自制太阳能自动跟踪控制器

自制太阳能自动跟踪控制器
自制太阳能自动跟踪控制器

自制太阳能自动跟踪控制器

现有的太阳能自动跟踪控制器无外乎两种:一是使用一只光敏传感器与施密特触发器或单稳态触发器,构成光控施密特触发器或光控单稳态触发器来控制电机的停、转;二是使用两只光敏传感器与两只比较器分别构成两个光控比较器控制电机的正反转。由于一年四季、早晚和中午环境光和阳光的强弱变化范围都很大,所以上述两种控制器很难使大阳能接收装置四季全天候跟踪太阳。这里所介绍的控制电路也包括两个电压比较器,但设在其输人端的光敏传感器则分别由两只光敏电阻串联交叉组合而成。每一组两只光敏电阻中的一只为比较器的上偏置电阻,另一只为下偏置电阻;一只检测太阳光照,另一只则检测环境光照,送至比较器输人端的比较电平始终为两者光照之差。所以,本控制器能使太阳能接收装置四季全天候跟踪太阳,而且调试十分简单,成本也比较低。

电路原理

电路原理图如图1所示,双运放LM358与R1、R2构成两个电压比较器,参考电压为VDD(+12V)的 1/2。光敏电阻 RT1、RT2与电位器 RP1和光敏电阻RT3、RT4与电位器RP2分别构成光敏传感电路,该电路的特殊之处在于能根据环境光线的强弱进行自动补偿。如图2所示,将RT1和 RT3安装在垂直遮阳板的一侧,RT4和RT2安装在另一侧。当RT1、RT2、RT3和RT4同时受环境自然光线作用时,RP1和RP2的中心点电压不变。如果只有RT1、RT3受太阳光照射,RT1的内阻减小,LM358的③脚电位升高,①脚输出高电平,三极管VT1饱和导通,继电器K1导通,其转换触点3与触点1闭合。同时RT3内阻减小,LM358的⑤脚电位下降,K2不动作,其转换触点3与静触点2闭合,电机M正转;同理,如果只有RT2、 RT4受太阳光照射,继电器K2导通,K1断开,电机M反转。当转到垂直遮阳板两侧的光照度相同时,继由器K1、K2都导通,电机M才停转。在太阳不停地偏移过程中,垂直遮阳板两侧光照度的强弱不断地交替变化,电机M转——停、转——停,使太阳能接收装置始终面朝太阳。4只光敏电阻这样交叉安排的优点是: (l)LM358的③脚电位升高时,⑤脚电位则降低,LM358的⑤脚电位升高时,③脚电位则降低,可使电机的正反转工作既干脆又可靠;(2)可直接用安装电路板的外壳兼作垂直遮阳板,避免将光敏电阻RT2、RT3引至蔽阴处的麻烦。

使用该装置,不必担心第二天早晨它能否自动退回。早晨太阳升起时,垂直遮阳板两侧的光照度不可能正好相等,这样,上述控制电路就会控制电机,从而驱动接收装置向东旋转,直至太阳能接收装置对准太阳为止。

安装调试

整个太阳能接收装置的结构如图2。兼作垂直遮阳板的外壳最好使用无反射的深颜色材料,四只光敏电阻的参数要求一致,即亮、暗电阻相等且成线性变化。安装时,四只光敏电阻不要凸出外壳的表面,最好凹进一点,以免散射阳光的干扰;垂直遮阳板(即控制盒)装在接收装置的边缘,既能随之转动又不受其反射光的强烈照射。凋试时,首先不让太阳直接照到四只光敏电阻上,然后调节RP1、RI2,使LM358两正向输人端的电位相等且高于反向输人端0.5V-1V。调试完毕后,让阳光照到垂直遮阳板上,接收装置即可自动跟踪太阳了。

太阳能自动跟踪系统方案

摘要 人类正面临着石油和煤炭等矿物燃料枯竭的严重威胁,太阳能作为一种新型能源具有储量无限、普遍存在、利用清洁、使用经济等优点,但是太阳能又存在着低密度、间歇性、空间分布不断变化的缺点,这就使目前的一系列太阳能设备对太阳能的利用率不高。太阳光线自动跟踪装置解决了太阳能利用率不高的问题。本文对太阳能跟踪系统进行了机械设计和自动跟踪系统控制部分设计。 第一,机械部分设计: 机械结构主要包括底座、主轴、齿轮和齿圈等。当太阳光线发生偏离时,控制部分发出控制信号驱动步进电机1带动小齿轮1转动,小齿轮带动大齿轮和主轴转动,实现水平方向跟踪;同时控制信号驱动步进电机2带动小齿轮2,小齿轮2带动齿圈和太阳能板实现垂直方向转动,通过步进电机1、步进电机2的共同工作实现对太阳的跟踪。 第二,控制部分设计: 主要包括传感器部分、信号转换电路、单片机系统和电机驱动电路等。系统采用光电检测追踪模式实现对太阳的跟踪。传感器采用光敏电阻,将两个完全相同的光敏电阻分别放置于一块电池板东西方向边沿处下方。当两个光敏电阻接收到的光强度不相同时,通过运放比较电路将信号送给单片机,驱动步进电机正反转,实现电池板对太阳的跟踪。 关键词太阳能;跟踪;光敏电阻;单片机;步进电机

