要求3所述的图像识别方法,其中,计算该区域的特征向量,包括: 将该区域划分为多个大小相同的细胞单元,其中,每个细胞单元之间不重叠;

火灾自动报警系统方案设计

火灾自动报警系统方案 ●本系统采用控制中心型智能消防报警系统,具有火灾报警、联动控制等功能。系统包括以下内 容:手动报警按钮、感烟探测器、感温探测器、警铃和水流指示器等报警装置,系统同时监视 消火栓按钮、报警阀、压力开关、水流指示器及信号阀等的动作信号。 ●为了便于控制和管理,所有消防信号将显示于总控制屏上,以便一旦发生火灾时,可迅速报告 消防局。 ●消防总控制室内有以下设备:消防系统主机(工作站)、火灾视屏显示屏(LED)、火灾自动报警 系统总控制屏、消防联动控制盘、消防专用电话主机、应急电源配电盘和UPS电源、消防系统 运行记录打印机等。消防控制室可监听所有消防电源设备的状态。另外,消防总控制室内设置 一部直拨消防单位的外线电话,并同时提供与消防电话插孔匹配的手提电话。 (1)火灾报警系统保护目标 ●快速火灾探测 ●准确定位火灾地点 ●及时发出火灾报警信号 ●警示相关人员以实现: ●快速疏散建筑物内人群 ●通知相关部门采取救援措施 ●指示相关消防设备动作以实现: ●自动启动消防泵、喷淋泵等水系统灭火设备 ●联动火灾隔断手段如关闭防火卷帘门和防火阀等 ●开启排烟风机、正压风机等防排烟设备 ●开启应急广播、应急照明和疏散指示系统 (2)系统设计原则 ●系统应符合中国有关法律法规,符合消防管理条例和标准。 ●遵照安全第一、预防为主的原则,火灾自动报警系统应严格保证设备可靠性和系统可靠性,避 免误报。 ●系统应具有先进性和适用性:系统的技术性能和质量指标均达到国际先进水平,且在安装调试、 软件编程和操作使用各方面均简便易行,并适合建筑特点,达到最佳的性能价格比。 ●在系统设计时应明确与建筑设备监控系统、安防系统之间的接口界面,且系统的各项技术规范 均符合相应要求。 ●在设计火灾自动报警系统时应预留该系统与综合信息共享管理系统之间信息数据交换接口,系 统的各项技术规范均符合相应要求。 ●在系统设计时应尽量优化设备配置,考虑了整个建筑全系统的统筹配置,避免设备的重复购置 和管线的混乱局面。 在系统设计时应保留足够的冗余度:探测点与控制点的容量上及回路卡的设置上均应保留不少于20%的扩展余地。报警系统施工主要程序:

火眼视频图像火灾探测软件

“火眼”视频图像火灾探测软件 一、“火眼”简介 “火眼”视频图像火灾探测软件(以下简称“火眼”软件)是由国家消防工程技术研究中心、公安部天津消防研究所历时多年,研制成功的一款图像火灾探测报警软件。它利用已经安装的各种室内监控摄像头的实时图像,采用独创的具有先进算法的计算机图像模式识别技术,能够实时探测监控区域可能产生的火焰和烟雾。 在现代智能视频监控系统中,计算机图像模式识别技术具有非常广泛的应用前景,各种智能算法的出现为这项技术的实际应用提供了理论保障。在安全和交通领域,基于时评图像的人脸、车辆和车牌的识别已有了大量应用。在消防领域,对于火焰和烟雾图像的精准识别,使得基于图像模式识别技术的火灾探测报警系统具有了实际应用价值。 随着我国智能城市和各个行业智能网络的建设,各种视频监控系统已遍布于城市的大部分公共区域,这就为视频图像火灾探测系统的普遍应用提供了硬件基础和实施条件。利用建筑内已有视频监控系统,使用“火眼”软件进行火灾探测,能够以较低的成本大幅度提高火灾报警能力,为减少火灾危害、降低火灾损失,保障社会安全创造了极为有利的条件。二、技术特点 “火眼”软件在原理上与传统火灾探测方式完全不同。图像火灾探测是利用计算机模式识别技术,当监控的视频图像中出现火焰或烟雾图像时,计算机通过特征识别就能快速准确的判断出火灾,并发出报警信号。而传统的感温或感烟探测器通常要等到处于探测器位置的空气温度或烟雾浓度达到报警阈值后发出报警信号。因此,相对于传统的火灾报警系统,图像火灾报警系统具有很多独特的优势。 1、适用性强:“火眼”软件针对目前市场上普遍使用的各种型号的视频监控系统,开发了对应的多种软件接口。既有应用于数字模式的视频监控系统,也有适用于模拟方式的视频监控系统。加载方式简单,操作方便,具有广泛的适用性和兼容性。 2、探测速度快:采用先进图像模式识别技术的“火眼”软件,最快可在视频火灾图像出现的十秒之内,就能在图像上发现火焰或烟雾,同时发出火灾报警信号。而传统模式的点型感温或感烟探测器则需要探测器处的温度或烟雾浓度达到设定数量值才能报警,在一般公共场所的探测时间通常长达几分钟。相比之下,“火眼”软件的火灾探测速度远远快于常规点式火灾探测器。 3、抗干扰能力强:基于国际ISO标准开发的“火眼”软件,在实际应用过程中能够抵抗监控环境中的强光、弱光、闪光等各种光源干扰,排除在不同环境下的人为和场景干扰,具有强大的抗干扰能力。 4、同时识别火焰和烟雾:“火眼”软件采用了两套独立的国内首创的图像模式识别技术,能够同时分别探测监控区域内的火焰和烟雾,并发出相应的报警信号,无论是阴燃的烟雾还是明显的火焰,都能迅速识别、快速报警。 5、火灾定位准确:“火眼”软件具有实时存储火灾报警图片、回放起火时段视频的功能。当消防人员到达现场后,可根据最初的火灾图片,判断起火点和起火原因。即使火场烟雾弥漫,消防人员仍能通过回放功能,准确地找到起火部位,采取有效措施扑灭火灾。 6、可视化:相对于传统的火灾报警系统,“火眼”软件的最大优势就是可视性,一般情况下,所有的火灾报警系统都存在一定的误报率,当出现火警时,由于传统的火灾报警系统无法看到火灾现场的实际情况,也就无法确定是火警还是误报。而“火眼”软件是在视频图像上发出的报警,消防值班人员可以根据图像很方便的确认火警或误报。

