气泡减阻

气泡减阻
气泡减阻

Click here for quick links to Annual Reviews content online, including:

? Other articles in this volume ? Top cited articles

? Top downloaded articles ? Our comprehensive search

Further

ANNUAL REVIEWS

PIV:particle image velocimetry DNS:direct

numerical simulation HWA:hot-wire anemometry LDV:laser-Doppler velocimetry

1.INTRODUCTION

In the past three decades,particle image velocimetry (PIV)has become a standard tool in exper-imental ?uid mechanics.The principal characteristic that has made it so useful is its ability to measure the instantaneous velocity ?eld simultaneously at many points,typically of the order of 103–105,with spatial resolution suf?cient to permit the computation of the instantaneous ?uid vorticity and rate of strain.To date,PIV is the only experimental method that provides such information in rapidly evolving ?ows.PIV measurements are most commonly snapshots of the two-or three-component velocity vector ?eld on a planar cross section of the ?ow,but in recent years new developments have made it possible to measure the velocity over volumetric domains and to measure sequences of velocity in time at rates suf?cient to resolve the temporal evolution.Undoubtedly,PIV has signi?cantly advanced experimental ?uid mechanics,especially the study of ?ows in complex geometries and turbulent ?ows,providing resolution and detail that can compete with modern numerical methods,such as direct numerical simulation (DNS)(Moin &Mahesh 1998).Applications of PIV range from creeping ?ows (Santiago et al.1998)to detonations last-ing only a few tens of microseconds (Murphy &Adrian 2011),from nanoscale ?ow phenomena (Stone et al.2002,Zettner &Yoda 2003)to motion in the atmosphere of Jupiter (Tokumaru &Dimotakis 1995),and from the motion in the beating heart of vertebrate embryos (Hove et al.2003,Vennemann et al.2006)to the accidental release of oil at the bottom of the Gulf of Mexico (McNutt et al.2011,2012).The evolution of PIV into the currently dominant method for mea-suring velocity is illustrated in Figure 1.Since its invention,it has largely superseded the two most important methods of measuring point-wise velocity,hot-wire anemometry (HWA)and laser-Doppler velocimetry (LDV).These methods have strengths that PIV has not been able to duplicate thus far.HWA has a superb signal-to-noise ratio,which makes it ideally suited to study low-intensity turbulent ?ows and their spectra,whereas LDV is well suited to high-intensity ?uc-tuations with respect to the mean and accurate measurements of long-time average,single-point statistics.But neither provides the spatial derivatives,?ow visualization,and capability for the spatial correlation offered by PIV,and Figure 1is perhaps best interpreted as an indicator of the importance of those capabilities in modern experimental ?uid mechanics.

19601970198019902000

1

2

3

4

R e l a t i v e o c c u r r e n c e (a r b i t r a r y u n i t s )

HWA LDV PIV

Figure 1

The occurrence of the trigrams hot wire anemometry (HWA),laser Doppler velocimetry (LDV),and

particle image velocimetry (PIV)in Google Books (https://www.360docs.net/doc/be184906.html, )between 1952and 2008.We note that a previous review on PIV in this journal (Adrian 1991)appeared when there was no obvious

prevalence for any of the three main measurement methods.In the two decades since,PIV has become the dominant approach in experimental ?uid mechanics.Data taken from Google Ngrams.

410

Westerweel

·

Elsinga

·

Adrian

A n n u . R e v . F l u i d M e c h . 2013.45:409-436. D o w n l o a d e d f r o m w w w .a n n u a l r e v i e w s .o r g b y M i c h i g a n S t a t e U n i v e r s i t y L i b r a r y o n 01/03/14. F o r p e r s o n a l u s e o n l y .

PTV:particle

tracking velocimetry Image density:average number of particle images per interrogation window Interrogation domain:small subpart of an image pair containing a pattern of particle images for which the displacement is determined by

evaluating the spatial cross-correlation Image shifting:approach to avoid directional ambiguity in multiple-exposure single-frame recording

PIV has been reviewed in the literature several times (Adrian 1991,2005;Tropea et al.2007;Wereley &Meinhart 2010;Katz &Sheng 2010)and is also the subject of two books (Raffel et al.1998,Adrian &Westerweel 2011).The most recent book presents the current state of the art for PIV in its broad sense,i.e.,including approaches such as particle tracking velocimetry (PTV),microscopic PIV,and holographic PIV.In view of the material covered in these sources,this article brie?y reviews only the major developments in PIV over the past 20years,and it concentrates in more detail on recent major developments and their logical extensions into the foreseeable future.These are time-resolved PIV (Section 1.3),statistical PIV (Section 1.4),and tomographic PIV (Section 2).In Section 3,we consider the current limitations of PIV,and in Section 4we consider some pathways that might be taken by the next generation of PIV instruments.

1.1.Synopsis of a Basic PIV System

Our review begins where a previous Annual Reviews article on imaging methods in ?uid me-chanics left off (Adrian 1991).That article considered many different methods—particle streak,laser speckle,optical ?ow analysis,particle tracking—and argued that double-pulsed,high-image-density images analyzed by digital spatial correlation analysis offered the best chance of achieving a large number of vector measurements per unit area and hence the best spatial resolution for studies of complex ?ows such as turbulence.At that time,images were necessarily recorded on photographic ?lms that required chemical processing.Subsequently,?ve developments combined to crystallize the form of the modern single-camera PIV system.(a )Digital computing power in-creased enough to permit the computation of two-dimensional (2D)spatial correlation functions using laboratory computers.(b )The feasibility of digital PIV was established (Willert &Gharib 1991)and theory was developed that enabled optimal implementation and established the basis for further re?nements (Keane &Adrian 1990,1991,1992;Westerweel 1993,1997,2000,2008;Westerweel et al.1997).(c )Digital cameras became available that were well suited to PIV by virtue of having more than 1million square pixels.(d )Special PIV cameras were developed that could separately store two images in close (<1μs)succession (Lai et al.1998,Lourenc ?o et al.1994).(e )Double-oscillator solid-state Nd:YAG lasers became available with pulse energies suf?cient to expose images of micrometer-sized scattering particles.Keane &Adrian (1990,1991,1992)de?ned a set of four simple “design rules”that provide guidelines to the optimal concentration of particles and exposure time delay t between the two light pulses with respect to the size of the interrogation domain,the light-sheet thickness,and the local variations in velocity.

This combination of a double-pulsed laser forming a light sheet,a single digital camera imaging light scattered from particles at 90?to the light sheet,and spatial correlation analysis of the images to determine their displacement in the image plane is a standard that has remained remarkably constant over the past two decades.A complete PIV system is shown schematically in Figure 2.The laser pulses are separated by an easily adjustable time delay t ,and the pulse durations are short enough,~10ns,to effectively freeze the images of submicrometer particles moving at all but the hypersonic velocities.Pulse energies range from 5to 200mJ,depending on the size of the illuminated region.The scattering particles are selected to follow the accelerations within the ?ow ?eld with high accuracy (i.e.,small velocity slip),to scatter light of intensity suf?cient to form clear images,and to have relatively uniform size.Typically,~1-μm aerosol particles,liquid or solid,are used in gas ?ows,and ~10-μm solid particles are dispersed into water ?ows.Images from the ?rst laser pulse are stored in the ?rst camera frame,and images from the second pulse go into a separate,second frame.This two-frame recording determines unambiguously the direction of the displacement between any pair of particle images,and it allows the analysis of overlapping images,thereby eliminating the need to employ image shifting (Adrian 1986).The frames are divided into

https://www.360docs.net/doc/be184906.html, ?PIV for Complex and Turbulent Flows

411

A n n u . R e v . F l u i d M e c h . 2013.45:409-436. D o w n l o a d e d f r o m w w w .a n n u a l r e v i e w s .o r g b y M i c h i g a n S t a t e U n i v e r s i t y L i b r a r y o n 01/03/14. F o r p e r s o n a l u s e o n l y .

?eld measured by stereoscopic PIV in turbulent pipe?ow at Re

plane is normal to the pipe axis.The arrows indicate the in-plane

indicates the axial velocity component.Data provided by Sebastian

University of Technology.(Animation available as Supplemental

Material link from the Annual Reviews home page at https://www.360docs.net/doc/be184906.html, Supplemental Material

of coherent ?ow structures in turbulent ?ows.Moreover,PIV enables the turbulence production terms,and other turbulence properties,to be evaluated even in highly complex ?ow geometries,such as in turbomachinery (Soranna et al.2010)and stirred reactors (Sharp &Adrian 2001).Positioning the light sheet normal to the main ?ow direction,in combination with stereo-scopic PIV,provides a means to determine the quasi-instantaneous ?ow structures as they advect through the measurement plane (see Figure 3).This approach revealed the ?rst experimental observation of new solutions,in the form of traveling waves,for the Navier-Stokes equations in a pipe geometry (Hof et al.2004).

Multiple-plane PIV has made it possible to measure derivatives perpendicular to the planes.Two parallel planes generated by two separate dual-laser systems in combination with a dual stereoscopic PIV system (i.e.,with four cameras in total)can be utilized in various ways (K¨a hler &Kompenhans 2000).Besides setting up arrangements that reduce the measurement uncertainty due to large out-of-plane motion,one can record all three velocity components at the same instant in time at two nearby measurement planes.This requires the appropriate arrangement of the laser-beam polarization,polarization ?lters,and cameras.However,it is possible to measure all nine components of the instantaneous velocity gradient tensor in a planar cross section of the ?ow.This was utilized by Ganapathisubramani et al.(2005)to characterize the ?ow structure in the log region of a turbulent boundary layer.

The use of multiple (three to four)cameras makes it possible to determine the motion of individual tracer particles in a volumetric domain (Maas et al.1993,Virant &Dracos 1997,Ouellette et al.2006).This provides unique experimental data on Lagrangian ?ow statistics and was used to determine the pair dispersion function in highly turbulent ?ows (Bourgoin et al.2006,Xu et al.2007).

Single-camera and multiple-camera PIV systems with the appropriate optics and ?lters and ad-vanced image processing make it possible to separate various optical data,based on (tracer/particle)size or the separation of light wavelength.This can be used to investigate particle-laden turbulent ?ows (Kiger &Pan 2000,2002;Khalitov &Longmire 2002;Hwang &Eaton 2006;Poelma et al.2006,2007;Tanaka &Eaton 2010)or mixing in a turbulent ?ow by combining laser-induced ?uo-rescence and PIV (Webster et al.2001,Fukushima et al.2002,Westerweel et al.2002,Holzner et al.2006).The latter approach was also used to investigate the turbulence statistics relative to a strongly convoluted turbulent/nonturbulent interface (Holzner et al.2006;Westerweel et al.2005,2009).

1.3.Time-Resolved PIV

The temporal evolution of turbulent velocity ?elds can be measured by dynamic,high-speed,or time-resolved PIV (TR-PIV)systems using double-pulsed PIV images in rapid succession.TR-PIV is conceptually straightforward,and its technical achievements are determined principally by the performance of available light sources and cameras.In particular,frequency-doubled pulsed Nd:YLF lasers are capable of generating 10–20mJ per pulse and up to 10,000pulses per second.These are typically combined with CMOS (complimentary metal-oxide semiconductor)cameras that can record 1024×1024-pixel images at framing rates up to 5,000frames per second.(Higher frame rates are achieved for reduced-image formats.)