Abstract Human being is seriously threatened by exhausting mineral fuel, such as coal and fossil oil. As a kind of new type of energy sources, solar energy has the advantages of unlimited reserves, existing everywhere,using clean and economical .But it also has disadvantages ,such as low density,intermission,change of space distributing and so on.These make that the current series of solar energy equipment for the utilization of solar energy is not high. In order to keep the energy exchange part to plumb up the solar beam,it must track the movement of solar.In this paper, the solar tracking system of the mechanical part and control system part are designed. First,the mechanical part is designed. Mechanical structure mainly includes the main spindle, stepping motors, gears and gear ring, and so on. When the sun's rayshas a deviation, small gear arerotated by stepper motor according to the control signal from MCU. And the large gear and main spindle is rotated by small gear in order to track to achieve the level direction.At the same time, another small gear is rotated by another stepper motor according to the control signal.And the large gear and the solar panels are rotated by the small gear in order to track to achieve the vertical direction. Solar is tracked by the two stepper motors together. Second, control system part is designed. Control system mainly includesthe sensors part, stepper motor, MCU system and the corresponding external circuit, and so on. Photoelectric detection systemisused to track solar. Sensors use photosensitive resistance. The two same photosensitive resistances were placed in east and west direction of the bottom edge .When the two photosensitive resistances receiveddifferent light at the same time, the signal from comparison circuit is sent to MCU in order to rotate stepping motors. Keywords Solar energyTrackingPhotosensitive resistance SCMSteppingmotor

太阳能跟踪器工作原理

太阳能跟踪器的工作原理 一工作原理 “太阳光寻迹传感器”安装在太阳能装置上,根据太阳光的位置,驱动电机,带动机械转动机构,始终跟随太阳位置运动。当太阳偏转一定角度时(一般5--10分钟左右),控制器发出指令,转动机构旋转几秒钟,到达正对太阳位置时时停止,等待下一个太阳偏转角度,一直这样间歇性运动;当阴天或晚上没有太阳出现时停止动作;只要出现太阳它就自动寻找并跟踪到位,全自动运行,无需人工干预,东西向、南北向二维控制,也可单方向控制,使用电源直流12伏,技术指标 1. 跟踪起控角度:1°--10°(不同应用类型) 2. 水平(太阳方位角)运行角度:Ⅰ型0°--360°,Ⅱ型-20°-- +200° 3. 垂直(太阳高度角)调整角度:10°--120°(太阳光与地面夹角) 4. 传动方式:丝杠、涡轮蜗杆、齿轮 5. 承载重量:10Kg-- 500Kg 6. 系统重量:2 Kg--500Kg 7. 电机功率:0.4W--15W 8. 电源电压 DC6V--24V 9. 运行环境温度: -40--85℃ 10.运行时间≥10万小时 11.室外全天候条件运行现有的太阳能自动跟踪控制器无外乎两种:一是使用一只光敏传感器与施密特触发器或单稳态触发器,构成光控施密特触发器或光控单稳态触发器来控制电机的停、转;二是使用两只光敏传感器与两只比较器分别构成两个光控比较器控制电机的正反转。由于一年四季、早晚和中午环境光和阳光的强弱变化范围都很大,所以上述两种控制器很难使大阳能接收装置四季全天候跟踪太阳。这里所介绍的控制电路也包括两个电压比较器,但设在其输人端的光敏传感器则分别由两只光敏电阻串联交叉组合而成。每一组两只光敏电阻中的一只为比

自制太阳能发电机详细教程(图文)

自制太阳能发电机详细教程(图文) 一直中意绿色能源,但我这里没有没有风力资源,就只能考虑太阳能了,下决心买了8块200W的太阳能电池,14个100A电瓶,花大血本了。 淘宝上买了个太阳能充电器,是10A的那种,我只用里面的充电功能,还是脉冲的, 拆开,改装,把里面的管子换了,直接用了2907的管子,不用改线路,加了散热器,一下子就能冲60A也不成问题,

卖冲电器的不要骂我啊,因为那个60A的充电器实在是太贵了,一个充电器60元,加两个管子2907是40元,100元一个充电器搞定,这个是我觉得最便宜的投资了。 太阳好的时候我这个50A的电流表不够用,呵呵,太阳能电池很给力啊。 现在就是这个我花了一个月做的逆变器了。 驱动板用的是张工的成品版,自己做驱动板,怕不漂亮,PCB也做不好,用成品的放心。

#p#变压器#e#DC-DC的管子第一次用的是irf2907,一直功率上不去,不能拖空调,搞到最后管子全炸了,呵呵,一排八个,心疼啊,有了第一次的经验,第二次用了管产的管子,RU190N08Q(TO-247) 这个管子比2907好用多了,这变压器是第一次绕,绕的不好看,整个逆变器就在一块大散热器上做平台搭焊开工,没有办法,习惯了,没有耐心把东西做的很漂亮,

张工的驱动板在这里安家。呵呵。

这个就是传说中的大水塘吧,以前做功放用下来的,就用上了, 大电感,是一个5000KV的逆变器上拆下来的,买来八个,八个就有10多斤啊,真重,用了四个,多了四个,两个串联用的,一个电感量是1.4.我串联是2.8吧。不知道会不会太高,不是说越大越好吗,呵呵。