消防报警系统设计方案

博物馆消防火灾报警系统工程 施工组织设计方案 1.编制说明、 本设计依据建筑设计研究院有限公司电施设计图纸进行编制。 2.工期 工期目标: 消防火灾报警系统工程工期为40天。 七氟丙烷气体灭火系统工程施工工期为30天。 3.质量目标 本工程质量目标: 消防工程施工质量将严格按有关设计及施工验收规和工程评定标准进行施工,合格率达到时100%,确保火灾自动报警系统质量优良。 4.火灾报警系统设备安装工艺要求 4.1火灾自动报警系统设备安装 (1)消防布线的总体要求: 根据消防弱电施工的规,并结合本工程的实际情况,对消防电气的施工布置如下:布线:火灾自动报警系统的布线,应符合现行标准《电气装置工程施工及验收规》的规定和《火灾自动报警系统设计规》(GBJ116-88)的要求。管线包括各层公共部分及其它层平面报警回路线、工作电源线、控制线等线管的穿线,应采用铜芯绝缘导线或铜芯电缆,当额定工作电压不超过50V时,选用导线的电压等级不应低于250V,额定工作电压超过50V时,导线电压等级

不应低于500V。穿线过程中应按照以下工艺标准及要点进行。 (2)接线箱安装: 穿线完毕后,要对每回路导线用500V的兆欧表测量绝缘电阻,满足不了产品或规GB50166--92要求的(20MΩ),应仔细检查并替换。 要求:平稳,底部距地1.5M。安装前应在距盒底100MM处开一个口,并且开口处无倒刺,然后牢固固定在墙上。 (3)火灾报警探测器的安装 A.火灾探测器安装位置,应符合下列规定: 探测器至墙壁梁边的水平距离,不应小于0.5m: 探测周围0.5m,不应有遮挡物: 探测器至空调送口边的水平距离,不应小于0.5m;至多孔送风顶棚孔口的水平距离,不应小于0.5m; 宽度小于3m的风走道顶棚上设置探测器时,宜居中布置。感温探测器的安装间距,不应超过10;感烟探测器的安装间距,不应超过15。探测器距端墙的距离,不应大于探测器安装间距的一半。 B.探测器底座安装 探测器的底座应固定向牢靠,其导线连接必须可靠压接或焊接。当采用焊接时,不得使用带腐蚀性的助焊剂。 探测器底座的外接导线,应留有不小于15cm的量,入端应有明显标志。 探测器底座的穿结孔宜封堵,安装完毕后的探测器底座应采取保护措施。 探测器在即将调试时方可安装,在安装前应妥善保管,并应采取防尘、防潮、防腐蚀措施。

试述基于视频监控的火灾图像识别研究的重要性

试述基于视频监控的火灾图像识别研究的重要性 在当今社会,火灾依然是威胁人类生命安全的重大灾害。尤其是随着经济高速的发展,各种高层的综合性建筑群体越来越多。况且在高层建筑中,人口和财产更加密集和集中,所以各种消防问题就更为突出。那么我们如何缩短火灾探测报警时间,减少火灾的发生的可能性,并及时采取有效防火与灭火的措施;如何大幅度提高火灾探测报警系统的可靠性,降低相应误码率,为自动报警与联动控制灭火系统提供支持保障;火灾探测报警系统的网络化和监控技术就变成了火灾探测报警领域的发展热点。 标签:视频监控;火灾图像识别;重要性 物质在其燃烧时,产生烟雾,并释放出称之谓气溶胶的燃烧气体,当气体与空气中的氧发生化学反应,就会成为含有大量红外线和紫外线的火焰,致使周遭温度升高。那么烟雾、温度、火焰和燃烧气体就成为了火灾参量。 火灾探测器的主要功能是通过对温度、火焰和燃烧气体等参量及时做出有效反应,然后再通过一些敏感软件,把这些表征火灾参量的物理量变化为电信号,最后传送到火灾报警器。因此我们可以根据不同的火灾参量以及不用的响应方式,创制各种各样的火灾探测器。其中较典型的有:感温、感烟、火焰、气体、图像和复合式等。 火灾过程通常都伴随着大量烟、气、温、光等各类信号的出现,处于不同的环境以及不一样的燃烧成分,都会对烟雾颗粒的组成、色彩、温场分布以及光谱造成不同。因此,火灾发生过程中会涉及到许多物理与化学参数,而且其表现出的特征又比较突出,那么针对火灾发生时不同生成物的特性而起作用的是不同类型的火灾探测器。分别作用于不同的场合,自然也有各自的局限性。 1 早期火灾探测技术的发展 自19世纪40年代至20世纪40年代,感温探测器一直都是占据主导地位,但是这类探测器有一个明显的不足就是对火灾探测的反應不是很灵敏。但是当时随着感温火灾探测器大量的不断被用于军事上,这在一定程度上促进了火灾探测技术的迅猛发展。 到了20世纪50年代,瑞士物理学家Emst Meili研制出了现代离子感烟探测器的雏形,1970年时,欧洲已经安装了近百万只离子感烟探测器,到目前仍占已经安装火灾探测器的90%。在离子感烟探测器统治的30年之中,人们也逐步开始研究光电感烟技术,但却苦于相关工艺技术原因没有得到实际应用。 20世纪70年代末,由于突破了高寿命的光电元件技术,光电感烟探测器应运而生,并取得长足进步。国外在大幅度减少离子感烟探测器,光电感烟探测器的销售量己经占到90%,我国也逐步呈现这种趋势。