Hori &Sakakibara (2004)used a stereoscopic TR-PIV system combined with a scanning light sheet to record a volumetric domain of a low–Reynolds number free jet.This was one of the ?rst PIV results at high image density that provided spatially and temporally fully resolved data of a ?ow in a volumetric domain.In addition to measuring the time evolution,TR-PIV time sequences of stereoscopic PIV data and Taylor’s frozen-?eld hypothesis can be used to reconstruct the

414

Westerweel

·

Elsinga

·

Adrian

A n n u . R e v . F l u i d M e c h . 2013.45:409-436. D o w n l o a d e d f r o m w w w .a n n u a l r e v i e w s .o r g b y M i c h i g a n S t a t e U n i v e r s i t y L i b r a r y o n 01/03/14. F o r p e r s o n a l u s e o n l y .

quasi-instantaneous 3D vortical structures in the ?ow,such as for localized turbulence (or puffs)in transitional pipe ?ow (van Doorne &Westerweel 2009)or vortex packets in a turbulent boundary layer (Dennis &Nickels 2011).

TR-PIV offers the possibility of investigating strongly unstationary ?ows (e.g.,Hain et al.2009,Violato &Scarano 2011).Furthermore,the measured distributions can also be used to evaluate the different velocity terms in the continuity and Navier-Stokes equations and solve them for pressure (Liu &Katz 2006,de Kat &van Oudheusden 2012),making it possible to estimate sound sources related to the turbulent ?ow (Koschatzky et al.2011a,b).

The rapid succession of double images offers new possibilities for the improved analysis of PIV images,an area referred to as multiframe PIV.A number of methods have been proposed to exploit multiple images in the form of successive pairs of PIV images provided by current high-speed PIV cameras.These approaches improve the double-pulsed PIV measurements by using images at multiple times to optimize parameters (Legrand et al.2012),averaging over successive measurements assuming constant velocity (A.Sciacchitano,F.Scarano &B.Wieneke,private communication)or using adjustable time delays between double pulses (Hain &K¨a hler 2007).

1.4.Statistical PIV

There is a growing body of experimental studies in which PIV is used not to measure the instanta-neous ?elds,but instead to measure the ?ow statistics such as mean velocity or various components of the Reynolds stress tensor.This approach is particularly well suited to inhomogeneous turbu-lent ?ow in complicated geometries,such as the backward facing step or the separating boundary layer,wherein measurements need to be made on a 2D grid to document the ?ow.Data of this kind are used to validate the results of computational ?uid dynamics codes.The character of the experiments differs from measurements of instantaneous ?elds in that accuracy is of greater impor-tance.The use of PIV usually requires much less time in comparison to traversing a single-point probe to many points in the ?ow.This makes it possible to complete measurements in less time (saving operational costs)and relaxes the requirement of maintaining steady ?ow conditions over extended times.

One may conduct experiments for statistics by performing a series of conventional PIV velocity ?eld measurements and averaging over the ensemble of realizations,producing effectively a time average.But there is a different approach in which the local spatial correlation functions of the images in interrogation spots are averaged over the ensemble and then the mean statistics are extracted from the mean correlation function at each interrogation spot.This method builds on the correlation averaging technique developed by Delnoij et al.(1999)for multiphase ?ow and Meinhart et al.(2000)for microscopic PIV.It can be shown that the mean correlation is a convolution of the probability density function of the image displacements with the particle image function (Adrian 1988,Westerweel 2008).Therefore,either by deconvolution or by neglecting the effect of the image function,one can measure the probability density function,and hence the mean velocity and in-plane components of the Reynolds stress tensor.This approach is executed with very high spatial resolution by employing the single-pixel correlation method (Adrian &Westerweel 2011,Billy et al.2004,Westerweel et al.2004),and it has been utilized with impressive

results (K¨

a hler et al.2006,Scharnowski et al.2012).2.TOMOGRAPHIC PIV

Tomographic PIV (Figure 4)was recently introduced as a promising new method for measuring

the instantaneous 3D velocity ?eld (Elsinga et al.2006).In this approach,the tracer particles are

https://www.360docs.net/doc/be184906.html, ?PIV for Complex and Turbulent Flows

415

A n n u . R e v . F l u i d M e c h . 2013.45:409-436. D o w n l o a d e d f r o m w w w .a n n u a l r e v i e w s .o r g b y M i c h i g a n S t a t e U n i v e r s i t y L i b r a r y o n 01/03/14. F o r p e r s o n a l u s e o n l y .

Image pairs

Reconstructed volumes Velocity field Flow structures

Tomographic Cross-correlation

Gradients and Camera with lens on Scheimpflug mount

Measurement volume

Thick laser light sheet

Mirror

Light sheet–forming optics

Double-pulsed laser

X Z Y

X

Z Y

X Z Y

Figure 4

Supplemental Material

n n u . R e b y

Window

deformation:

approach in which the second window is

deformed according to the (estimated)

displacement ?eld to match the particle image pattern in the ?rst window

the cross-correlation analysis with the iterative multigrid (3D)window-deformation technique (Scarano &Riethmuller 2000)is usually favored as it produces less noise.

While maintaining the advantages of the simple optical arrangement of 3D PTV,the new tomographic PIV approach proved to be more robust for two main reasons.First,tomography does not rely on any particle detection,thereby relieving constraints on the particle image density and image quality that are inherent to 3D PTV.As a result,the particle image seeding density achieved typically increased by an order of magnitude from 0.005to 0.05particle images per pixel,and this resulted in substantial improvement in the spatial resolution.Second,the cross-correlation analysis of the particle displacement typically has lower noise compared to particle tracking methods.The overall measurement uncertainty for the particle image displacement is reported to be approximately 0.2–0.3voxel units (Elsinga 2008,Humble et al.2009,Atkinson et al.2011,K ¨

uhn et al.2011),which is comparable to stereoscopic PIV and only slightly above the noise level for standard planar PIV.

2.1.Applications

The variety of applications achieved to date clearly demonstrates the versatility of tomographic PIV,perhaps explaining its growing importance.The technique has been used in different ?ow facilities covering a velocity range from only a few micrometers per second in a water tank (Worth &Nickels 2011)to 510m s ?1in a supersonic wind tunnel (Humble et al.2009,Elsinga et al.2010).Furthermore,it can measure anywhere from millimeter-sized volumes when employing a microscope objective with four ports for imaging (Kim et al.2011)to meter-sized volumes,as demonstrated in a large-scale convection cell by K ¨uhn et al.(2011).Extensions to tomographic TR-PIV (Section 1.3)have been achieved in air and water by employing high-speed lasers and imaging systems (Hain et al.2008;Schr ¨

oder et al.2008,2011;Scarano &Poelma 2009).A two-phase ?ow investigation into drop coalescence has been reported by Ortiz-Due ?nas et al.(2010),who matched the refractive index of the phases to avoid optical distortions.They conducted measurements in only one of the two phases,but measurements of both are possible.Refractive index matching also allows internal ?ows to be accessed,such as in a human artery model (Buchmann et al.2011).Recently,Jeon &Sung (2012)applied tomographic PIV to study ?uid-structure interactions.The structures were made from a transparent sheet so that the particles on both sides could be recorded.By putting large marker dots on the surface,the authors could retrieve the position and deformation of the structure simultaneously with the ?ow velocity distribution on both sides.Many of the earlier studies focused primarily on the quantitative visualization of the coherent structures in various turbulent ?ows,based on data similar to those presented in Figure 5.Studies of turbulent boundary layers revealed the spatial organization of 3D vortical structures at different scales (Elsinga et al.2010)and the rapid growth of an ejection event (Schr ¨

oder et al.2008).Such data have been used to validate or to improve existing structural models for the speci?c turbulent ?ow.In all these cases,the 3D approach avoids the ambiguities inherent to the inference of 3D structures from planar data.More recently,however,tomographic PIV has been used to actually quantify the relevant ?ow variables related to the velocity gradients.For example,Worth &Nickels (2011)determined the joint probability density function of enstrophy and dissipation in homogeneous isotropic turbulence,and Elsinga &Marusic (2010)evaluated the material derivative of the invariants of the velocity gradient tensor,which de?ne a characteristic topology timescale.We anticipate that the quanti?cation of the different terms in the continuity and Navier-Stokes equations will become more common in the near future.This will likely produce valuable new insights into the interaction between the terms.In this context,one can think of,for instance,the balance between turbulence production and dissipation,especially in spatially evolving ?ows or

https://www.360docs.net/doc/be184906.html, ?PIV for Complex and Turbulent Flows

417

A n n u . R e v . F l u i d M e c h . 2013.45:409-436. D o w n l o a d e d f r o m w w w .a n n u a l r e v i e w s .o r g b y M i c h i g a n S t a t e U n i v e r s i t y L i b r a r y o n 01/03/14. F o r p e r s o n a l u s e o n l y .

b

5

Anaglyphs showing(a)vortical structures(lighter gray)as detected by the Q criterion in the transitional

following a zigzag boundary-layer trip(Elsinga&Westerweel2012)and(b)a fully turbulent

boundary layer(Elsinga et al.2007).The darker gray shading in panel b indicates a low-speed region.

the?ow is away from the observer.Depth can be perceived using stereoscopic glasses(i.e.,by placing

cyan?lter in front of the left and right eye,respectively),which deliver a clearer picture of the Supplemental Material

Self-calibration:

approach to correct for the disparity between camera calibrations based on the recorded particle images

fully 3D and turbulent ?ows that cannot be easily represented in DNS.However,direct compar-isons of the velocity gradient statistics between results from numerical simulations and experiments are still of interest,even in canonical cases,and are presently sparsely available.We note that suf-?cient spatial resolution is critical with regard to the accuracy of the measured velocity gradients,as shown in simulations of tomographic PIV measurements (Worth et al.2010)as well as in actual measurements (Tokg ¨oz et al.2012).

2.2.New Algorithm Developments

Advances related to the tomographic reconstruction algorithm have aimed at improving accuracy or mitigating the two main limitations of the original system,which were (a )the sensitivity of the result to the calibration accuracy and (b )the high computational costs of the reconstruction.For an accurate reconstruction of the particles,which are only a few voxels in diameter,the accuracy of the calibration needs to be better than 0.4voxels (Elsinga et al.2006).Although not impossible,this level of accuracy is very dif?cult to achieve routinely.Therefore,Wieneke (2008)introduced a volume self-calibration technique,which ?rst establishes the accuracy of the initial calibration and then corrects it.

A plain MART reconstruction is expensive in terms of the computation time and computer memory,as each reconstructed volume contains on the order of 109voxels,and there are approx-imately 1016weighting coef?cients relating the recorded image intensity to the volume intensity.Luckily,most of the volume is void,i.e.,not occupied by a tracer particle,and consequently most (more than 95%)voxel intensities are zero.The sparseness of the volumes can be exploited to signi?cantly reduce the number of operations in the reconstruction (Worth &Nickels 2008,Atkinson &Soria 2009).Although the exact implementation differs,the basic principle is to de-termine which voxels must have zero intensity and then skip them in the subsequent MART iterations because they do not contribute to the recorded image intensities.This approach re-sults in signi?cant speedup of a reconstruction by approximately a factor of 8(Atkinson &Soria 2009).Additionally,hardware-related speedups have been achieved employing computer clusters with parallelized codes (K ¨

uhn et al.2012)or using GPU computing.Furthermore,some tomo-graphic reconstruction strategies have been proposed recently that have the potential to reduce the computational load even more.These include the multiresolution approach,in which the spatial resolution of the reconstructed volume is progressively increased with the iterations (Discetti &Astarita 2012),and the so-called simultaneous MART algorithm (Atkinson &Soria 2009),which updates the reconstructed volume considering all pixels at the same time as opposed to updating on individual pixels in the standard MART algorithm.Both new methods yield an accuracy similar to MART;however,more iterations may be required for each volume reconstruction.