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计 1引言 开发新能源和可再生资源是全世界面临的共同课题,在新能源中,太阳能发电已成为全球发展最快的技术。太阳能作为一种清洁无污染的能源,开发前景十分广阔。然而由于太阳存在着间隙性,光照强度随着时间不断变化等问题,这对太阳能的收集和利用装置提出了更高的要求(见图1)。目前很多太阳能电池板阵列基本都是固定的,不能充分利用太阳能资源,发电效率低下。据测试,在太阳能电池板阵列中,相同条件下采用自动跟踪系统发电设备要比固定发电设备的发电量提高35%左右。 所谓太阳能跟踪系统是能让太阳能电池板随时正对太阳,让太阳光的光线随时垂直照射太阳能电池板的动力装置,能显著提高太阳能光伏组件的发电效率。目前市场上所使用的跟踪系统按照驱动装置分为单轴太阳能自动跟踪系统和双轴太阳能自动跟踪系统。所谓单轴是指仅可以水平方向跟踪太阳,在高度上根据地理和季节的变化人为的进行调节固定,这样不仅增加了工作量,而且跟踪精度也不够高。双轴跟踪可以在水平方位和高度两个方向跟踪太阳轨迹,显然双轴跟踪优于单轴跟踪。 图1 太阳能的收集装置现场 从控制手段上系统可分为传感器跟踪和视日运动轨迹跟踪(程序跟踪)。传感器跟踪是利用光电传感器检测太阳光线是否偏离电池板法线,当太阳光线偏离电池板法线时,传感器发出偏差信号,经放大运算后控制执行机构,使跟踪装置从新对准太阳。这种跟踪装置,灵敏度高,但是遇到长时间乌云遮日则会影响运行。视日运动轨迹跟踪,是根据太阳的实际运行轨迹,按照预定的程序调整跟踪装置。这种跟踪方式能够全天候实时跟踪,其精度不是很高,但是符合运行情况,应用较广泛。 从主控单元类型上可以分为PLC控制和单片机控制。单片机控制程序在出厂时由专业人员编写开发,一般设备厂家不易再次进行开发和参数设定。而学习使用PLC比较容易,通过PLC厂家技术人员的培训,设备使用厂家的技术人员可以很方便的学会简单的调试和编写,并且PLC能够提供多种通讯接口,通讯组网也比较方便简单。

硅太阳能电池制造工艺流程图

硅太阳能电池制造工艺流程图 1、硅片切割,材料准备:工业制作硅电池所用的单晶硅材料,一般采用坩锅直拉法制的太阳级单晶硅棒,原始的形状为圆柱形,然后切割成方形硅片(或多晶方形硅片),硅片的边长一般为10~15cm,厚度约200~350um,电阻率约1.cm的p型(掺硼)。 2、去除损伤层: 1、硅片切割,材料准备: 工业制作硅电池所用的单晶硅材料,一般采用坩锅直拉法制的太阳级单晶硅棒,原始的形状为圆柱形,然后切割成方形硅片(或多晶方形硅片),硅片的边长一般为10~15cm,厚度约200~350um,电阻率约1Ω.cm的p型(掺硼)。 2、去除损伤层: 硅片在切割过程会产生大量的表面缺陷,这就会产生两个问题,首先表面的质量较差,另外这些表面缺陷会在电池制造过程中导致碎片增多。因此要将切割损伤层去除,一般采用碱或酸腐蚀,腐蚀的厚度约10um。 3、制绒: 制绒,就是把相对光滑的原材料硅片的表面通过酸或碱

腐蚀,使其凸凹不平,变得粗糙,形成漫反射,减少直射到硅片表面的太阳能的损失。对于单晶硅来说一般采用NaOH 加醇的方法腐蚀,利用单晶硅的各向异性腐蚀,在表面形成无数的金字塔结构,碱液的温度约80度,浓度约1~2%,腐蚀时间约15分钟。对于多晶来说,一般采用酸法腐蚀。 4、扩散制结: 扩散的目的在于形成PN结。普遍采用磷做n型掺杂。由于固态扩散需要很高的温度,因此在扩散前硅片表面的洁净非常重要,要求硅片在制绒后要进行清洗,即用酸来中和硅片表面的碱残留和金属杂质。 5、边缘刻蚀、清洗: 扩散过程中,在硅片的周边表面也形成了扩散层。周边扩散层使电池的上下电极形成短路环,必须将它除去。周边上存在任何微小的局部短路都会使电池并联电阻下降,以至成为废品。目前,工业化生产用等离子干法腐蚀,在辉光放电条件下通过氟和氧交替对硅作用,去除含有扩散层的周边。扩散后清洗的目的是去除扩散过程中形成的磷硅玻璃。 6、沉积减反射层: 沉积减反射层的目的在于减少表面反射,增加折射率。