图像模式识别的方法介绍

2.1图像模式识别的方法 图像模式识别的方法很多,从图像模式识别提取的特征对象来看,图像识别方法可分为以下几种:基于形状特征的识别技术、基于色彩特征的识别技术以及基于纹理特征的识别技术。其中,基于形状特征的识别方法,其关键是找到图像中对象形状及对此进行描述,形成可视特征矢量,以完成不同图像的分类,常用来表示形状的变量有形状的周长、面积、圆形度、离心率等。基于色彩特征的识别技术主要针对彩色图像,通过色彩直方图具有的简单且随图像的大小、旋转变换不敏感等特点进行分类识别。基于纹理特征的识别方法是通过对图像中非常具有结构规律的特征加以分析或者则是对图像中的色彩强度的分布信息进行统计来完成。 从模式特征选择及判别决策方法的不同可将图像模式识别方法大致归纳为两类:统计模式(决策理论)识别方法和句法(结构)模式识别方法。此外,近些年随着对模式识别技术研究的进一步深入,模糊模式识别方法和神经网络模式识别方法也开始得到广泛的应用。在此将这四种方法进行一下说明。 2.1.1句法模式识别 对于较复杂的模式,如采用统计模式识别的方法,所面临的一个困难就是特征提取的问题,它所要求的特征量十分巨大,要把某一个复杂模式准确分类很困难,从而很自然地就想到这样的一种设计,即努力地把一个复杂模式分化为若干

较简单子模式的组合,而子模式又分为若干基元,通过对基元的识别,进而识别子模式,最终识别该复杂模式。正如英文句子由一些短语,短语又由单词,单词又由字母构成一样。用一组模式基元和它们的组成来描述模式的结构的语言,称为模式描述语言。支配基元组成模式的规则称为文法。当每个基元被识别后,利用句法分析就可以作出整个的模式识别。即以这个句子是否符合某特定文法,以判别它是否属于某一类别。这就是句法模式识别的基本思想。 句法模式识别系统主要由预处理、基元提取、句法分析和文法推断等几部分组成。由预处理分割的模式,经基元提取形成描述模式的基元串(即字符串)。句法分析根据文法推理所推断的文法,判决有序字符串所描述的模式类别,得到判决结果。问题在于句法分析所依据的文法。不同的模式类对应着不同的文法,描述不同的目标。为了得到于模式类相适应的文法,类似于统计模式识别的训练过程,必须事先采集足够多的训练模式样本,经基元提取,把相应的文法推断出来。实际应用还有一定的困难。 2.1.2统计模式识别 统计模式识别是目前最成熟也是应用最广泛的方法,它主要利用贝叶斯决策规则解决最优分类器问题。统计决策理论的基本思想就是在不同的模式类中建立一个决策边界,利用决策函数把一个给定的模式归入相应的模式类中。统计模式识别的基本模型如图2,该模型主要包括两种操作模型:训练和分类,其中训练主要利用己有样本完成对决策边界的划分,并采取了一定的学习机制以保证基于样本的划分是最优的;而分类主要对输入的模式利用其特征和训练得来的决策函数而把模式划分到相应模式类中。 统计模式识别方法以数学上的决策理论为基础建立统计模式识别模型。其基本模型是:对被研究图像进行大量统计分析,找出规律性的认识,并选取出反映图像本质的特征进行分类识别。统计模式识别系统可分为两种运行模式:训练和分类。训练模式中,预处理模块负责将感兴趣的特征从背景中分割出来、去除噪声以及进行其它操作;特征选取模块主要负责找到合适的特征来表示输入模式;分类器负责训练分割特征空间。在分类模式中,被训练好的分类器将输入模式根据测量的特征分配到某个指定的类。统计模式识别组成如图2所示。

火灾报警系统施工方案

施工组织设计 投标单位(盖章): 法定代表人(盖章): 编制时间:

目录 1、工程概况┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈2 2、系统介绍┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈2 3、编制依据┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈3 4、施工现场管理┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈3 5、施工人员要求┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈4 6、进度控制┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈4 7、施工工序┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈4 8、质量保证措施┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈18 9、危险源、危险点分析及预防┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈19 10、施工现场文明施工环保的要求┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈20 1、工程概况:

本工程名称: 地点: 2系统介绍: 本消防系统包含了火灾自动报警系统、漏电保护系统、消防广播系统、消防、组成; 2.1、火灾自动报警系统由电感烟探测器、手动报警按钮、各类模块、分机、插孔、扬声器、消火栓按钮、可燃气体探测器、模块箱等设备;本系统设消防控制室。室集中设置自动报警监控、消防及紧急广播设备,消防控制室设置一台火灾报警控制器,其消防及紧急广播系统接入消防控制室消防及紧急广播系统。消火栓启泵线引至一期消防水泵房启动水泵。火灾自动报警系统采用总线制控制中心报警系统,外部设备的全部报警信号送至报警控制器上,经分析判断及确认后,自动或手动发出经编码的联动信号,通过总线及模块启停相应的消防联动设备,同事接收状态反馈信号;系统供电采用220VAC消防电源,及在线式不间断电源供电,由业主提供; 2.2、消防广播系统在消防控制室设置消防广播机柜,在所有防火分区设置消防广播扬声器。在火灾时,可以手动或按程序自动启动消防广播系统; 2.3、消防在手动报警按钮上设有插孔,可直接与消防中心通话,配电室设有专用火警分机; 2.4、消火栓系统在各层消火栓箱设消火栓破碎玻璃按钮,当任一层发生火灾时有人破碎玻璃后,可直接启动消防按纽,并向消防控制中心发出信号;确认火灾后由主机启动消防水泵。 3、编制依据: 3.1、依据:《火灾自动报警系统设计规》GB50116-98 《自动喷水灭火系统施工及验收规》GB50261-2005 《气体灭火系统施工及验收规》GB50166-2007 3.2、依据有关的国家及部颁施工标准及验收技术规 4、施工现场管理组 临建:现场库房及现场加工车间的确定:根据现场的实际情况,经甲方指定我单位的临时

图像识别技术发展状况及前景

医学图像配准技术 罗述谦综述 首都医科大学生物医学工程系(100054) 吕维雪审 浙江大学生物医学工程研究所(310027) 摘要医学图像配准是医学图像分析的基本课题,具有重要理论研究和临床应用价 值。本文较全面地介绍了医学图像配准的概念、分类、配准原理、主要的配准技术及评 估方法。 关键词医学图像配准多模 1 医学图像配准的概念 在做医学图像分析时,经常要将同一患者的几幅图像放在一起分析,从而得到该患者的多方面的综合信息,提高医学诊断和治疗的水平。对几幅不同的图像作定量分析,首先要解决这几幅图像的严格对齐问题,这就是我们所说的图像的配准。 医学图像配准是指对于一幅医学图像寻求一种(或一系列)空间变换,使它与另一幅医学图像上的对应点达到空间上的一致。这种一致是指人体上的同一解剖点在两张匹配图像上有相的空间位置。配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的点及手术感兴趣的点都达到匹配。 医学图像配准技术是90年代才发展起来的医学图像处理的一个重要分支。涉及“配准”的技术名词除registration外,mapping、matching、co-registration、integration、align-ment和fusion 等说法也经常使用。从多数文章的内容看,mapping偏重于空间映射;fu-sion指图像融合,即不仅包括配准,而且包括数据集成后的图像显示。虽然在成像过程之前也可以采取一些措施减小由身体移动等因素引起的空间位置误差,提高配准精度(称作数据获取前的配准preacquisition),但医学图像配准技术主要讨论的是数据获取后的(post-acquisition)配准,也称作回顾式配准(retrospective registration)。当前,国际上关于医学图像配准的研究集中在断层扫描图像( tomographic images,例如CT、MRI、SPECT、PET等)及时序图像(time seriesimages,例如fMRI及4D心动图像)的配准问题。 2 医学图像基本变换 对于在不同时间或/和不同条件下获取的两幅图像I1(x1,y1,z1)和I2(x2,y2,z2)配准,就是寻找一个映射关系P:(x1,y1,z1) (x2,y2,z2),使I1的每一个点在I2上都有唯一的点与之相对应。并且这两点应对应同一解剖位置。映射关系P表现为一组连续的空间变换。常用的空间几何变换有刚体变换(Rigid body transformation)、仿射变换(Affine transformation)、投影变换(Projec-tive transformation)和非线性变换(Nonlin-ear transformation)。 (1)刚体变换: 所谓刚体,是指物体内部任意两点间的距离保持不变。例如,可将人脑看作是一个刚体。 处理人脑图像,对不同方向成像的图像配准常使用刚体变换。刚体变换可以分解为旋转和平移:P(x)=Ax+b(1) x=(x,y,z)是像素的空间位置;A是3×3的旋转矩阵,b是3×1的平移向量。

图像识别技术综述

图像处理与识别技术综述 摘要:本文简要介绍了图像处理与识别技术的相关知识,介绍了图像识别过程中的判别函数和判别规则,特征提取和选择的方法。设计一个基于16位处理器MC9S12XS128的图像识别系统在实际中的具体硬件实现。 关键词:图像识别特征提取MC9S12XS128 数字摄像头 An Overview of Image Recognition And Identifying Technology Abstract:This paper introduces some knowledge of image recognition and identifying technology,introduces the discriminant function discriminant rule in the image identifying progress, feature extraction and selection method. Designed an image identifying system based on 16-bit controller MC9S12XS128,and it has specific hardware implementation in fact. Key words: image identifying discriminaut rule MC9S12XS128 digital cameral