Improving the accuracy of the tomographic reconstruction may make it possible to operate at higher seeding densities,leading to higher spatial resolution of the ?nal measured velocity distribution.An example of a more advanced tomographic approach is motion tracking en-hancement (Novara et al.2010),which effectively removes the noise peaks that do not reappear in both reconstructed volumes used in the cross-correlation.Subsequent MART iterations then further enhance the reconstructed volume intensities.Motion tracking enhancement reduces random errors,but whether it can reduce bias errors due to so-called ghost pairs (see Section 2.3)remains unclear.Further improvements are expected from taking into account variations of the optical transfer function across the ?eld of view (Schanz et al.2012).New blends of PTV-tomographic reconstruction algorithms are currently also being investigated (Wieneke 2012).These last two methods are at relatively early stages of development,but appear promising.

https://www.360docs.net/doc/be184906.html, ?PIV for Complex and Turbulent Flows

419

A n n u . R e v . F l u i d M e c h . 2013.45:409-436. D o w n l o a d e d f r o m w w w .a n n u a l r e v i e w s .o r g b y M i c h i g a n S t a t e U n i v e r s i t y L i b r a r y o n 01/03/14. F o r p e r s o n a l u s e o n l y .

Ghost particle:spurious particle in a reconstructed tomographic PIV volume

SNR:signal-to-noise ratio

Source density:number of scattering sites within one particle image area;N S >O (1)indicates speckle

2.3.Accuracy Assessment

The ?nal measurement accuracy of a tomographic system depends on many experimental param-eters,most notably on the particle image density,the volume depth,and the number of cameras.These dependencies have been explored by means of simulated experiments (Elsinga et al.2006,Worth &Nickels 2008,Atkinson &Soria 2009).

The experimental conditions for which tomographic PIV yields accurate results can also be predicted theoretically by means of basic estimates for the number of ghost particles in the to-mographic reconstruction.They can affect the velocity measurement if the same ghost particles reoccur in both volumes used in the cross-correlation analysis,forming so-called ghost pairs.Such ghost pairs may introduce signi?cant bias errors in the measured velocity,which deteriorate the magnitude of the velocity gradients in the depth direction (Elsinga et al.2011).To avoid such bias errors,a signal-to-noise ratio (SNR),de?ned as the ratio of the number of actual particles N p over

the number of ghost pairs N ?

g

,needs to exceed a certain threshold value.The SNR is estimated from the relevant experimental parameters by

SNR ≡N p N ?g

=ppp 1?N

A p

?

z

?N

?1z

=

N S

z ?

z 0

1?N π

4d 2τd 2

e ?1

z ?d e /M 0

?1

,

(1)

where ppp is the particle image density in particles per pixel;N is the number of cameras;A p (=πd 2τ

/d 2e )is an effective particle image area (in pixel units),which is typically between 2and 3;and z and z 0are the volume depth in pixel units and physical units,respectively (Elsinga et al.2011).The ratio ?/ z ,or z ?/ z 0,is the relative part of the volume thickness over which the actual particle displacement is coherent,i.e.,varies within one particle image diameter d τ.Its value depends on the details of the ?ow.Furthermore,N S =ppp ×A p is the source density,M 0is the image magni?cation,and d e is the pixel pitch.We note that the same linear dimensions of a pixel and a voxel element are assumed in the above.The three terms between parentheses on the right-hand side of Equation 1represent an effective source density,A P ,and z ?expressed in pixel units,respectively.

One can then obtain an operational envelope for the SNR considering that the ratio ?/ z is at most unity ( ?= z )and bounded on the low end by ?=W S .The latter results from the requirement for nearly uniform displacement within a correlation window of linear dimension W S (in pixel units),for which the minimum size is given by the volume depth,the seeding density,and the required mean number of about seven actual particle pairs per window (Keane &Adrian 1992,Adrian &Westerweel 2011).The resulting SNR dependencies are shown in Figure 6.The region where tomographic PIV yields accurate results is bounded by the threshold value SNR =1[for MART reconstruction (Elsinga et al.(2011)]and the speckle limit N S ~=0.4(Adrian &Westerweel 2011,?gure 3.31).The SNR threshold value is only of order unity because the peak intensity of the ghost particles is lower on average than that of the actual particles (Elsinga et al.2006),which causes them to contribute less to the cross-correlation.Beyond the speckle limit,the fundamental assumption made in the tomographic reconstruction (i.e.,that the image intensity directly represents the particle distribution)is violated,which introduces signi?cant uncertainty.Speckle imaging may be avoided by using an incoherent light source,such as a light-emitting diode,but a limit in N S will exist nonetheless when too many pixels have nonzero intensity and the tomographic reconstruction is highly underdetermined.Still the SNR threshold will likely limit most experiments,as the ?ow ?eld is often unknown beforehand,and the conservative estimate ?= z thus applies.From the ?gure,it also becomes evident that improvements over the current reconstruction accuracy can increase the particle image density by a factor of 2–3at most before

420

Westerweel

·

Elsinga

·

Adrian

A n n u . R e v . F l u i d M e c h . 2013.45:409-436. D o w n l o a d e d f r o m w w w .a n n u a l r e v i e w s .o r g b y M i c h i g a n S t a t e U n i v e r s i t y L i b r a r y o n 01/03/14. F o r p e r s o n a l u s e o n l y .

DSR:dynamic spatial range

DVR:dynamic velocity range Diffraction-limited spot:smallest image of a point source for a perfect lens with a ?nite aperture Fill factor:fraction of the area of a pixel in a digital image sensor that is actually light sensitive

one would actually need to improve the performance of all other system components to achieve signi?cant total improvement.

The spatial resolution and velocity measurement error for a given exposure time delay t between the two recordings are de?ned relatively to the linear dimension x of the ?eld of view and the maximum allowable particle displacement x p ,max ,which are represented as the dynamic spatial range (DSR)and dynamic velocity range (DVR);i.e.,

DSR =

x x p ,max =

L X /M 0

x p ,max

and

DVR =

u max σu =M 0 x p ,max

c τ

d τ

,(2)

where M 0is the image magni?cation,L X (= x M 0)is the linear dimension of the image sensor,u max (= x p ,max / t )is the maximum measurable velocity within the interrogation domain,and c τd τ(=σu t )is the minimum resolvable difference in the particle image displacement for a given particle image diameter d τ(Adrian 1997).c τis a dimensionless measure for the ability of the interrogation algorithm to accurately determine the particle image displacement,and it is typ-ically of the order of 0.05–0.2(Adrian &Westerweel 2011).From these expressions,it follows immediately that the product of DSR and DVR is a constant,

DSR ×DVR =

L X

c τ

d τ

,(3)

which de?nes the performance of a given PIV system.This uncertainty principle states that a PIV system can achieve high spatial resolution only with the penalty of reduced relative measurement accuracy,and vice versa (Adrian 1997).We note that the size of the interrogation domain does not appear in Equation 3;the expression is equally valid for PTV,in which the ?uid motion is determined from individual particle images.

The image diameter cannot be made smaller than the diffraction-limited spot size with current technology,so it is not a practical means of improving performance.The physical size L X of digital camera arrays has been increasing slowly from 1Mpixel to 14Mpixel over the past 20years (see Section 1.1),and further slow improvement seems likely to continue.The value of c τdepends on the algorithm used to measure the displacement (including the peak interpolator),the image noise and background noise,particle image aberration,the ?ll factor of the pixels,particle image overlap,and particle image clipping by interrogation window edges.Currently,the best value achieved for c τin real 3D ?ows is approximately 0.05.The development of many new algorithms to determine displacement has not resulted in any substantial reduction of c τ.Of the effects that determine the value of c τ,the ?ll factor probably offers the most room for improvement,but it may be dif?cult to approach a 100%?ll ratio using PIV cameras,and a new design is probably needed.

Table 1summarizes a selection of representative PIV measurements over recent years.It can be seen that the performance of modern planar PIV approaches that of photographic PIV more than a decade ago.Although tomographic PIV provides volumetric ?ow data,it can only fully resolve turbulent ?ows at very low Reynolds numbers or it under-resolves ?ows at higher Reynolds numbers.This is also evident from Figure 7.We note that the actual values of DSR ×DVR are typically a factor of 2–3lower than the theoretical values given by Adrian &Westerweel (2011,table 7.3),implying that in practice the maximum range of displacements is not fully utilized.Although PIV would not be the primary choice to determine a turbulence spectrum (HWA provides far better capabilities for this),it is instructive to analyze the performance of PIV in relation to the characteristics of a turbulence spectrum.For (nearly)homogeneous and isotropic turbulence,the energy spectrum E (κ)is given by (Tennekes &Lumley 1972)

E (κ)=βε2/3κ?5/3

for

L ≤κ≤2π,(4)

422

Westerweel

·

Elsinga

·

Adrian

A n n u . R e v . F l u i d M e c h . 2013.45:409-436. D o w n l o a d e d f r o m w w w .a n n u a l r e v i e w s .o r g

b y M i

c h i g a n S t a t e U n i v e r s i t y L i b r a r y o n 01/03/14. F o r p e r s o n a l u s e o n l y .

Table 1Selection of representative PIV measurements of turbulent ?ows

x (mm)

x p ,max (mm)M 0d τ(μm)c τDSR DVR DSR ×DVR Re turb

Cylinder wake (Re =180)with tomographic PIV (Scarano &Poelma 2009)100

0.55

0.14

46.8

181

59

6,795

180

Turbulent TC ?ow (Re S =3,800)with

tomographic PIV (Tokg ¨oz et al.2012)

400.900.20––45672,975136

TBL (Re θ=2,460)with six-camera tomographic PIV (Schr ¨

oder et al.2011)68 1.060.3319.00.2064925,925800

Pipe ?ow (Re =5,300)with stereoscopic PIV (van Doorne &Westerweel 2007)

400.320.229.00.12126658,148360

Jet ?ow (Re =1,000)with scanning-plane PIV (Hori &Sakakibara 2004)1000.880.1733.10.06114748,475250

TBL (Re θ=1,900)with tomographic PIV (Elsinga et al.2007)

320.960.1812.00.31332608,640633

Jet ?ow (Re =2,000)with digital planar PIV

(Fukushima et al.2002)450.320.27 6.60.20143659,231500

Pipe ?ow (Re =5,300)with digital planar PIV

(Westerweel et al.1996)400.490.30 5.10.248212210,000362

Pipe ?ow (Re =10,000)with high-speed stereoscopic PIV (unpublished data)400.320.4810.70.1212612015,097565

TBL (Re θ=2,370)with large-format photographic PIV (Adrian et al.2000)

1510.550.8350.00.102739125,000790

Experimental conditions are speci?ed by the ?eld-of-view x ,maximum particle displacement x p ,max ,image magni?cation M 0,and particle-image diameter d τ.c τrepresents the measurement error for the particle-image displacement relative to d τ.The dynamic spatial range (DSR)and dynamic

velocity range (DVR)are de?ned in Equation 2.The turbulent Reynolds number Re turb is based on the wall friction velocity for wall-bounded ?ows [i.e.,pipe,turbulent boundary layer (TBL),and Taylor-Couette (TC)];for jet ?ow,it is based on the turbulence level.

where βis a constant,κis the wave number,L is the integral length scale,and ηis the Kolmogorov length scale,de?ned as

η= ν3/ε 1/4with L

~Re 3/4,(5)where νis the kinematic viscosity,and εis the (mean)dissipation rate per unit mass.The conven-tional view is that in a turbulent ?ow,energy is transferred from the macroscale to the microscale through the breakup of larger eddies into smaller eddies,i.e.,the so-called energy cascade.Eddies have a ?nite extent;i.e.,eddies of size are associated with a wave packet of width κ ~κ

https://www.360docs.net/doc/be184906.html, ?PIV for Complex and Turbulent Flows

423

A n n u . R e v . F l u i d M e c h . 2013.45:409-436. D o w n l o a d e d f r o m w w w .a n n u a l r e v i e w s .o r g

b y M i

c h i g a n S t a t e U n i v e r s i t y L i b r a r y o n 01/03/14. F o r p e r s o n a l u s e o n l y .