太阳能自动跟踪装置设计报告

吉林铁道职业技术学院 电子制作职业技能大赛(论文) 题目太阳能自动跟踪装置设计

参赛人姓名王志会张卫国朱峰所在系电气工程系 指导教师陈冬鹤 完成时间2013年5月26日

吉林铁道电子制作职业技能大赛设计报告 题目:太阳能自动跟踪装置设计 主要内容、基本要求等: ◆主要内容:加强大学生动手操作能力,促进集体荣誉感。 ◆基本要求:1,利用单片机控制实现太阳能电池板随着太阳(光源)的位置变 化而调整自身相应的姿态,以达到太阳光能的最佳利用。 2,实现一定的姿态控制精度。 3,以低成本、低功耗完成设计并实现目标电路的组装。 ◆主要参考资料:电路基础、电工技术、电子手工焊接、单片机原理及应用、传感器原理与应用。 完成日期:2013年5月26日 指导教师:陈冬鹤 实验组组长:王志会 2013年 6 月 5 日

太阳能自动跟踪装置 研制目的 人类正面临着石油和煤炭等矿物燃料枯竭的严重威胁,太阳能作为一种新型能源具有储量无限、普遍存在、利用清洁、使用经济等优点,太阳能光伏发电是改善生态环境、提高人类生存质量的绿色能源之一,但由于传统太阳能板方向固定,受光时间有限。因此研制可随光移动的太阳能跟随系统。

一自动跟踪系统整体设计 1.1 系统总体结构 本系统包括光电转换器、步进电机、89C5系列单片机以及相应的外围电路等。太阳能电池板可以360度自由旋转。控制机构将分别对水平方向进行调整。单片机加电复位后,首先由TRCT5000构成的定位系统对整个系统进行预置定位,然后单片机将对两光敏电阻采样进来的两个电平进行比较,电平有高电平和低电平两种,若两电平相等则电池板停止转动,若不等单片机将对两电平进行比较判定,驱动步进电机让太阳能板与之相对应转动,实现电池板对太阳的跟踪。图1-1所示: 1.2 光电转换器

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计 解决方案: 跟踪系统驱动器接口电路 步进电机驱动电路 限位信号采集电路 太阳能是已知的最原始的能源,它干净、可再生、丰富,而且分布范围广,具有非常广阔的利用前景。但太阳能利用效率低,这一问题一直影响和阻碍着太阳能技术的普及,如何提高太阳能利用装置的效率,始终是人们关心的话题,太阳能自动跟踪系统的设计为解决这一问题提供了新途径,从而大大提高了太阳能的利用效率。 跟踪太阳的方法可概括为两种方式:光电跟踪和根据视日运动轨迹跟踪。光电跟踪是由光电传感器件根据入射光线的强弱变化产生反馈信号到计算机,计算机运行程序调整采光板的角度实现对太阳的跟踪。光电跟踪的优点是灵敏度高,结构设计较为方便;缺点是受天气的影响很大,如果在稍长时间段里出现乌云遮住太阳的情况,会导致跟踪装置无法跟踪太阳,甚至引起执行机构的误动作。 而视日运动轨迹跟踪的优点是能够全天候实时跟踪,所以本设计采用视日运动轨迹跟踪方法和双轴跟踪的办法,利用步进电机双轴驱动,通过对跟踪机构进行水平、俯仰两个自由度的控制,实现对太阳的全天候跟踪。该系统适用于各种需要跟踪太阳的装置。该文主要从硬件和软件方面分析太阳自动跟踪系统的设计与实现。 系统总体设计 本文介绍的是一种基于单片机控制的双轴太阳自动跟踪系统,系统主要由平面镜反光装置、调整执行机构、控制电路、方位限位电路等部分组成。跟踪系统电路控制结构框图如图1所示,系统机械结构示意图如图2所示。

任意时刻太阳的位置可以用太阳视位置精确表示。太阳视位置用太阳高度角和太阳方位角两个角度作为坐标表示。太阳高度角指从太阳中心直射到当地的光线与当地水平面的夹角。太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地子午线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。系统采用水平方位步进电机和俯仰方向步进电机来追踪太阳的方位角和高度角,从而可以实时精确追踪太阳的位置。上位机负责任意时刻太阳高度角和方位角的计算,并运用软件计算出当前状况下俯仰与水平方向的步进电动机运行的步数,将数据送给跟踪系统驱动器,单片机接收上位机送来的数据,驱动步进电机的运行。系统具有实现复位、水平方位的调整,俯仰方向的调整,太阳的跟踪及手动校准等功能。 硬件电路设计 1跟踪系统驱动器接口电路