1 引言 图像是与视觉相关的最贴近生活的信息,它是客观世界的物体直接或间接作用于人眼而产生视知觉的实体。传统的图像处理技术就是对图像进行保存、处理、压缩、传输和重现。随着信息时代的到来,用于计算机处理的各种信息的需求越来越多,多媒体信息处理技术已经成为日常生活各个领域的迫切需要。人们更希望利用计算机技术处理人类视觉问题,如:人脸、指纹识别技术实现处理与个人有关的一切事物,利用视觉自动监视系统监视环境中发生的非常事件,利用字符识别技术实现文档图像的自动录入与处理。因此把传统的图像处理技术与模式识别处理技术相结合是图像处理的新趋势。 2 传统的图像处理技术 图像处理技术始于20世纪50年代,1964年美国喷射推进实验室(JPL )使用计算机对太空船送回的大批月球照片处理后得到了清晰逼真的图像,这是这门技术发展的里程碑,此后这门技术得到了广泛的发展。 传统图像处理技术包含图像的获取、变换、增强、编码、分割等方面的内容。 2.1 图像获取 图像可以根据其形式或产生方法来分类。 照片图画 光图像连续函数 离散函数 (数字图像)不可见的 物理图像 物体图像 可见的图像图片数学函数 图1 图像的分类 图像的获取[4]是指将其变为计算机可识别的信息。通常是数字化的过程,及扫描、采样、量化三个步骤。经过数字化过程后就得到了一幅图的数字表示,即数字图像。一般这个过程由摄像头等设备完成。反过来还可将数字图像进行显示。 2.2 图像变换 图像变换[6]广泛应用于图像滤波[2]、统计滤波[5]、图像数据压缩以及图像描述等。图像变换是将N ×N 维空间图像数据变换成另外一组基向量(通常是正交向量空间)的坐标参数,我们希望这些离散图像信号坐标参数更集中代表了图像中的有效信息,或者是更便于达到某种处理目的。 通常采用的方法有:傅里叶变换、相关分析、小波变换[7]、离散余弦变换(DCT )、正弦变

图像识别技术

伴随着通信技术与信息处理技术的迅猛发展,越来越多的纸质文档通过数字采集设备转换成文本图像,从而使文本图像数据能够快捷的在网络、卫星、传真通信信道中传输,因此,文本图像已逐渐成一个重要的信息来源。但是,现有的文本图像处理系统自动化程度低,且通用性不高,无法满足文本图像处理广泛性与实时性的要求。因此,研究如何对文本图像进行分析与处理,以便高效、快捷的获取文本图像的信息,是一项十分有意义的研究课题。本文在总结已有研究成果的基础上对文本图像的识别检索、预处理、版面分析和表格图像识别展开研究。所做的主要工作如下:1.依据图像的灰度分布和结构特征差异,对基于图像信息度量的文本图像识别检索算法进行改进,构造一种基于信息度量与Radon变换的文本图像识别检索算法。该算法综合利用文本图像与连续色调】图像的灰度分布与结构特征差异进行文本图像的识别检索。实验结果表明,所构造算法可有效降低文本图像识别检索的误识率。2.对基于Hough变换的文本图像倾斜检 图像识别,是利用计算机对图像进行处理、分析和理解,以识别各种不同模 式的目标和对像的技术。 图像识别可能是以图像的主要特征为基础的。每个图像都有它的特征,如字 母A有个尖,P有个圈、而Y的中心有个锐角等。对图像识别时眼动的研究表明, 视线总是集中在图像的主要特征上,也就是集中在图像轮廓曲度最大或轮廓方向 突然改变的地方,这些地方的信息量最大。由此可见,在图像识别过程中,知觉 机制必须排除输入的多余信息,抽出关键的信息。 图像识别的目的在于用计算机自动处理图像信息,以代替人去完成图像分类 及辨识的任务。数字图像处理与识别技术是模式识别领域一个重要的研究方向, 近几十年来,图像识别技术取得了深入和迅速的发展,并广泛应用于图像遥感、机 器人视觉、生物医学、地质勘探等多个领域。 随着图像识别技术在多领域的发展,由其在计算机视觉和图像处理研究中,已经取得了一定的研究成果。Mallat在小波变换中滤波器的设计、Belhumeur在Fisher变换中的识别模型和Largrange优化方式建立支持向量机。本文在总结上述研究成果的基础上,首先对摄像头采集的数据进行了处理,完成JPEG的编码,详细讨论了JPEG图像解码的过程并实现了其算法。

人脸图像检测与识别方法综述

综述 《自动化技术与应用》 2004年第 23卷第 12期 Survey 人脸图像检测与识别方法综述 王科俊 ,姚向辉 (哈尔滨工程大学自动化学院 ,黑龙江哈尔滨 150001) 摘要 :本文对人脸识别技术中的检测和识别分成两部分进行了讨论。首先 ,系统的整理分析了人脸检测的各种方法。其次 ,作为 人脸识别技术的第二个环节 ,对人脸的各种识别方法进行了比较性的论述 ,重点讨论了当前热点的识别算法。最后对人脸 识别技术的发展方向进行了展望。 关键词 :人脸检测 ;人脸识别 ;特征提取 ;模式识别 中图分类号 : TP391141 文献标识码 :A 文章编号 : 100327241 (2004) 1220005205 Survey of Human Face Detection and Recognition WANG Ke -jun ,YAO Xiang -hui (College of Automatization , Harbin Engineering University , Harbin 150001 ,China) Abstract :This paper describes the problem of human face detection and recognition. Firstly it synthesizes and analyzes the methods of human face de2 tection systematically from the view of the classification of human face detection ,