Super-resolution:approach that

combines correlation analysis with particle tracking

full-scale value.Thus errors are 5–10%for a velocity that is only one-tenth of the full scale (under optimal conditions).

As mentioned in Section 3,Equation 3indicates that improving the performance of current two-pulse PIV requires either increasing the camera array dimension L X or decreasing c τ,which are both not expected to improve by a signi?cant magnitude.At this point,it appears that a factor of 2might be achievable by improving cameras and ?ne-tuning everything else.Clearly,to achieve a more dramatic improvement,we need a signi?cant innovation.

The DVR given by Equation 2is optimistic because the analysis does not take into account accelerations due to temporal and spatial variations of the ?ow that cause velocity changes dur-ing the time between laser pulses.The magnitude of the velocity change increases if x p ,max is made larger by increasing t ,which places another constraint on the maximum achievable DVR.Balancing the random error in the measurement of image displacement against the acceleration error,Boillot &Prasad (1996)have shown that there is an optimum time between pulses given by

t opt =

2c τd τ

M 0 ˙v p max .(7)The resulting DVR becomes limited by acceleration,DVR

M 0

c τ

d τ ˙v

p max .(8)

For example,estimating ˙v p

max ≈u 2max / and taking M 0=0.25,c τd τ=2.5μm,and =10mm,

one obtains a DVR ~=32,appreciably below the value of 100–200that is normally estimated when acceleration is ignored.The remedy clearly calls for a new measurement method that eliminates the acceleration error by directly measuring the acceleration.

4.1.Triple-Pulse PIV

If one uses multiple pulses to create images at more than two times,it is possible to measure the

velocity with greater time accuracy and to measure the acceleration directly.Moreover,one can use the additional position sample(s)to interpolate for particle position and velocity as a function of time,thereby improving the accuracy with which the measurement of the Lagrangian particle velocity is assigned to an Eulerian point in the ?uid.Increasing the number of pulses also reduces the required number of particles,so super-resolution by particle tracking improves (Keane et al.1995),and many other effects,such as particle image overlap and background noise due to particles,are also attenuated.

We consider here the improvements that may be possible by adding a single additional light pulse to the conventional double-pulsed PIV.Three light pulses separated by time delays as small as 10ns can be provided by a combination of beams from three solid-state laser oscillators,and current light-emitting-diode technology is capable of economically providing triple pulses with the pulse duration approaching 1μs (Willert et al.2010).

Haranandani (2011)recently analyzed the degree to which multipulse PIV can improve per-formance,?nding that the move from two to three pulses improves the velocity resolution and the spatial resolution.The improvement depends on the acceleration experienced by the ?uid and the tracer particles.If the acceleration results from path-line curvature at constant speed,the third pulse does little to improve the velocity accuracy and mainly improves the spatial resolution.If the acceleration results from speed variation along the path line,the velocity resolution is improved more than the spatial resolution.Because the resolution depends on the ?ow,it is dif?cult to

https://www.360docs.net/doc/be184906.html, ?PIV for Complex and Turbulent Flows

425

A n n u . R e v . F l u i d M e c h . 2013.45:409-436. D o w n l o a d e d f r o m w w w .a n n u a l r e v i e w s .o r g b y M i c h i g a n S t a t e U n i v e r s i t y L i b r a r y o n 01/03/14. F o r p e r s o n a l u s e o n l y .

R θ0 Δt / R

.

t ' / Δt

1.4

1.2

1.00.8

0.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

0.8

0.6

0.1

0.2

0.30.4

0.5

0.10.20.3

0.40.5

0.6

0.70.80.91.0

Figure 9

The cost function K (γ),de?ned in Equation 12,for 50%position error and 50%velocity error given a noise

level of σX p =2.25μm,R =10mm,and an acceleration factor ¨θ

0 t /2˙θ=1.0.circular path by ˙θ

=˙θ0+¨θ0t .The arc length R θ( t )=R ˙θ

0 t

1+¨θ0 t 2˙θ

0 (11)

consists of the constant velocity displacement plus the added displacement due to acceleration.For

example,if the acceleration parameter ¨θ

0 t /2˙θ0equals unity,the velocity varies by 200%relative to the constant velocity component.Under such conditions,the linear interpolation of the two-pulse data,which assumes constant velocity,makes substantial errors.The smallest interpolation error for position occurs when t =α t ,as the location of the particle is known within measurement error at that time.Interestingly,the best estimate of the velocity is found at different times.Good

performance of the interpolator is achieved when the second pulse is located at α=13

,and the location and velocity are evaluated at t

t =0.74.Figure 9plots contours of the cost function

K (γ)=γσV R ˙θ+(1?γ)σR

R ,

(12)where σV and σR are the root-mean-square errors in the magnitude of the particle velocity and

the radial location of the particle at t ,taking γ=0.5and α=0.33.This function gives a useful representation of the combined errors in position and velocity.The horizontal axis is the displacement of the particle as a fraction of the radius of curvature.For values less than 0.1,the trajectory is nearly a straight line,but for larger values,the curvature becomes important.Over a wide range of particle displacements,the cost function is close to a minimum at approximately t / t =0.74and 0.15.

In similar plots for the acceleration parameter ¨θ

0 t /2˙θ0ranging down to ?0.4and noise ranging down to 0.0,the shapes of the contours vary substantially,but they retain the same

general topology,and there is a relatively broad region at approximately 0.06≤˙θ

0 t ≤0.45,https://www.360docs.net/doc/be184906.html, ?PIV for Complex and Turbulent Flows

427

A n n u . R e v . F l u i d M e c h . 2013.45:409-436. D o w n l o a d e d f r o m w w w .a n n u a l r e v i e w s .o r g b y M i c h i g a n S t a t e U n i v e r s i t y L i b r a r y o n 01/03/14. F o r p e r s o n a l u s e o n l y .

Table 2Comparison of triple-pulse (3-PIV)and double-pulse (2-PIV)errors in velocity and position for various combinations of displacement,acceleration,and noise Case

Displacement Acceleration

factor Image

noise Velocity error (%)

Position error

(%)

R ˙θ

0 t /R ¨θ

0 t /2˙θ0σX P /R ×1043-PIV 2-PIV 3-PIV 2-PIV 10.100.2250.089?0.060.0040.1320.10.10.2250.0780.260.0090.2930.20 2.250.45?0.280.0340.5040.20.25 4.50.65 1.330.12 1.4750.200.450.090.170.120.5060.30 2.250.300.400.05 1.1270.30.25 2.250.24 1.960.23 2.6080.60 4.50.31 1.500.29 4.4790.60.25 4.50.75 4.38 1.047.83100.80.25 4.50.75 6.40 2.0213.111 1.0000.38 4.50 1.4713.412

1.0

0.25

1.32

9.41

3.90

21.5

All quantities are made dimensionless by the radius R of the curvature of the particle trajectory and the initial velocity R ˙θ

0at t =0.An asterisk marks cases in which double-pulse PIV yields a smaller error than triple-pulse PIV.

for which t / t =0.74yields a cost factor close to the minimum.Thus one can conclude that by placing the second light pulse one-third of the way between the ?rst and third pulse and calculating the interpolated value at a time that is 74%of the way from the ?rst and third pulse,one obtains a combined error in position and velocity that is close to the minimum over a range of ?ow conditions.

Using this recipe for triple-pulse estimation,we compare in Table 2the errors of triple-pulse PIV,calculated as the differences between the interpolated speed or radial position of the particle at time t minus the true values,to double-pulse PIV.In two cases (case 1and 3),the double-pulse PIV yields a smaller error than triple-pulse PIV.This occurs when the displacement relative to the radius of curvature is small,implying a nearly straight-line trajectory,and the acceleration is small,implying nearly constant velocity.These are the conditions for which double-pulse PIV was designed,and it performs better under these circumstances than triple-pulse because the estimated particle location from the third pulse adds noise.However,if acceleration is added (cases 2and 4),the noise is decreased (case 5),or the displacement is increased (case 6),then triple-pulse PIV performs better than double-pulse PIV.With increasing displacement relative to the radius,as would occur for smaller diameter vortices,the errors of double-pulse PIV become quite large,up to one order of magnitude larger than triple-pulse PIV (cases 9–12).This is the situation in which the chord between the ?rst and last images is a poor approximation to the trajectory,even when the acceleration along the path line is zero.

The accuracy with which triple-pulse PIV locates the particle at time t is always better than that of double-pulse PIV,often by a substantial margin.This amounts to an improvement in spatial resolution.Measurement of the acceleration also enables one to make a correction for particle lag,provided that the size of the particle is known.This is another signi?cant and often undetermined error in PIV measurements (Adrian &Westerweel 2011).

428Westerweel

·

Elsinga

·

Adrian

A n n u . R e v . F l u i d M e c h . 2013.45:409-436. D o w n l o a d e d f r o m w w w .a n n u a l r e v i e w s .o r g b y M i c h i g a n S t a t e U n i v e r s i t y L i b r a r y o n 01/03/14. F o r p e r s o n a l u s e o n l y .