太阳能自动跟踪系统

1.绪论 1.1课题背景 由于现今高科技环境下,能源是促进经济发达和社会进步的原动力。从工业革命以来,人类所使用的主要能源为石化能源,然而其蕴藏量有限,大量使用造成全球环境生态和气候产生莫大的变化,同时大气中的温室气体浓度大幅提高,造成气温逐渐升高、海平面上升等温室效应的现象,威胁了我们生存的环境。因此在环保意识抬头的今日,积极开发低污染及低危险性能源乃为迫切的需要。 虽然在可预见的将来,煤炭,石油,天然气等矿物燃料仍将在世界能源结构中占有相当的比重,但是人们对核能及太阳能,风能,地热能,水力能,生物能等可持续能源资源的利用日益重视,在整个能源消耗中所占的比例正在显著的提高。据统计,20世纪90年代,全球煤炭和石油的发电量每年增长1%,而太阳能发电每年增长达20%,风力发电的年增长率更是高达26%。预计在未来,可持续能源将与矿物燃料相抗衡,从而结束矿物燃料一统天下的局面。 相对日益枯竭的化石能源来说,太阳能似乎是未来社会能源的希望所在。1.1.1我国太阳能资源 我国幅员广大,有着十分丰富的太阳能资源。我国的国土跨度从南到北、自西至东,距离都在5000km以上,总面积达960×10 km2,占世界总面积的7%,居世界第三位。据估算,我国陆地表面每年接收的太阳辐射能约为50×10kJ,全国各地太阳年辐射总量达335~837KJ/cm2A,中值为586KJ/cm2A。从全国太阳年辐射总量的分布来看,西藏、青海、新疆、内蒙古南部、山西、陕西北部、河北、山东、辽宁、吉林西部、云南中部和西南部、广东东南部、福建东南部、海南岛东部和西部以及台湾省的西南部等广大地区的太阳辐射总量很大。尤其是青藏高原地区最大,那里平均海拔高度在4000m以上,大气层薄而清洁,透明度好,纬度低,日照时间长。例如,被人们称为“日光城”的拉萨市,1961年至1970年的平均值,年平均日照时间为3005.7h,相对日照为68%,年平均晴天为108.5天,阴天为98.8天,年平均云量为4.8,太阳总辐射为816KJ/cm2A,比全国其它省区和同纬度的地区都高。全国以四川和贵州两省的太阳年辐射总量最小,其中尤以四川盆地为最,那里雨多、雾多,晴天较少。例如素有“雾都”之称的成

基于52单片机 太阳能自动跟踪系统设计.

摘要 太阳能是已知的最原始的能源,它干净、可再生、丰富,而且分布范围广,具有非常广阔的利用前景。但太阳能利用效率低,这一问题一直影响和阻碍着太阳能技术的普及。太阳能自动跟踪系统的设计为解决这一问题提供了新途径,从而大大提高了太阳能的利用效率。本设计采用光电跟踪的方法,利用步进电机双轴驱动,由光电传感器根据入射光线的强弱变化产生反馈信号到微机处理器。微机处理器运行程序,通过对跟踪机构进行水平、俯仰两个自由度的控制,调整太阳能电池板的角度实现对太阳的跟踪。采用单片机来实现的太阳能追踪系统能有效提高太阳板的光电转化效率,并具有较广泛的应用前景。 关键词:太阳能;跟踪;光敏二极管;单片机;步进电机

Abstract Solar energy is known as the most primitive energy, and it is clean, renewable, rich, and wide distribution and has wide prospects of use. But the solar energy utilization efficiency is low; the problem has been influencing and hindering the popularity of solar energy technology. Solar energy to be automatic tracking system designed to solve the problem provide the new way,which greatly improve the efficiency in the use of solar energy. This design uses the photoelectric tracking method, and use the stepping motor driver, by photoelectric sensor incident, then the strength of the light’s changes produce feedback signals to the computer processor, and computer processor will run the program, through the horizontal tracking mechanism and pitch two degrees of freedom control to adjust the angle of solar panels to achieve the tracking of the sun. Solar tracking system by single chip microcomputer to achieve can improve the efficiency of conversion of photoelectric solar panels, and has a broad prospect of application. Key words: Solar energy;Tracking;Photosensitive diode ;SCM;Stepping motor

自动跟踪太阳智能型太阳能系统设计

图书分类号: 密级: 摘要 人类正面临着石油和煤炭等矿物燃料枯竭的严重威胁,太阳能作为一种新型能源具有储量无限、普遍存在、利用清洁、使用经济等优点,但是太阳能又存在着低密度、间歇性、空间分布不断变化的缺点,这就使目前的一系列太阳能设备对太阳能的利用率不高。太阳光线自动跟踪装置解决了太阳能利用率不高的问题。本文对太阳能跟踪系统进行了机械设计和自动跟踪系统控制部分设计。 第一,机械部分设计: 机械结构主要包括底座、主轴、齿轮和齿圈等。当太阳光线发生偏离时,控制部分发出控制信号驱动步进电机1带动小齿轮1转动,小齿轮带动大齿轮和主轴转动,实现水平方向跟踪;同时控制信号驱动步进电机2带动小齿轮2,小齿轮2带动齿圈和太阳能板实现垂直方向转动,通过步进电机1、步进电机2的共同工作实现对太阳的跟踪。 第二,控制部分设计: 主要包括传感器部分、信号转换电路、单片机系统和电机驱动电路等。系统采用光电检测追踪模式实现对太阳的跟踪。传感器采用光敏电阻,将两个完全相同的光敏电阻分别放置于一块电池板东西方向边沿处下方。当两个光敏电阻接收到的光强度不相同时,通过运放比较电路将信号送给单片机,驱动步进电机正反转,实现电池板对太阳的跟踪。 关键词太阳能;跟踪;光敏电阻;单片机;步进电机