火灾自动报警系统设计方案与对策

火灾自动报警系统案 ●本系统采用控制中心型智能消防报警系统,具有火灾报警、联动控制等功能。系统包括以下容: 手动报警按钮、感烟探测器、感温探测器、警铃和水流指示器等报警装置,系统同时监视消火 栓按钮、报警阀、压力开关、水流指示器及信号阀等的动作信号。 ●为了便于控制和管理,所有消防信号将显示于总控制屏上,以便一旦发生火灾时,可迅速报告 消防局。 ●消防总控制室有以下设备:消防系统主机(工作站)、火灾视屏显示屏(LED)、火灾自动报警系 统总控制屏、消防联动控制盘、消防专用主机、应急电源配电盘和UPS电源、消防系统运行记 录打印机等。消防控制室可监听所有消防电源设备的状态。另外,消防总控制室设置一部直拨 消防单位的外线,并同时提供与消防插匹配的手提。 (1)火灾报警系统保护目标 ●快速火灾探测 ●准确定位火灾地点 ●及时发出火灾报警信号 ●警示相关人员以实现: ●快速疏散建筑物人群 ●通知相关部门采取救援措施 ●指示相关消防设备动作以实现: ●自动启动消防泵、喷淋泵等水系统灭火设备 ●联动火灾隔断手段如关闭防火卷帘门和防火阀等 ●开启排烟风机、正压风机等防排烟设备 ●开启应急广播、应急照明和疏散指示系统 (2)系统设计原则 ●系统应符合中国有关法律法规,符合消防管理条例和标准。 ●遵照安全第一、预防为主的原则,火灾自动报警系统应格保证设备可靠性和系统可靠性,避免 误报。 ●系统应具有先进性和适用性:系统的技术性能和质量指标均达到国际先进水平,且在安装调试、 软件编程和操作使用各面均简便易行,并适合建筑特点,达到最佳的性能价格比。 ●在系统设计时应明确与建筑设备监控系统、安防系统之间的接口界面,且系统的各项技术规均 符合相应要求。 ●在设计火灾自动报警系统时应预留该系统与综合信息共享管理系统之间信息数据交换接口,系 统的各项技术规均符合相应要求。 ●在系统设计时应尽量优化设备配置,考虑了整个建筑全系统的统筹配置,避免设备的重复购置 和管线的混乱局面。 在系统设计时应保留足够的冗余度:探测点与控制点的容量上及回路卡的设置上均应保留不少于20%的扩展余地。报警系统施工主要程序:

森林火灾图像自动识别系统的设计

青岛农业大学 毕业论文(设计) 题目:森林火灾图像自动识别系统的设计姓名:孔德杰 学院:机电工程学院 专业:农业电气化与自动化 班级:2007.02 学号:20072329 指导教师:高鸿雁 2011年06月18日

毕业论文(设计)诚信声明 本人声明:所呈交的毕业论文(设计)是在导师指导下进行的研究工作及取得的研究成果,论文中引用他人的文献、数据、图表、资料均已作明确标注,论文中的结论和成果为本人独立完成,真实可靠,不包含他人成果及已获得青岛农业大学或其他教育机构的学位或证书使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 论文(设计)作者签名:日期:年月日 毕业论文(设计)版权使用授权书 本毕业论文(设计)作者同意学校保留并向国家有关部门或机构送交论文(设计)的复印件和电子版,允许论文(设计)被查阅和借阅。本人授权青岛农业大学可以将本毕业论文(设计)全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本毕业论文(设计)。本人离校后发表或使用该毕业论文(设计)或与该论文(设计)直接相关的学术论文或成果时,单位署名为青岛农业大学。 论文(设计)作者签名:日期:年月日 指导教师签名:日期:年月日

目录 摘要 (Ⅰ) Abstract (Ⅱ) 1 绪论 (1) 1.1森林火灾 (1) 1.1.1森林的作用 (1) 1.1.2森林火灾的危害 (1) 1.2国内外研究现状 (2) 1.3火灾监测技术 (2) 1.3.1传统的火灾监测技术 (3) 1.3.2图像型火灾监测技术 (3) 2 火灾图像的处理 (5) 2.1研究方案 (5) 2.1.1图像的获得 (5) 2.1.2图像特征 (5) 2.2研究方法 (6) 2.2.1图像提取 (6) 2.2.2图像增强 (7) 2.2.3图像分割 (10) 2.2.4图像锐化 (12) 2.2.5轮廓提取 (12) 2.2.6图像特征的提取 (13) 2.2.7人工神经网络 (14) 3 过程讨论 (15) 3.1实验仿真 (15) 3.2结合BP神经网络 (18) 4 结果分析 (21) 4.1总结 (21) 4.2展望 (22) 参考文献 (22) 致谢 (23) 附录 (24)

浅析人工智能中的图像识别技术

浅析人工智能中的图像识别技术 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。文章简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。 1 图像识别技术的引入 图像识别是人工智能科技的一个重要领域。图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。图像识别,顾名思义,就是对