阻力的产生及减阻措施

阻力的产生及减阻措施 飞机的各个部件,如机翼、机身和尾翼等,单独放在气流中产生的阻力的总和并不等于把它们组合成一架飞机时所产生的阻力,而后者往往大于前者。所谓“干扰阻力”指的就是飞机的阻力和单独各个部件阻力代数和的差值,是由于各个部件组合在一起时,流动相互干扰产生的额外阻力增量。换句话讲,飞机的零升阻力等于机翼的零升阻力、机身的零升阻力、尾翼(含平尾和立尾)的零升阻力和飞机干扰阻力之和。飞机干扰阻力又包括机翼机身之间的干扰阻力、尾翼机身之间的干扰阻力以及机翼尾翼之间的干扰阻力等。 当把机翼和机身组合在一起时,机身的侧面和机翼翼面之间形成一个横截面积先收缩后扩张的通道,低速气流流过扩张通道时,因逆压梯度的作用将使附面层产生严惩的分离,出现额外增加的粘性压差阻力。为了消除这一不利的干扰,一般都采用整流片来仔细修改机翼机身连接部分的外形,“填平补齐”,消除分离。上图的飞机采用了大整流片的目的也在于此。 由于机翼下表面压力大,上表面压力小,因此下表面压力大的气流就会向上表面流动,从而在翼尖处形成了一个旋涡,这个旋涡是由于升力诱导而产生的,因此称为诱导阻力。 飞机的零升阻力是纯粹的付出,不像下面要介绍的飞机的诱导阻力那样,是产生有用升力所必须付出的代价;自然,无论是飞机的零升阻力或是诱导阻力,都应该千方百计地减少它们。要减少低、亚声速飞行时飞机的零升阻力,主要有下列办法。 第一,采用层流翼型替代古典翼型来减小机翼的摩擦阻力。 第二,对飞机的其他部件都应当整流,做成流线外形。 第三,是减小干扰阻力。必须妥善地考虑和安排各个部件的相对位置,在这些部件之间必要时不定期应加装整流片。 超音速飞机在飞行时会产生激波阻力,减小激波阻力的主要措施是采用合适的气动外形。

混凝土墙体表面气泡形成的原因与预防措施_1

混凝土墙体表面气泡形成的原因与预防措施 混凝土建筑墙体表面气泡的成因 引起混凝土结构表面气泡的原因较多,也较复杂,但经过归纳,在施工中产生气泡的最主要原因是由于材料、施工方法不当所造成的。 1.1 原材料使用不当 1.1.1 根据骨料级配密实原理,在施工过程中,如果使用材料本身级配不合理,粗骨料偏多,细骨料较少,碎石材料中针片状颗料含量过多,以及在生产过程中实际使用砂率比试验室提供的砂率要小,此时细粒料不足以填充粗集料之间的空隙,导致集料不密实,形成产生气泡的自由空隙。 1.1.2 水泥的多少和水灰比的大小,也是导致气泡产生的重要原因。在试验室试配混凝土时,考虑水泥用量主要是针对强度而言,如果在能够满足混凝土强度的前提下,一定限度内增加水泥用量,减少水的用量,气泡会减少。但如果不减少水的用量,气泡数量是否减少不确定,同时也增加了混凝土的粘度,影响了搅拌混凝土时产生气泡的排出,而水量较多也使自由水较多易形成气泡。在水泥用量太少的混凝土拌合物中,由于水化反应耗费用水较少,使得薄膜结合水、自由水相对较多,从而让气泡形成的几率增大,这就是用水量较大、水灰比较高的混凝土易产生气泡的原因所在。 1.1.3 掺合料也会直接影响气泡数量。当混凝土中水泥的含量可以保证混凝土的强度时,用掺合料代替部分水泥,可以改善混凝土的和易性,活性料还对强度有一些提高,适量的掺合料能改善混凝土的和易性,形成的胶合料能填塞骨料间的空隙,减少气泡的产生。但掺加过量的掺合料会导致混凝土的粘度增加,影响气泡的排出,故混凝土中掺合料较多是导致气泡产生的原因。 1.1.4 减水剂等外加剂对气泡的影响也不可忽视。不同的类型和掺量都会影响气泡的数量和大小。试验结果表明,减水剂ZB-1A掺量0.7%的混凝土表面气泡数量是不掺减水剂的混凝土的3.5倍,而且掺量越大影响越明显。 1.2 搅拌时间不合理 搅拌时间短会导致搅拌不均匀,气泡产生的密集程度就不同。但搅拌时间过长又会使混凝土中带进的空气气泡更多。 1.3 温度变化的影响 混凝土受水泥水化热作用、大气及周围温度、电气焊接等因素影响而冷热变化时,发生收缩和膨胀,能产生表面气泡。温度表面气泡区别其它表面气泡最主要特征是将随温度变化而扩张或合拢。其多发生在大体积混凝土表面或温差变化较大地区的混凝土结构中。这种表面气泡的产生通常无一定规律。 1.4 施工方法不当 《混凝土泵送技术规程》中规定“混凝土浇注分层厚度,宜为300~500mm”但是在实际施工时,往往浇注厚度都偏高,由于气泡行程过长,即使振捣的时间达到要求,气泡也不能完全排出,这样也会造成混凝土结构表面气泡。 振捣工艺不当。混凝土振捣不充分,混凝土里的气泡就没有时间排出。但如果过振,会使小气泡又出现破裂形成大气泡。由于设计断面尺寸比较小,截面变化处不容易振捣,气泡不易逸出。 墙体内大型预留洞口底模未设排气孔,混凝土对称下料时产生气囊,或钢制

10KV配电线路杆塔接地技术方案

中国南方电网 广东电网 10KV配电线路接地技术方案 广州中光电子科技有限公司 二〇二〇年五月 目录 附件1:施工图(图号:DL-JD-01,DL-JD-02) 附件2:镀镍接地棒说明书及检测报告 接地模块说明书及检测报告 10KV配电线路接地技术方案 1、前言 近年来,广东地区由于经济的发展,对电力的需求不断增加,因此,电力系统也不断发展,接地短路电流愈来愈大,设备接触电压和跨步电压也越来越大,直接威胁到设备和人身安全;由于接地短路电流的增大,接地线和接地干线的热稳定也愈来愈突出。特别是在变电站(或变电所)的自动化控制装置的大量投入运行,由于接地短路电流所形成的地电位干扰问题也越来越突出,所造成的微机保护“死机”、误动作而造成的事故和扩大事故时有发生,从而影响电力系统的安全运行。 同时,广东地区的地理位置特殊,大部分地区位于北回归线附近,使得该

地区的年平均雷暴日高于国内其他大部分地区(广州的年平均雷暴日约天)。为了更好的保障电力系统供电的正常运作,减少电力变电站设备和输电线路遭受雷击而引起的跳闸事故的发生,我司针对电网10KV线路的接地系统提出综合设计方案。 2、设计依据 ●DL/ T 621—1997 《交流电气装置的接地》 ●DL/ T 620—1997 《交流电气装置的过电压保护和绝缘配合》 ●GB50169—2006 《电气装置安装工程接地装置施工及验收规范》 ●GB50057-94 《建筑物防雷设计规范》(2000年版) 3、10KV配电线路杆塔的接地方案 在输配电线路的防雷设计的主要目的是提高线路的耐雷水平,减少雷击跳闸率。主要的技术有: ①防直击导线技术:即防止导线直接遭受雷击,主要措施有架设避雷线、减少避雷线的保护角、加装各种形式的避雷针等; ②防闪络技术:即防止输电线路遭受雷击后发生闪络,主要措施有降低杆塔接地电阻、架设耦合地线、安装线路避雷器等; ③防建弧技术:即防止输电线路发生闪络后建立稳定的工频电弧; ④防停电技术:即防止输电线路雷击跳闸厚重合闸不成功造成电力中断,如加装并联间隙等。 根据输电线路所在位置的地理条件、气象条件和雷电活动规律,利用现代防雷技术,采取相应的防雷措施,主要措施有:降低杆塔的接地电阻、架设架

湍流减阻的意义及工程应用

湍流减阻的意义及工程应用 摘要:伴随着世界性能源危机的逐渐加剧,节能减排已经成为大势所趋,在能源运输的过程之中,摩擦阻力是主要的耗能来源,所以研究湍流减阻意义十分的重大。为此本文将对于湍流减阻的意义及工程应用展开有关的论述。本文首先论述了推流减租的意义,之后详细的论述了其工程上面的应用。含有肋条、柔顺壁、聚合物添加剂、微气泡、仿生减阻、壁面振动等主要湍流减阻技术最近的研究成果和应用现状,并着重强调了各自的减阻机理。 关键词:能源危机湍流减阻减阻机理 引言 伴随着全球能源消耗的不断提升,科学家门已经将越来越多的警力投入到如何有效的利用与保护能源领域上面。车辆、飞机以及船舶、油气长输管道的数量快速的增加,所以设法减少这些运输工具表面的摩擦阻力,成为人们研究发展节约能源的新技术含有的突破点[1]。 1湍流减阻的意义 节约能源消耗是人类一直追求的目标,其主要的途径就是在各种运输工具设计之中,尽可能的减少表面的摩擦阻力。表面摩擦阻力在运输工具总阻力之中占据很大的比例,在这些运输工具表面的发部分区域,流动都是处于湍流的状态,所以研究推流边界层减租意义十分的重大,已经引起广泛的重视,同时已经被NASA列为21实际航空关键技术之一[2]。 有关减租问题的研究可以追溯到上世纪的30年代,不过一直到上世纪的60年代中期,研究工作主要围绕减小表面的粗糙程度,隐含的假设光滑表面的阻力最小。到了70年代,阿拉伯石油禁运由此引发的燃油价格上涨激起了持续至今的推流减租研究与应用潮流,经过多年的发展,尤其是湍流理论的发展,使得湍流减阻理论与应用都是取得了突破性的进展[3]。

2湍流减阻的工程应用 2.1肋条减阻 20世纪70年代,NASA研究中心发现具有顺流向微小肋条的表面可以有效的降低臂面的摩擦阻力,从而突破了表面越光滑阻力越小的传统思维模式,肋条减阻成为湍流减阻技术研究热点[6]。 最近几年,为了最大限度的实现减租,人们对于肋条进行了很多的实验与应用优化设计[7]。德国的Bechert和Brused等使用一种测量阻力可以精确度达到±0.3%的油管对于各种肋条表面的减阻效果进行了研究。其测试了多种形状的肋条,含有三角形、半圆以及三维肋条,实验的结果显示V形肋条减阻效果最好,可以达到10%以上的减阻幅度[8]。大量的研究工作显示肋条表面减阻的可靠性与可应用性,国外的研究已经进入到了工程实用阶段,空中客车将A320试验机表面积约70%贴上肋条薄膜,到达了节油2%左右。NASA兰利中心对于Learjet 型飞机的飞行试验结果减阻大约在6%左右。国内的李育斌在1:12的运七模型上具有湍流流动的区域顺流向粘贴肋条薄膜之后,试验表面可以减小飞机阻力8%左右[9]。 2.2壁面振动减阻 壁面振动减阻是20世纪90年代才出现的一种新的方法,米兰大学的Baron和Quadrio 利用直接的数字模拟技术研究了壁面振动减阻的总能量节约效果,其发现在壁面振动速度振 幅在大于: h QX8/ 3时,不会节约能源,而是在比较小的振幅时候能量才有节约[10]。 这个里面Qx表示流量,h表示湍流明渠流高度的一半。在振幅为 h QX4/的时候,可 以净节约多达10%的能量。因为试验都是在固定无因次周期为T+=100下进行的,所以人们认为如果应用条件适当,还能节省更多的能量[11]。 2.3仿生减阻 海洋生物长期生活在水中,经过漫长的岁月,进化出了效率很高的游动结构,表面摩擦阻力也相当的低。所以通过仿生学的研究,设计出减阻效果更好的结构,也变成了研究的热点。Bechert对于一种模拟鸟类羽毛被动流体分离控制的方法进行了风洞的测试,在迅游环境里面,对层流翼部分的活动襟翼的测试结果表明机翼上的最大升力增加了20%而未发现有负面影响。一架电动滑翔机飞行测试纪录的阻力数据也证明了这一点[12]。