Abstract Human being is seriously threatened by exhausting mineral fuel, such as coal and fossil oil. As a kind of new type of energy sources, solar energy has the advantages of unlimited reserves, existing everywhere,using clean and economical .But it also has disadvantages ,such as low density,intermission,change of space distributing and so on.These make that the current series of solar energy equipment for the utilization of solar energy is not high. In order to keep the energy exchange part to plumb up the solar beam,it must track the movement of solar.In this paper, the solar tracking system of the mechanical part and control system part are designed. First, the mechanical part is designed. Mechanical structure mainly includes the main spindle, stepping motors, gears and gear ring, and so on. When the sun's rays has a deviation, small gear are rotated by stepper motor according to the control signal from MCU. And the large gear and main spindle is rotated by small gear in order to track to achieve the level direction.At the same time, another small gear is rotated by another stepper motor according to the control signal.And the large gear and the solar panels are rotated by the small gear in order to track to achieve the vertical direction. Solar is tracked by the two stepper motors together. Second, control system part is designed. Control system mainly includes the sensors part, stepper motor, MCU system and the corresponding external circuit, and so on. Photoelectric detection system is used to track solar. Sensors use photosensitive resistance. The two same photosensitive resistances were placed in east and west direction of the bottom edge .When the two photosensitive resistances received different light at the same time, the signal from comparison circuit is sent to MCU in order to rotate stepping motors. Keywords Solar energy Tracking Photosensitive resistance SCM Stepping motor

太阳能电池的工作原理、工作效率、制造太阳能的材料及大致构造

引言太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽;②要有较高的光电转换效率:3、材料本身对环境不造成污染;4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 1 硅系太阳能电池 1.1 单晶硅太阳能电池硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是*单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCV D)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和

太阳能自动跟踪机械装置

太阳能自动跟踪机械装置 11 310 9A—A4 15 8 2147 16AA 513 171612 1118 太阳能自动跟踪装置原理图 1-支座;2-支柱;3-电池板支架;4-销轴;5-减速箱体;6、15-主轴;7-丝杆;8-横支架;9、18-电机;10-减速器;11-铰链;12、13-齿轮;14-连接轴;16-蜗轮;17-蜗杆1(东西方向跟踪 在减速箱体5内安装由电机18、齿轮12、13、蜗轮16、蜗杆17构成的传动机构。齿轮13固定在连接轴14中部,连接轴通过轴承安装在减速箱体上,蜗轮16固定在主轴6的上端,主轴通过轴承安装在减速箱体上,主轴的下端固定在支座1上,支柱2的下端固定在减速箱体上,支柱2的上端通过销轴4与电池板支架连接。电机18通过齿轮12、13带动蜗杆17转动,并带动减速箱体、电池板支架转动,完成东西方向的跟踪。 2(南北方向跟踪

支柱2上设置一个横支架8,横支架8端部铰接一个减速器10,减速器中设有蜗杆(图中未画出)与电机9相连,蜗杆与设在减速器中的蜗轮啮合,蜗轮中心设有螺孔与丝杆7连接配合,丝杆7的一端通过铰链11与电池板支架连接。电机9通过蜗轮蜗杆、丝杆螺孔机构,带动电池板支架转动,完成南北方向的跟踪。 俯仰跟踪控制。动力源电机1通过联轴器7带动蜗杆8与蜗轮9啮合运动,蜗轮9与齿轮10同轴,经过齿轮10与11的啮合运动,带动与齿轮11同轴的支架12转动,从而实现与支架12固接的硅光电池板13达到仰俯运动跟踪的目的。周转跟踪控制。动力源电机6通过联轴器5带动蜗杆4与蜗轮3啮合运转,从而带动与蜗轮3同轴固联的上箱2实现周转运动,因仰俯控制的传动机构都装在上箱2内,从而达到硅光电池板周转运动跟踪的目的。 两轴分别由两个电机控制,图a表示电机1输出轴连接固定在转台上的减速器1输入轴,减速器1输出轴连接小齿轮,大齿轮固定,当电机转动时驱动小齿轮绕

太阳能电池的原理及制作(精)

太阳能电池的原理及制作 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能 源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光 电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩 目的项目之一。 制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光 电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。 一、硅太阳能电池 1.硅太阳能电池工作原理与结构 太阳能电池发电的原理主要是半导体的光电效应,一般的半导体主要结构如下: 图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。 当硅晶体中掺入其他的杂质,如硼、磷等,当掺入硼时,硅晶体中就会存在着一个空穴,它的形成可以参照下图: 图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。而黄色的表示掺入的硼原子,因为硼原子周围只有3个电子,所以就会产生入图所示的蓝色的空穴,这个空穴因为没有电子而变得很不稳定,容易吸收电子而中和,形成P(positive)型半导体。

同样,掺入磷原子以后,因为磷原子有五个电子,所以就会有一个电子变得非常活跃,形成N (negative)型半导体。黄色的为磷原子核,红色的为多余的电子。如下图。 N型半导体中含有较多的空穴,而P型半导体中含有较多的电子,这样,当P型和N型半导体结合在一起时,就会在接触面形成电势差,这就是PN结。 当P型和N型半导体结合在一起时,在两种半导 体的交界面区域里会形成一个特殊的薄层),界面的P型 一侧带负电,N型一侧带正电。这是由于P型半导体多 空穴,N型半导体多自由电子,出现了浓度差。N区的 电子会扩散到P区,P区的空穴会扩散到N区,一旦扩散就形成了一个由N指向P的“内电场”,从而阻止扩散进行。达到平衡后,就形成了这样一个特殊的薄层形成电势差,这就是PN结。 当晶片受光后,PN结中,N型半导体的空穴往P型区移动,而P型区中的电子往N型区移动,从而形成从N型区到P型区的电流。然后在PN结中形成电势差,这就形成了电源。(如下图所示)