图像做出各种处理、分析,最终识别我们所要研究的目标。今天所指的图像识别并不仅仅是用人类的肉眼,而是借助计算机技术进行识别。虽然人类的识别能力很强大,但是对于高速发展的社会,人类自身识别能力已经满足不了我们的需求,于是就产生了基于计算机的图像识别技术。这就像人类研究生物细胞,完全靠肉眼观察细胞是不现实的,这样自然就产生了显微镜等用于精确观测的仪器。通常一个领域有固有技术无法解决的需求时,就会产生相应的新技术。图像识别技术也是如此,此技术的产生就是为了让计算机代替人类去处理大量的物理信息,解决人类无法识别或者识别率特别低的信息。 图像识别技术原理 其实,图像识别技术背后的原理并不是很难,只是其要处理的信息比较繁琐。计算机的任何处理技术都不是凭空产生的,它都是学者们从生活实践中得到启发而利用程序将其模拟实现的。计算机的图像识别技术和人类的图像识别在原理上并没有本质的区别,只是机器缺少人类在感觉与视觉差上的影响罢了。人类的图像识别也不单单是凭借整个图像存储在脑海中

图像处理即图像识别过程

图像处理即图像识别过程 图像处理(imageProcessing)利用计算机对图像进行分析,以达到所需的结果。 图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。 这种处理大多数是依赖于软件实现的。 其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。 l)图像采集 图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。 2)图像增强 图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。 3)图像复原 图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。 4)图像编码与压缩 数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。 5)图像分割技术

火灾报警系统设计方案

火灾报警系统设计方案 第一章绪论 1.1本课题研究背景 随着我们社会的不断发展,人们的生活、工作以及我们居住的环境愈来愈相对的集中,火灾发生的可能性也变得日益突出,火灾给人们所造成的损失和危害也越来越不可忽视,对广大人民群众的生命财产安全造成了很大的威胁。世界上很多国家都致力于各种各样的火灾报警系统的研究和实验,人们更加重视对火灾发生的及时发现与报警。2011年,我国公安部消防局公布了当年的全国火灾情况,全国共接到报火灾一共125402起,死亡人数一共1106人,受伤人数有572人,直接造成的财产经济损失有18.8亿元。其中,尤其是在节日期间,燃放烟花原因所造成的火灾有所增多,还有建设施工的工地、以及小作坊和小商店等场所火灾发生的数量较多,同时由于用电用火所引起的火灾,在火灾发生总量上仍然占据了比较大的比重。 统计数据显示,全国较大火灾共接报76起,死亡281人,受伤54人,直接财产损失8468.2万元,与2010年相比,死亡人数增加3.3%。全国公司厂房所发生的火灾6779起;居民住宅一共发生了火灾有48548起;而用作仓储场所引起的火灾一共5463起,人口比较集中的场所所发生火灾12471起,因为交通工具事故所造成的火灾13049起;易燃易爆地方事故所发生的火灾407起;城乡火灾总量下降。全国农村一共发生了火灾38469起,死亡349人,受伤154人,造成直接财产损失有39301.3万元。而城市已共引发火灾有43171起,死亡331人,受伤196人,造成的直接财产损失有55330万元;从以上统计数据可以看出,我国火灾情况不容乐观,因此,传统的火灾报警系统已经越来越不适应当今火灾发生的复杂情况了,而传统的火灾报警系统多采用RS-485总线作为通信方式,通信可靠性比较差。所以现在各国更加注重,更加智能、高效、可靠的型、火灾报警控制系统的开发。现代智能高效的火灾报警系统是一个将信号的检测、传输以及控制集于一体的控制系统, 指引了当今智能火灾报警系统的发展方向[1]。