预制混凝土构件表面气泡的产生原因及预防措施.doc

预制混凝土构件表面气泡的产生原因及预防措施1?预制混凝土构件气泡产生的原因 预制混凝土构件气泡的成因非常复杂,但通常离不开原材料及工艺原因,比如水泥品种、外加剂品种、外加剂掺量、骨料粗细、搅拌时间、脱模剂用法、振捣操作、施工温度等,下面就气泡产生的机理进行详细分析: 1.1原材料 对于用水量及水灰比偏高的混凝土产品,其气泡现象比较多发。在水泥生产时要添加一定的助磨剂,而助磨剂往往会诱发过多的气泡,同时水泥的碱度太高、颗粒过细,也会导致含气量的增加,继而使气泡产生的概率增大,这是由于混凝土中夹藏的水泡一经蒸发便会诱发气泡的产生。 若混凝土中出现较多的大气泡,一般是由减水剂中的引气成分所致。普通的减水剂尤其是聚羧酸系及磺化木质素系减水剂,其中会夹杂一些表面活性成分,具备较强的引气性,当使用的减水剂较多时,便会引发较多的气泡;此外,当使用松香类引气剂作为外加剂时,生成的气泡也会有所增加。 在混凝土构件的配制过程中,若材料配比不当、粗集料过多,或碎石料中含有较多的针片状料粒,会造成细料不足以填补粗料空隙,从而诱发气泡的产生。 1.2工艺

工艺原因是导致表面气泡的主要原因,比如搅拌不匀的情况下, 局部外加剂偏多,该部位就会产生较多气泡;但过度搅拌又会造成内部气泡整体增多,同样会造成不利影响。 预制混凝土构件大都采用钢模成型,为方便进行脱模,通常向钢 模表面刷一些脱模剂,这样一来,在进行捣振操作时,由于水沿混凝土表面及上面游走,即便脱模剂是水性的,依旧会吸附较多的气泡,从而使振捣中产生的气泡不能及时沿表面排出,从而产生表面气泡。 在混凝土拌合浇筑时,通常会混入少量空气,这部分空气不能自行溢出只能通过振捣排出,因此振捣操作的好坏是影响气泡数量的重要因素。如果出现超振、欠振、漏振,均会导致表面气泡的增多。超振会造成内部的小气泡逐渐重组为大气泡,而欠振、漏振会导致混凝土分布不均、结构不密实,继而产生局部空洞或无规则的大气泡。 混凝土表面气泡的体积对温度的变化比较敏感,若处理不当就会 在混凝土表面留下较大的孔洞,特别是昼夜温度浮动较大时,附着在混凝土表面的气泡体积随环境温度的变化而变化,当混凝土浆体的强度较小时,包裹着气泡的浆体会随气泡而流动变形而混凝土浆体的强度达到一定程度,不再受气泡的影响,又恰逢气泡体积较大时,就会在混凝土表面产生较大的孔洞。 此外,脱模剂粘度对环境温度也比较敏感,当模具温度偏低时,脱模剂粘度降低,从模具表面向下流淌,使底层表面聚集了的大量脱模剂,阻碍了底层气泡的排出,造成较多的表面气泡。 2?预制混凝土构件表面气泡的预防措施2.1混凝土原材料方面

超空泡减阻技术简介

超空泡减阻技术简介 超空泡是一种物理现象,当物体在水中的运动速度超过185千米/小时后,其尾部就会形成奇异的大型水蒸气沟,将物体与水接触的部分包住,物体接触的介质就由水变成了空气,由于空气密度只有水的1/800,因而就能大幅减少物体所受阻力,物体表面会形成大型空气泡,这就是“超空泡化现象”。 超空泡技术就是在艇体表面和水之间产生一个气体空腔,因此减小了阻力,增大了艇的航速。超空泡现象很长时间一直是令造船工程师们头痛的事,因为超空泡现象经常会在高速旋转的螺旋桨叶片表面产生而使螺旋桨高速“空转”从而损坏螺旋桨叶片。 超空泡技术概述 当航行体与水之间发生高速相对运动时,航行体表面附近的水因低压而发生相变,形成覆盖航行体大部分或全部表面的超空泡。形成超空泡之后,航行体将在气体中航行,由于航行体在水中的摩擦阻力约为在空气中摩擦阻力的850倍,因此,超空泡技术的应用可以使水下航行体的摩擦阻力大幅减小,从而使鱼雷等大尺度水下航行体的速度提高到100m/s的量级,使水下射弹等小尺度水下航行体的航速提高到1000m/s的量级。 超空泡发展过程 当航行体在流体中高速运动时,航行体表面的流体压力就会降低,当航行体的速度增加到某一临界值时,流体的压力将达到汽化压,此时流体就会发生相变,由液相转变为汽相,这就是空化现象。随着航行体速度的不断增加,空化现象沿着航行体表面不断后移、扩大、进而发展成超空化。其发展过程一般可以分为四个状态:游离型空泡、云状空泡、片状空泡和超空泡。 超空泡形成方法 超空泡分为自然超空泡和通气超空泡两种,形成超空泡一般有三种途径: 1)提高航行体的速度; 2)降低流场压力; 3)在低速情况下,利用人工通气的方法增加空泡内部压力。前两种方法形成的为自然超空泡,最后一种方法所得到的就是所谓的通气超空泡。 现有的减阻技术 脊装表面减阻,微气泡减阻,复合材料减阻,超空泡减阻技术。而水下超空泡武器是一种新概念武器,基于这种新概念、新原理设计的水下超空泡武器,其运动速度极高,且不受水声对抗器材的干扰,从而大大提高了水下武器的突防能力。 前苏联海军很早在七十年代就发展了火箭推进的“风雪”超空泡代号为BA-Ⅲ的“暴风”超高速鱼雷,航速已达到370公里/小时(约200节),其气泡一是利用超高速自行产生,二是把鱼雷发动机的尾气引到前面放出。超空泡潜艇的主要问题一是控制运动方向困难,二是气泡长时间的产生。德国正在研究开发的超空泡鱼雷用变换头部来控制运动方向,但是潜艇不太可能变换头部。然而美国人宣称已经解决控制运动方向和长时间产生气泡这两个问题,估计美国的潜艇是用调节气泡喷头的方法来操纵潜艇

接地电阻降阻方法

接地电阻降阻方法(总8页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

1 引言 变电站接地网对于电力系统的可靠运行和变电站工作人员的人身安全起着重要作用,其接地电阻、跨步电压与接触电压是变电站接地系统的重要技术指标,是衡量接地系统的有效性、安全性以及鉴定接地系统是否符合要求的重要参数。然而,有些变电站由于受地理条件的限制,不得不建在高土壤电阻率地区,导致这些变电站的接地电阻、跨步电压与接触电压的设计计算值偏高,无法满足现行标准的要求。近年来,随着电力系统短路容量的增加,由于接地不良引起的事故扩大问题屡有发生,因此接地问题越来越受到重视。在设计施工过程中如何合理确定接地装置的设计方案,降低接地电阻,这是变电站电气设计施工的重点之一。 2 变电站接地网电阻偏高的原因 变电站接地网电阻偏高的原因有多方面的,归纳起来有以下几个方面的原因。 2.1客观条件方面 一是土壤电阻率偏高。特别是山区,由于土壤电阻率偏高,对系统接地电阻影响较大;二是土壤干燥。干旱地区、沙卵石土层等相当干燥,而大地导电基本是靠离子导电,干燥的土壤电阻率偏高。 2.2勘探设计方面 在地处山区复杂地形地段的变电站,由于士壤不均匀,土壤电阻率变化较大,这就需要对每处地网进行认真的勘探、测量。根据地形、地势、地质情况,设计出切合实际的接地装置。如果不根据每处地网的地形、地势情况合理设计接地装置并计算其接地电阻,而是套用一些现成的图纸或典型设计,那么就从设计上就留下了先天性不足,造成地网接地电阻偏高。 2.3施工方面

对于不同地区变电站的接地来说,精心设计重要,但严格施工更重要。因为对于地形复杂,特别是位于山岩区的变电站,接地地网水平接地沟槽的开挖和垂直接地极的打入都十分困难,而接地工程又属于隐蔽工程,如施工过程中不能实行全过程的技术监督和必要的监理,就可能出现如下一些问题:一是不按图施工。尤其是在施工困难的山区,屡有发生水平接地体敷设长度不够,少打垂直接地极等;二是接地体埋深不够。山区、岩石地区,由于开挖困难,接地体的埋深往往不够,由于埋深不够会直接影响接地电阻值;三是回填土的问题,有关规范要求用细土回填,并分层夯实,在实际施工时往往很难做到,尤其是在岩石地段施工时,由于取土不便,往往采用开挖出的碎石及建筑垃圾回填,这样还会加快接地体的腐蚀速度;四是采用木炭或食盐降阻,这是最普遍的做法。采用木炭或食盐降阻,会在短期内收到降阻效果,但这是不稳定的。因为这些降阻剂会随雨水而流失,并加速接地体的腐蚀,缩短接地装置的使用寿命。 2.4运行方面 有些接地装置在建成初期是合格的,但经一定的运行周期后,接地电阻就会变大,除了前面介绍的由于施工时留下的隐患外,以下一些问题也值得注意:一是由于接地体的腐蚀,使接地体与周围土壤的接触电阻变大,特别足在山区酸性土壤中,接地体的腐蚀速度相当快,会造成一部分接地体脱离接地装置;二是在接地引下线与接地装置的连接部分因锈蚀而使电阻变大或形成开路:三是接地引下线接地极受外力破坏时误损坏等。 3 接地电阻降阻方法 为了达到降低接地网接地电阻之目的,首先需要从理论上研究降低接地电阻的方法。由公式(1)可以看出,降低接地电阻有以下两种途径,一是增大接地体几何尺寸,以增大接地体的电容;二是改善地质电学性质,减小地的电阻率和介电系数。 接地网是在接地系统的基础,由接地环(网)、接地极(体)和引下线组成,以往常有种误解,把接地环作为接地的主体,很少使用接地体,在接地要求不高或地质条件相当优越的情况下,接地环也能够起到接地的作用,但是通常的情况下,这是不可行的,接