基于单片机的太阳能电池自动跟踪系统的设计-图文(精)

第24卷第3期 V ol 124 N o 13师学院学报(自然科学版Journal of Chang Chun T eachers C ollege (Natural Science 2005年8月Aug 2005 基于单片机的太阳能电池自动跟踪系统的设计 薛建国 (学院电子信息工程系,351100 [摘要]本系统以单片机为核心,构建了由光电二极管检测和比较,方位角和高度角双轴机械跟踪 定位系统组成的自动控制装置,设计出一套自动使太阳能电池板保持与太垂直的自动跟踪系统。 在晴天检测时能自动跟踪太阳并实时回存正确数据,消除因季节变化而产生的积累误差,在阴天时能 自动引用晴天时的位置,控制精度高,具有广泛的应用潜力。实现了追踪太阳的效果,达到提高发电 效率的目的。 [关键词]太阳跟踪;光电检测;自动定位;单片机;设计 [中图分类号]T N710 [文献标识码]A [文章编号]1008-178X (200 [收稿日期]2005-06-05 [作者简介]薛建国(1965-,男,人,省学院电子信息工程系高级讲师,从事多媒体、电子技术、单片机 研究。

太阳能作为一种清洁无污染的能源,发展前景非常广阔,太阳能发电已成为全球发展速度最快的技术。然而它也存在着间歇性、光照方向和强度随时间不断变化的问题,这就对太阳能的收集和利用提出了更高的要求。目前很多太阳能电池板阵列基本上都是固定的,没有充分利用太阳能资源,发电效率低下。据实验,在太阳能光发电中,相同条件下,采用自动跟踪发电设备要比固定发电设备的发电量提高35%,因此在太阳能利用中,进行跟踪是十分必要的[1]。 本文提出一种新型的基于单片机的太自动跟踪系统设计方案,该系统不仅能自动根据太方向来调整太阳能电池板朝向,结构简单、成本低,而且在跟踪过程中能自动记忆和更正不同时间的坐标位置,不必人工干预,特别适合天气变化比较复杂和无人值守的情况,有效地提高了太阳能的利用率,有较好的推广应用价值。 11自动跟踪系统的组成和结构 111 组成。自动跟踪系统由光电检测电路,双轴机械跟踪定位系统,时钟电路,单片机控制系统等几部分组成。 11111 光电检测电路 太阳的方位随着观测位置和观测时间的不同而不同,因此,欲跟踪太阳就必须先对太阳进行检测定位。 图1是太电定位装置中光电检测电路的俯视简图,共由9个光电三极管组成。正中央1个,旁边8个围成一圈。将此检测板用一不透光的下方开口的圆柱体盖住,圆柱体的直径略大于图中的外圆。圆柱体的上方中央开一个与检测用的光电二极管直径相同的洞,以让光线通过(如图2所示。将整个光电检测装置安装在太阳能光电池板上,光电二极管的检测面与电池板平行。在圆柱体的外面不受圆柱体遮挡的地方(确保会受到光线的照射也安装一个光电二极管(其朝向与圆柱体的光电二极管朝向相同,用于检测环境亮度,并与圆柱体的每个光电二级管及运放(可用LM324集成电路中的一个构成一个比较电路(如图3。适当调整图中电阻的阻值,这样当圆柱体的光电二极管没有受光线照射时,运放将输出低电平。此电平可对接到的输入端进

太阳能自动跟踪装置控制系统设计

本科生毕业论文 题目太阳能自动跟踪装置控制系统设计 系别机械交通学院 班级机制 122 姓名李鹏万 学号 123731214 答辩时间 2016年5月 新疆农业大学机械交通学院

目录 摘要:太阳能作为一种新型清洁能源,受到了世界各国的广泛重视。现阶段影响太阳能普及的主要原因是太阳能电池的成木较高而光电转化效率却较低。因此,如何提高太阳能利用效率是太阳能行业发展的关键问题。在国内,大多数太阳能电池阵列都是固定安装的,无法保证太阳光实时垂直照射,导致太阳能资源不能得到充分利用。自动太阳跟踪控制系统在跟踪太阳旋转的情况下可接收到更多的太阳辐射能量,从而提高太阳能电池板的输出功率,该技术在各种太阳跟踪装置中可以广泛应用。 0 1 设计研究背景及意义 (2) 2 主要研究内容 (2) 2.1 系统的设计目标 (2) 2.2 设计的主要内容 (2) 3 系统的总体设计 (3) 3.1 太阳自动跟踪方式的确定 (3) 3.2 本设计的设计思想 (3) 4 太阳能充电控制器的设计 (4) 4.1 太阳能电池的选型 (4) 4.2 蓄电池的选型 (6) 4.2.1 铅酸蓄电池基本概念 (6) 4.2.2 本系统蓄电池的选型 (7) 4.3 太阳能充电控制器的设计 (8) 4.3.1 UC3906芯片的介绍 (8) 4.3.2 BUCK电路的设计 (8) 4.4 充电控制器外围电路设计 (10) 5 跟踪系统传感器检测装置的设计 (12) 5.1 阴天检测装置的设计 (12) 5.2 白天黑夜检测装置 (14) 5.3 太阳位置传感器的介绍 (14) 5.3.1 传感器检测部分的设计 (14) 5.3.2 光敏二极管的介绍 (16) 5.3.3 LM324芯片的介绍 (16) 6 视日运动轨迹模块设计 (17) 6.1 太阳赤纬角的计算 (17) 6.2 太阳高度角的计算 (17) 6.3 太阳方位角的计算 (18) 6.4 日出日落时间计算 (18) 7 执行器件的选型 (18) 7.1 步进电机的选型 (18) 7.2 步进电机驱动器的选型 (19) 7.3 执行器件的连接方式 (20) 8 控制系统的设计 (21) 8.1 单片机电源模块的设计 (22) 8.2 驱动器电源模块的设计 (22)