图像识别火灾检测报警系统的设计与实现

图像识别火灾检测报警系统的设计与实现 发表时间:2017-11-02T11:29:23.927Z 来源:《基层建设》2017年第19期作者:许伟靖1 孙伟2 [导读] 摘要:近年来,图像识别火灾检测报警系统的设计问题得到了业内的广泛关注,研究其相关课题有着重要意义。 沈阳城市建设学院(信息与控制工程系) 辽宁沈阳 110167 摘要:近年来,图像识别火灾检测报警系统的设计问题得到了业内的广泛关注,研究其相关课题有着重要意义。本文首先对相关内容做了概述,分析了早期火灾探测技术的发展以及大空间火灾探测问题。在探讨火灾图像监测技术的基础上,结合相关实践经验,分别从多个角度与方面就火灾图像监测技术现状展开了研究,阐述了个人对此的几点看法与认识,望有助于相关工作的实践。 关键词:图像识别;火灾检测报警系统;设计;实现 1前言 作为一项实际要求较高的实践性工作,图像识别火灾检测报警系统的设计有着其自身的特殊性。该项课题的研究,将会更好地提升对图像识别火灾检测报警系统的分析与掌控力度,从而通过合理化的措施与途径,进一步优化其设计工作的最终整体效果。 2概述 物质在其燃烧时,产生烟雾,并释放出称之谓气溶胶的燃烧气体,当气体与空气中的氧发生化学反应,就会成为含有大量红外线和紫外线的火焰,致使周遭温度升高。那么烟雾、温度、火焰和燃烧气体就成为了火灾参量。 火灾探测器的主要功能是通过对温度、火焰和燃烧气体等参量及时做出有效反应,然后再通过一些敏感软件,把这些表征火灾参量的物理量变化为电信号,最后传送到火灾报警器。因此我们可以根据不同的火灾参量以及不用的响应方式,创制各种各样的火灾探测器。其中较典型的有:感温、感烟、火焰、气体、图像和复合式等。 火灾过程通常都伴随着大量烟、气、温、光等各类信号的出现,处于不同的环境以及不一样的燃烧成分,都会对烟雾颗粒的组成、色彩、温场分布以及光谱造成不同。因此,火灾发生过程中会涉及到许多物理与化学参数,而且其表现出的特征又比较突出,那么针对火灾发生时不同生成物的特性而起作用的是不同类型的火灾探测器。分别作用于不同的场合,自然也有各自的局限性。 3早期火灾探测技术的发展 自19世纪40年代至20世纪40年代,感温探测器一直都是占据主导地位,但是这类探测器有一个明显的不足就是对火灾探测的反应不是很灵敏。但是当时随着感温火灾探测器大量的不断被用于军事上,这在一定程度上促进了火灾探测技术的迅猛发展。 到了20世纪50年代,瑞士物理学家EmstMeili研制出了现代离子感烟探测器的雏形,1970年时,欧洲已经安装了近百万只离子感烟探测器,到目前仍占已经安装火灾探测器的90%。在离子感烟探测器统治的30年之中,人们也逐步开始研究光电感烟技术,但却苦于相关工艺技术原因没有得到实际应用。 20世纪70年代末,由于突破了高寿命的光电元件技术,光电感烟探测器应运而生,并取得长足进步。国外在大幅度减少离子感烟探测器,光电感烟探测器的销售量己经占到90%,我国也逐步呈现这种趋势。 4大空间火灾探测研究概况 根据采集的信号的类型不同火灾探测器可分为感温、感烟、感光、气体火灾探测器以及复合型探测器等几类。但由于受到各种因素(粉尘、温度、湿度、空间高度、空气流速等)的影响,或者被保护场所的特殊要求,因而在相对较大的场所,或需要早期以及更早期发现火险的重要场所失去了效用。所以大空间内早期火灾的探测报警成为热安全工程技术领域的一项难点,主要原因有以下几点:(1)由于空间高度增大和空气流动等原因致使烟气和温度无法到达顶棚,即使到达顶棚却出现了烟气浓度和温度下降,这就使感烟和感温探测器产生误报警或不报警。当粉尘浓度过大也会使离子型感烟探测器失去相应效用。 (2)根据探测火焰发出的红外或紫外光感光火灾探测器发出报警信号。但由于判据单一,极易对高功率热源或强光产生误报警。 (3)复合型防火探测器仅仅增加了判据的数目,并没有完全消除以上缺点,仅仅使探头的整体性能稍有改善。 近年来火灾科学界正逐步把注意力转移到火灾现象本身和深层次的机理研究方面,并取得了一定的成果。相关的技术方法都把火灾过程中的某个特征物理量作为监测对象。比如图像型火灾探测器技术和产品的研究和开发。 5火灾图像监测技术的提出 通过不断的研究我们意识到当可燃物质处于燃烧的过程中时,会释放出从紫外到红外频率范围的光波,对于可见光波段,因为其都有独特的色谱以及纹理等特点,会出现火焰的图像与背景有明显的区分。燃烧学的各种原理证明,当火焰燃烧过程中有高达95%的能量是集中到红外波段进行释放的。所以这就提示我们在对图像进行处理的过程中,对于红外波段的图像识别完全可以通过红外成像的原理来获的可燃物燃烧所释放出的红外图像进行图像处理,以达到实时监控的目的。图像信息的丰富化和直观性是其他任何火灾探测器所不能提供的。 我们通过对图像的处理,可以及时的观察到火灾的发生。而图像监测快速性的基础是视觉所接受以光为传播媒介的信息;因此可以判定图像信息是否丰富和直观往往是我们对火灾发生时辨别及判定,奠定了坚实的基础,这是其他火灾探测技术都无法实现的。通过图像来监控火灾的发生,其中涉及到一个非常关键的部件,那就是光学镜头。它是图像检测过程中与外界发生间接接触的纽带,通过这种监控结构,即使是在十分恶劣的室内环境中也可以保证图像监测技术的正常使用,同时也可以在室外环境中使用。 远程视频监控系统通过采用非接触式的探测技术,使其防腐蚀性能和密封性能良好,抗干扰能力强,利用结合数字通信和数字图像处理技术,分析火灾火焰的图像特征,使大空间恶劣环境下的火灾探测问题得到了更好的解决。 6火灾图像监测技术的研究现状 火灾图像探测系统,是一种以计算机为核心,结合光电技术和计算机图像处理技术研制而成的火灾自动监测报警系统,同时具有观测普通影像和红外监测实现火灾自动报警的双重功能。基于数字图像处理和分析的新型火灾探测,火灾图像探测利用摄像头对现场进行监视,对获得的图像进行图像处理和分析,这样就可以通过早期火灾火焰的形体变化特征来探测火灾的发生。 利用图像进行火灾探测有自己独特的优势,因为图像是包含了强度、形体、位置等信息的信号。目前国内外对这种新的火灾探测技术开展了深入研究。比如“视频火灾探测”方法;通过提取电站锅炉燃烧火焰的图像特征,再用人工神经网络的方法对火焰形态作研究,这样在区分燃烧情况方面就得到了更好的结果;通过阐述火灾图像探测的基本原理,提出了提取早期火灾火焰辐射持性、形体变化特性的几种新

相关文档
最新文档