减阻措施

旋风除尘器的几种减阻措施 前言: 旋风除尘器是一种利用含尘气体旋转所产生的离心力将粉尘从气流中分离出来的干式气分离装置。因其具有结构简单、造价低、内部没有活动件、维修方便以及耐高温、高压等特点, 广泛应用于化工、采矿、冶金、机械、轻工、环保等领域。衡量旋风除尘器工作性能的重要指标是压力损失和除尘效率。目前, 已研制出许多低阻旋风除尘器。 1、旋风除尘器的结构及工作原理 当含尘气流由进气管进入旋风除尘器时, 气流将由直线运动变为圆周运动。旋转气流的绝大部分沿器壁自圆筒体呈螺旋形向下, 朝锥体流动。通常称此为外旋气流。含尘气体在旋转过程中产生离心力, 将重度大于气体的尘粒甩向器壁。尘粒一旦与器壁接触, 便失去 惯性力而靠入口速度的动量和向下的重力沿壁面下落, 进入排灰管。旋转下降的外旋气流在到达锥体时, 因圆锥形的收缩而向除尘器中心靠拢。根据旋转矩不变原理, 其切向速度不断提高。当气流到达锥体下端某一位置时, 即以同样的旋转方向从旋风除尘器中部, 由下反转而上, 继续作螺旋形流动, 即内旋气流。最后净化气经排气管排出旋风除尘器外。一部分未被捕集的尘粒也由此逃失。 3、影响旋风除尘器压力损失的因素 ( 1) 在旋风除尘器中, 由于内旋气流进入排气管时仍处于旋转状态, 因而具有较高的能量。弗斯特在一次实验中发现, 离开除尘器出口至少相当于连接管直径27倍的地方还存在着旋转。所以, 采取各种措施消旋减阻, 回收排气管中的能量是很有意义的。 ( 2) 通过旋风除尘器内部气流流动研究认为: 旋风除尘器气流速度分布在径向上, 呈不对称或出现偏心, 尤其在锥体下部靠近排尘口附近, 有明显的“偏心”; 排气管下口附近, 径向气流速度较大, 有“短路”现象。气流偏心或短路不利于粉尘分离。 ( 3) 旋风除尘器内气流运动非常复杂, 有旋流场及若干干扰涡流场, 这些涡流场在不同程度上影响除尘效率和阻力损失, 尤其是短路流构成上部气流回转, 使一部分流体在旋风筒中转一周后斜向吹到刚从入口进来的气体上, 导致入口进气偏向筒壁而产生所谓的压缩现象。压缩现象使壁面处流速增大, 壁面摩擦力增大, 同时使气流在旋风筒上部的回转圈数增多, 必然导致压力损失增大。因此, 可以通过抑制压缩现象来降低压力损失。 (4) 旋风除尘器旋涡流场的能量损失主要由外旋涡流能量损失和内旋涡流能量损失组成。其中外旋涡流对颗粒的捕集起决定性作用, 属于有效能量;而内旋涡流对捕集分离不起作用, 属于消耗性能量。内涡旋造成的能量损失, 除了内涡旋轴上气流速度梯度不同造成的内摩擦损失以及排气口连接管段内气流旋转造成的摩擦损失外, 主要是由于内涡旋造成的向外的径向速度与外涡旋造成的向内的径向速度相互干扰, 造成了内、外涡旋场的掺混、碰撞和摩擦损失。 4、旋风除尘器的减阻措施 4. 1 排气管减阻装置现有的排气管减阻装置可分为2 类: ( 1) 改变排气管形状回收能量。如采用锥形排气管, 但该方法效果不显著。 ( 2) 不改变排气管形状, 而在排气管内部或后部附加减阻装置回收能量。此类有以下几种方法: ①在排气管内装整流叶片, 其中以D-3 型效果最好,可使阻力减少22.8% , 而除尘效率仅降低0.5%~0.8% ; ②在排气管出口装设渐开线蜗壳, 此法可使阻力降低5%~10%, 且对除尘效率影响较小; ③在排气管出口加设圆锥形扩散器( 当净化气体直接排入大气时) , 若取合适的扩散角, 可获得10%~33%的压力回收; ④在排气管弯头后水 平安装双锥圆筒减阻器, 若双锥圆筒采用优化尺寸, 可使阻力减少7%~25%, 而除尘效率仅下降0.3%。

盾构管片水气泡成因及防治

盾构管片水气泡成因及防治 中铁十三局广州地铁项目经理部张秀华李永生张延华刘晓辉 【内容提要】本文主要通过在广州地铁四号线仑大盾构区间盾构管片生产实践中常见气泡问题进行探讨分析,研针对具体情况提出了盾构管片水气泡相应预防措施。 【关键词】盾构管片水气泡成因防治 一、前言 水气泡是盾构管片常见的病害之一。尤其在管片脱模后,管片表面往往会出现一些大小不一的水气泡,水气泡聚积的地方会形成蜂窝麻面,它的大量存在削弱了管片局部保护层的厚度,降低了管片构件的抗渗等级要求。在经过大量的检漏试验证明,管片在水压力增大时就会沿水气泡密集的部位出现渗水现象,在使用到隧道时就会影响到管片的防水效果。要想有效的控制管片气泡的产生,还需从其气泡成因入手。 二、管片构件水气泡的形成原因 中铁十三局广州公司在广州地铁四号线生产过程中根据管片模具自身结构采用不同的坍落度、不同振捣时间、不同的脱模剂浓度、不同的下料方式等多方面进行对比试生产,得出结论如下: 1、管片钢模板自身结构的影响。 本工程衬砌采用6块管片拼装而成的圆形衬砌,制作管片所用的钢模具精度要求非常高,其精确度为0.25mm,密封性高。而且管片为贴防水材料止水条特别设置了深约15mm的凹槽,相对应管片模具就设置出了高15mm的凸起部位。如图1所示。由于管片模具凸起部位的阻挡混凝土在振捣时所排出的空气及水分不易排出,从而在管片的侧面形成水气泡。 图1管片K件模具图片

2、混凝土坍落度影响 根据管片成型要求,我公司对混凝土坍落度进行了从40-100mm等不同级别的试验,详见表1、表2管片外观质量检查表。 表1 管片外观检查表 从表1试验结果可以看出坍落度在60-90mm范围内效果较好,气泡相对较少。根据现场操作观察,坍落度控制在70-85mm既方便施工成型效果也较好,气泡又相对较少。

无人机机翼减阻技术研究

American Institute of Aeronautics and Astronautics 1 Drag Reduction of Light UA V Wing with Deflectable Surface in Low Reynolds Number Flows Masoud Darbandi * and Ali Nazari ? Sharif University of Technology, Tehran, P.O. Box 11365-8639, Iran Gerry E. Schneider ? University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada The most effective approach to drag reduction is to concentrate on the components that make up the largest percentage of the overall drag. Small improvements on large quantities can become in fact remarkable aerodynamic improvements. Our experience shows that the use of light material in constructing human-powered airplanes and unmanned-air-vehicles UAVs has a few side effects on the aerodynamic characteristics of their wings. One important side effect is the unwanted deflection on wing shell. It is because of high flexibility and low solidity of the light material, which covers the wing skeleton. The created curvature has direct impact on the separation phenomenon occurred over the wing in low Reynolds number flows. In this work, we numerically simulate the flow over a UAV wing with and without considering the generated deflection on its shell. It is shown that the curvature on the wing surface between two supporting airfoil frames causes total drag coefficient reduction. Indeed, this drag reduction is automatically achieved without benefiting from additional drag-reduction devices and/or drag-reduction considerations. The current investigation has been conducted on a UAV wing with fxmp-160 airfoil section. This airfoil normally provides high lift coefficient in low Reynolds flows because of having suitable camber. The drag of a wing with this airfoil section can be reduced by the proper usage of low weight material as its wing shell providing that the wing shell deflects between its supporting frames during stretching the shell in manufacturing stage. Nomenclature α = angles of attack C d = total drag coefficient C dp = profile drag C ds = skin friction drag C l = two-dimensional lift coefficient C L three-dimensional lift coefficient L/D = lift-drag ratio Re = Reynolds number I. Introduction RAG reduction is one of the major objectives to the air vehicle designers and manufacturers 1. The study of air vehicles at their cruise shows that there are two main sources of drag force including lift-induced and skin-friction drags. It is reported that these two sources of drag are approximately one-third and one-half of the total drag, respectively, in civil transport aircraft. Reneaux 2 emphasizes that hybrid laminar flow technology and innovates wing tip devices offer the greatest potential for drag reduction. With respect to lift-induced drag, the classical way to reduce drag has been to increase the wing aspect ratio, which is automatically provided in UAV wings. However, for the wings with low aspect-ratio, it is suggested to use various winglet devices such as wing tip sails, wing grid, * Associate Professor, Department of Aerospace Engineering. ? Graduate Student, Department of Aerospace Engineering. ? Professor and Chair, Department of Mechanical Engineering, AIAA Fellow. D 3rd AIAA Flow Control Conference 5-8 June 2006, San Francisco, California AIAA 2006-3680

顶管施工质量的技术保证措施

穿墙止水 为避免地下水和泥土大量涌进工作井,在穿墙管内事先填埋经夯实的黄粘土,打开穿墙管闷扳,应立即将工具管顶进。此时穿墙管内的黄粘土受挤压,堵住穿墙管与工具管的环缝,起临时止水作用。当工具管尾部接近穿墙管而泥浆环尚未进洞时,停止顶进,绕盘根,表轧兰,再借助管道顶进的顶力,带动轧兰将盘根压入穿墙管环缝。盘根压得不宜过紧,以不漏浆为宜留下一定的压缩量,以便盘根磨损后再次压紧止水。 顶进阶段的测量和纠偏 (1)测量与放线:根据建设单位提供的控制点施测污水管线的中心线和高程桩。根据中线控制桩用全站仪将顶管中线桩分别测设在顶管工作坑的前后,使前后两桩互相通视,并与管线在同一条线上。顶管工作坑内的水准点由坑上一次引测,经过校核,误差不得大于±5mm。每座顶管坑内设2个水准点。 ⑵顶管测量与纠偏: 在顶第一节管时,以及在校正偏差过程中,测量间距不应超过30cm,以保证管道入土的位置正确;管道进入土层后的正常顶进,测量间隔不宜超过300cm。 中心测量:拟采用垂球拉线的方法进行测量,要求两垂球的间距尽可能的拉大,用水平尺测量头一节管前端的中心偏差,并且每顶进12m用全站仪检测一次。

高程测量:用水准仪及特制高程尺,根据工作坑内设置的水准点,测头一节管前端与后端的管内底高程,以掌握头一节管的走向,测量后应与工作坑内另一个水准点闭合。 每工作班要求做好顶管记录和交接班记录,全段顶完后,应在每个管节接口处测量其中心位置与高程,有错口时应测出其错口的高差。 顶管误差校正逐步进行。形成误差后不可立即将已顶好的管子校正到位,应缓慢进行,使管子逐渐复位,切忌猛纠硬调,以防产生相反的结果。纠偏过程中应加强测量密度,每10~20cm测量一次,根据实际情况采取有针对性的纠偏方式。 常用的纠偏方法有以下三种: ①超挖纠偏法:偏差为1~2cm时,可采取此法。即在管子偏向的反侧适当超挖,而在偏向侧不超挖甚至留坎,形成阻力,使管子在顶进中向阻力小的超挖侧偏向,逐步回到设计位置。 ②顶木纠偏:偏差大于2cm时,在超挖纠偏不起作用时采用。用圆木或方木的一端顶在管子偏向的另一侧内壁上,另一端斜撑在钢板或木板的管前土壤上,支顶牢固后,在顶进过程中配合超挖纠偏法,边顶边支。利用顶进时的斜支撑分力产生的阻力,使顶管向阻力小的一侧校正。 ③千斤顶纠偏法:方法基本同顶木纠偏法,只是在顶木上用小千斤顶强行将管慢慢移位纠正。