太阳自动跟踪系统剖析

绪论 21世纪是太阳能时代。在未来的40年中,人类可以实现100%的可再生能源供电。不再需要中东的石油、西伯利亚的天然气以及澳大利亚的铀。实际上,目前在我们家门口就已经获得了未来能源的载体:太阳、风力、水力、地热能,以及来自农田和林地的生物能。根据欧盟报告,2050年全球能源供给分配应当为:40%太阳能,30%生物能,巧%风能,10%水能,5%原油。报告论述了如何达到这种经济、环保、和平并且可持续的能源供给状态。跨国石油公司,比如壳牌、惠普等,已经在向着这种能源供给状态发展。 地球上的万物生长都依赖于太阳的存在,太阳给我们提供了巨大的能量源,地球上大部分的能源归根结蒂也来自于太阳。比如石油、煤炭等化石能源都是过去的动植物通过吸收太阳能不断的生长,后来这些动植物被掩埋在土壤下形成的能源,这其实是太阳能一种形式的转换,并被存储了下来,直到今天被人类开采使用。太阳能开发利用的潜力是相当巨大,据统计,全世界人们一年所使用的能量总和仅仅相当于太阳辐射到地球能量的数万分之一。在化石能源即将枯竭的未来,在未来能源方面,太阳能给人类带来新的生机。 太阳在一天中不断改变位置,这造成太阳能存在着密度低、间歇性的特点,且光照方向和度随时间不断变化。传统太阳能电池板固定在一个角度,不能时刻工作在最大效率处,而采用双轴太阳能跟踪系统的太阳能电池板在功率保持一定的情况下可以提升36% 的发电量,提高太阳能的利用率。

第一章跟踪系统的控制方案 目前光跟踪技术主要是两种方法:1.视日运行轨道跟踪方法。2.光电自动跟 踪方法。 1.1视日运行轨道跟踪 视日运行轨道跟踪技术是一种根据理论计算的太阳运行的轨迹而采取的一 种跟踪技术,根据跟踪的方位它主要分为两种:单轴跟踪和双轴跟踪。 1.1.1单轴跟踪 单轴跟踪分为三种方式:1.倾斜布置东西追踪;2.焦线南北水平布置,东西跟踪;3.焦线东西水平布置,南北跟踪。它们跟踪原理是相同,即电池阵列绕单一轴转动,其转动方向为自东向西或者南北方向,自东向西单轴跟踪方式是跟踪太阳方位角变化,驱动电池阵列转动,使电池阵列方位角与太阳方位角相同。这类跟踪方式结构简单,控制容易,在光照强度大和光照相当稳定的地方实施这类跟踪方式比较适宜。但这类跟踪方式存在一个最大缺点是除了正午这个时刻外在其他时侯不能保持电池阵列接收光辐射面与太阳光线垂直,这样大大降低了光的吸收效率,造成了能量的流失大,影响了整个光伏发电的效率。 1.1.2双轴跟踪 双轴跟踪是一种全方位的跟踪技术,它弥补了单轴跟踪的不足之处,目前视日运动轨迹的双轴跟踪主要分为两种方式:极轴跟踪方式,高度一方位角太阳轨迹跟踪方式。 极轴跟踪方式:是聚光镜的一轴指向地球北极,即与地球自转轴相平行,故称为极轴;另一轴与极轴垂直,称为赤纬轴。工作时反射镜面绕极轴运转,其转速的设定与地球自转角速度大小相同方向相反用以追踪太阳的视日运动;反射镜围绕赤纬轴作俯仰转动是为了适应赤纬角的变化,通常根据季节的变化定期调整。这种追踪方式并不复杂,但在结构上反射镜的重量不通过极轴轴线,极轴支承装置的设计比较困难。 高度一方位角太阳轨迹跟踪是一种地平坐标系统跟踪方式,它是当今比较先进的一种跟踪方式,跟踪精度较高。高度一方位角跟踪方式通过计算具体地点和具体时刻的太阳运动轨迹(高度角和方位角表示运行轨迹),根据光伏电池阵列的具体位置,先沿着垂直轴转动弥补方位角偏差,然后沿水平轴转动弥补高度角偏差,以保证电池阵列与太阳运行轨迹一致。这种方式受天气季节性影响较小属于一种理论计算轨迹程序控制跟踪方式。由于理论计算轨迹与实际运行轨道误差小,因此该跟踪方式跟踪精度较高,这种方式缺点是受跟踪系统机械影响比较大,在系统长期运行或者外力影响造成机械误差后,会造成跟踪偏差变大,影响了跟踪精度。

相关文档
最新文档