t梁气泡防治

T梁气泡防治办法 1.问题现象 通过对本合同段2013年12月至2014年1月期间预制的20片30mT梁混凝土进行检测分析,发现该20片T梁混凝土表面存在气泡偏多现象,主要表现在腹板位置的水泡比较多,马蹄位置针孔状气泡比较多。由于气泡较大减少了混凝土的断面体积,致使混凝土内部不密实,从而降低混凝土的强度,降低混凝土结构的耐久性能。因此需要分析其混凝土结构表面气泡的成因来减少混凝土表面气泡含量。 2.T型梁混凝土表面气泡成因分析 针对梁场出现的这一外观质量问题,通过多方咨询查阅资料、调查情况,围绕气泡问题,对现场T梁混凝土表面气泡情况进行了认真的分析,认为形成混凝土表面气泡主要有三种形式:一是气泡,混凝土在浇筑入模时混凝土与钢模板之间、浇筑的混凝土之间覆盖形成了包含气体的空隙还有就是混凝土配合比设计需要添加部分减水剂,在混凝土内部产生气体其表现为内大外小。二是水泡,既混凝土中含有多余的自由水振动时无法排除其表现为外大内小。三就是真空裸裹,材料本身级配不合理,粗骨料偏多,细骨料较少,碎石材料中针片状颗料含量过多,以及在生产过程中实际使用砂率比试验室提供的砂率要小,此时细粒料不足以填充粗集料之间的空隙,导致集料不密实,形成产生气泡的自由空隙其表现为石子外露。在混凝土施工过程中,虽然通过震动排除了大多数的气体,但是由于混凝土和易性钢模板脱模剂、振捣等诸多原因的影响致使还有部分气体不能及时地排除出混凝土内部,从而最终在混凝土内部和混凝土与钢模板之间的结合面上(即混凝土表面)形成空隙、气泡。 三、影响混凝土表面气泡排出的各种因素 1.外加剂 这里主要指减水剂。T型梁所用高标号混凝土必须在混凝土内添加一定量的高效减水剂,而减水剂都有一定的含气量。由于减水剂内的气体与混凝土比较均匀地混合,其排出地难度较大在一定程度上,减水剂含气量的大小决定了混凝土最终外观气泡的多少。因此在混凝土配合比设计时要选择熟悉的合格的质量稳定的大厂生产的减水剂最为重要,同时还要对其含气量进行检测试配,以同时满足强度与外观质量的要求。 2.粗骨料 由于受T型梁钢筋间距的制约,混凝土的粗骨料的粒径及含量也会影响气泡的排出,如果粒径大于钢筋间距,那么粗骨料将会在纵向钢筋上停留,从而阻止了气体的畅通排出,形成阻塞性气泡,因而其分布将呈现比较有规律性的线型。因此,混凝土用粗骨料既要满足

船舶节能技术的最新发展

目录 目录 (1) abstract (3) 第一章绪论 (4) 1.1 研究目的与意义 (4) 1.1.1 研究目的 (4) 1.1.2 研究意义 (5) 1.2 船舶技术节能潜力与特点 (5) 1.2.1 船舶节能潜力 (5) 1.2.2当前船舶节能技术的特点 (5) 二、船舶节能技术取得的进步 (5) 2.1 节能推进器 (5) 2.1.1低速柴油机 (5) 2.1.2 中速柴油机 (6) 2.1.3正反转螺旋桨 (6) 2.2节能附件 (6) 三、节能型船型的设计 (6) 3.1 小水线面双体船型 (6) 3.2 双艉鳍船型 (7) 3.3 球艉和球鼻艏船型 (7) 3.4 非对称尾船型 (7) 四、节能措施 (7) 4.1 减少船舶阻力 (7) 4.1.1减阻球鼻 (7) 4.1.2 球艉船型 (7) 4.1.3微气泡减阻 (8) 4.1.4采用船尾附体(如加鳍、导流管等) (8) 4.1.5 减少船体的粗糙度 (8) 4.2 提高推进效率 (9) 4.2.1 舵球 (9) 4.2.2 扭曲节能舵 (9) 4.2.3 桨前导流鳍 (9) 4.2.4 桨后自旋助推叶轮 (9) 4.2.5 新型的高效推进器 (9) 4.3 采用混合动力装置 (10) 4.3.1 混合动力装置组成 (10) 4.3.2 混合动力装置余热回收 (10) 4.3.3 热能回收系统的工作模式 (10) 4.3.4 混合动力装置的主要优点 (10) 4.4 绿色船舶 (11) 4.5 提高船舶操作运行技术 (12) 五、结论和展望 (14)

六、致谢 (14) 参考文献 (15)

高压架空线路杆塔接地降阻措施探讨

高压架空线路杆塔接地降阻措施探讨 发表时间:2019-05-20T10:32:04.517Z 来源:《电力设备》2018年第34期作者:郭艳军[导读] 摘要:输电线路杆塔接地对电力系统的安全稳定运行至关重要,降低杆塔接地电阻是提高线路耐雷水平、减少线路雷击跳闸率的主要措施。 (西安众源电力设计有限公司陕西省西安市 710014)摘要:输电线路杆塔接地对电力系统的安全稳定运行至关重要,降低杆塔接地电阻是提高线路耐雷水平、减少线路雷击跳闸率的主要措施。本文分析了高压架空线路杆塔接地降阻的措施。 关键词:高压架空线路;杆塔;接地电阻高压架空线路是现代化大容量电网的主要线路形式,为了避免高压架空线路的安全问题,一般对高压架空线路采用加高处理,通过杆塔实现对高压架空线路的支持,这会给杆塔带来雷击方面的风险。若高压架空线路杆塔存在施工、运行、系统、环境方面的影响,容易导致杆塔接地电阻超出设计范围,进而在雷击中增加被毁损的概率,不但造成杆塔的安全问题,还会给高压架空线路的运行带来威胁。因 此,架空线路杆塔接地的良好与否直接影响架空线路对雷害的承能力,其对架空线路的平稳运行至关重要。 一、接地电阻的重要性 对输电设备而言,通过接地处理,在一定程度上可有效防止人身遭受电击、设备和线路遭受损坏等事故的发生,进一步确保电力系统的正常、平稳运行。近年来,因接地网不能满足要求,进而引起设备损坏事故,在我国许多地区频繁连续,在引发电网事故的各种因素中,雷击是主要的自然灾害之一,通常情况下,在电网事故中,雷击事故超过50%。在这种情况下,接地装置的科学性、合理性是输电线路防雷的重要举措。此外,对雷电事故而言,其破坏作用通常是由雷电流造成的,通过熟悉了解接地装置出现的最大电位,在一定程度上可有效防止雷击事故的发生。 二、架空线路杆塔接地的标准要求 对架空线路杆塔的接地电阻和型式在电力行业标准《交流电气装置的过电压保护和绝缘配合》、《交流电气装置的接地》中都提出了具体的要求。它是设计、安装和改造架空线路杆塔接地的依据。 杆塔的接地电阻 1、对经常遭受雷击的杆塔和架空线路,该区域应加强并改善接地装置,使接地电阻达到要求,可采用新型接地体或减小土壤电阻率及补打接地体。 2、在土壤电阻率100Ω.m<ρ≤300Ω.m的地区,架空电力线路应较典型设计多增加接地体,接地体数量可根据现场实测接地电阻进行增加,且接地极埋设深度不宜小于0.6m。 3、在土壤电阻率300Ω.m<ρ≤2000Ω.m的地区,接地体可采用扁钢或钢绞线进行水平敷设的接地方式。 4、在土壤电阻率ρ>2000Ω.m地区,可采用接地网对杆塔进行接地。 5、居民区接地装置宜围绕杆塔基础敷设成闭合环形。 6、在农田的接地体接地深度至少为1m。 三、产生高压架空线路杆塔接地高电阻的原因 1、地质和地形原因。在土壤层稀薄的山区和地势地形复杂的区域,由于土壤中导电离子的数量不足,特别是在干旱的北方,会出现高压架空线路杆塔接地的高电阻问题。若此类地区继续沿用传统高压架空线路杆塔施工方法,则会出现接地电阻过高的风险,容易使高压架空线路和杆塔遭受雷电袭击的风险提升。 2、设计施工方面的原因。1)设计原因:由于山区地形复杂,土壤不均匀,土壤电阻变化较大,因此设计杆塔接地时需实地进行认真的勘探,结合实际情况进行相应设计。然而,在对实际工程进行调查时发现在设计方面存在一些问题:设计时有些不到现场进行土壤电阻率测试,不到现场进行地形、地势和地质勘探,根据实际做出符合现场条件的设计,而是对相当大的范围取平均电阻率;或套用典型的设计图纸,对接地电阻不进行计算,结果设计与现场实际不符均造成接地电阻偏高。2)施工原因:由于接地工程属于隐蔽工程,施工时若不能严格的按图施工(如接地体的长度、埋深及焊接和回填土不符要求),加之工程技术监督不到位。造成线路施工后,存在大量杆塔接地电阻超标。工程验收时不严格按标准要求进行验收、测试,会使这些隐患一直得不到消除,直到线路投运。 3、运行维护方面的原因。1)接地体的腐蚀,特别是在山区酸性土壤中,或风化后土壤中,容易发生电化学腐蚀和吸氧腐蚀,而容易发生腐蚀的部位是接地引下线与水平接地体的连接处,由腐蚀电位差不同引起的电化学腐蚀。有时会发生因腐蚀断裂而使杆塔失去接地保护的现象。另外,接地体的埋深不够,或用碎石、砂子回填,土壤中含氧量高,使接地体容易发生吸氧腐蚀,由于腐蚀使接地体与周围土壤之间的接触电阻变大,甚至使接地体在焊接头处断裂,导致杆塔接地电阻变大,或失去接地。2)在山坡、岩边由于雨水的冲刷,使水土流失进而使接地体外露失去与大地的接触。3)在施工时使用化学降阻剂,或性能不稳定的降阻剂,随着时间的推移降阻剂的降阻成分流失或失效后使接地电阻增大。4)外力破坏,杆塔接地引下线或接地体被盗或外力破坏。 四、降低高压架空线路杆塔接地电阻的措施 1、做好高压架空线路杆塔接地体系连接。从杆塔接地体的类别入手,强化连接方式和技术,以正确的方式来控制高压架空线路杆塔的接地电阻。对杆塔水平接地体应做到适当的延长,这有利于扩大接地体电流下泄的范围,同时也有助于高压架空线路杆塔接地体的安全。对杆塔垂直接地体的设计要结合山区的岩石分布,利用岩石间缝隙,遇到金属矿石要做到竖井接地降阻,以点阵的形式做到对高压架空线路杆塔接地电阻的控制。 2、合理使用土壤降阻剂。经大量工程实践证明,使用降阻剂对降低杆塔接地电阻非常有效。由于杆塔接地是属于中小型接地装置、降阻剂的降阻效果能得到充分发挥。但在实际工程上也发生了一些问题,主要是:1)降阻剂的稳定性问题,有些降阻剂,特别是一些化学降阻剂,虽然短时期内具有很好的降阻效果,但其性能不稳,随着降阻剂的渗透、扩散,特别是随着雨水的流失其降阻效果容易失效。2)降阻剂的腐蚀性问题,有些降阻剂具有很强腐蚀性,能对钢接地体构成较大的腐蚀。3)降阻效果问题,降阻剂的降阻效果主要由降阻剂本身的电阻率、保水性、渗透和扩散作用决定的。所以在降阻剂的选用上,一定要注意选用降阻性能好,对钢接地体低腐蚀,性能稳定、寿命长、保水性好,不易随水土流失的降阻剂。