定压罐的选型

定压罐的选型
定压罐的选型

热力系统中(锅炉、空调、热泵、热水器等)AQUASYSTEM 膨胀罐的选型

V = 21111P P e

C ++-

?

C = 系统中水总容量(包括锅炉、管道、散热器等)

e = 水的热膨胀系数(系统冷却时水温和锅炉运行时的最高水温的水膨胀率之差,见下表),标准设备中e=0.0359(90℃)

P1=膨胀罐的预充压力 P2=系统运行的最高压力(即系统中安全阀的起跳压力)

V = 膨胀罐的体积

例如:

系统水总容积为400L 的锅炉,安全阀起跳压力为3bar.应该选用多大体积的膨胀罐 V =

2

11

11P P e

C ++-

? = 315.1110359.0400++-? = 38.3L

按选大不选小原则,最接近的是50L 的膨胀罐,即该系统需选用V A V50 经验公式: 空调、热泵系统: 5P 以下机用2L ,即VR2 5-10P 机用5L ,即VR5 10-18P 机用8L ,即VR8 1P (匹)= 2.5KW 锅炉、热水器系统:

功率为1000Kcal/h 的锅炉或热水器,其系统水总容积为10-20L 1Kcal/h (大卡/小时)= 1.163W

定压系统中(变频供水、恒压供水等)AQUASYSTEM 膨胀罐的选型

为避免水泵频繁启动,膨胀罐的调节容积应满足一定时间的水泵流量(L/min ),计算公式如下:V = K ×Amax ×

)

1(min)max ()

1min ()1max (+?-+?+Ppre P P P P

K = 水泵的工作系数,随水泵功率不同而变化,具体见下表: Amax = 水泵的最大流量(L/min )

Pmax = 水泵的最高工作压力(水泵停机时系统的压力) Pmin = 水泵的最低工作压力(水泵启动时系统的压力) Ppre = 气压罐的预充压力 V = 气压罐的体积

其中1HP (马力)= 0.735KW 例如:

一恒压供水设备水泵功率为4HP ,水泵最大流量为120L/min,系统压力低于2.2bar 时水泵自动启动,系统压力达到7bar 时,水泵自动停机,气压罐预充压力为2bar ,该系统要选用多大的气压罐?

由上表可知:水泵功率为4HP 时,K=0.375 V = K ×Amax ×

)

1(min)max ()

1min ()1max (+?-+?+Ppre P P P P

= 0.375×120×

)

12()2.27()

12.2()17(+?-+?+= 80L

正好气压罐型号里面有80L 的,所以直接选用V A V80即可。

以上是定压罐的计算与选型!

定压罐的性质与结构:主要由罐体、法兰盘、气囊、针阀以及罐体与气囊之间预充的氮气组成。罐体一般为碳钢材质,外面是防锈烤漆层;气囊为EPDM 环保橡胶;气囊与罐体之间的预充气体出厂时已充好,无须自己加气。

罐体为密闭装置,气水不相接触,能保证水质不被外界污染。

P (HP )

1-2 2-4 5-8 9-12 >12 K

0.25

0.375

0.625

0.875

1

定压罐的选型

热力系统中(锅炉、空调、热泵、热水器等)AQUASYSTEM 膨胀罐的选型 V = 21111P P e C ++- ? C = 系统中水总容量(包括锅炉、管道、散热器等) e = 水的热膨胀系数(系统冷却时水温和锅炉运行时的最高水温的水膨胀率之差,见下表),标准设备中e=0.0359(90℃) P1=膨胀罐的预充压力 P2=系统运行的最高压力(即系统中安全阀的起跳压力) V = 膨胀罐的体积 例如: 系统水总容积为400L 的锅炉,安全阀起跳压力为3bar.应该选用多大体积的膨胀罐 V = 2 11 11P P e C ++- ? = 315.1110359.0400++-? = 38.3L 按选大不选小原则,最接近的是50L 的膨胀罐,即该系统需选用V A V50 经验公式: 空调、热泵系统: 5P 以下机用2L ,即VR2 5-10P 机用5L ,即VR5 10-18P 机用8L ,即VR8 1P (匹)= 2.5KW 锅炉、热水器系统: 功率为1000Kcal/h 的锅炉或热水器,其系统水总容积为10-20L 1Kcal/h (大卡/小时)= 1.163W

定压系统中(变频供水、恒压供水等)AQUASYSTEM 膨胀罐的选型 为避免水泵频繁启动,膨胀罐的调节容积应满足一定时间的水泵流量(L/min ),计算公式如下:V = K ×Amax × ) 1(min)max () 1min ()1max (+?-+?+Ppre P P P P K = 水泵的工作系数,随水泵功率不同而变化,具体见下表: Amax = 水泵的最大流量(L/min ) Pmax = 水泵的最高工作压力(水泵停机时系统的压力) Pmin = 水泵的最低工作压力(水泵启动时系统的压力) Ppre = 气压罐的预充压力 V = 气压罐的体积 其中1HP (马力)= 0.735KW 例如: 一恒压供水设备水泵功率为4HP ,水泵最大流量为120L/min,系统压力低于2.2bar 时水泵自动启动,系统压力达到7bar 时,水泵自动停机,气压罐预充压力为2bar ,该系统要选用多大的气压罐? 由上表可知:水泵功率为4HP 时,K=0.375 V = K ×Amax × ) 1(min)max () 1min ()1max (+?-+?+Ppre P P P P = 0.375×120× ) 12()2.27() 12.2()17(+?-+?+= 80L 正好气压罐型号里面有80L 的,所以直接选用V A V80即可。 以上是定压罐的计算与选型! 定压罐的性质与结构:主要由罐体、法兰盘、气囊、针阀以及罐体与气囊之间预充的氮气组成。罐体一般为碳钢材质,外面是防锈烤漆层;气囊为EPDM 环保橡胶;气囊与罐体之间的预充气体出厂时已充好,无须自己加气。 罐体为密闭装置,气水不相接触,能保证水质不被外界污染。 P (HP ) 1-2 2-4 5-8 9-12 >12 K 0.25 0.375 0.625 0.875 1

压力变送器选型标准

压力变送器选型标准 一、变送器要测量什么样的压力 先确定系统中测量压力的最大值,一般而言需要选择一个具有比最大值还要大1.5倍左右的压力量程的变送器。这主要是在许多系统中,尤其是水压测量和加工处理中,有峰值和持续不规则的上下波动,这种瞬间的峰值能破坏压力传感器。持续的高压力值或稍微超出变送器的标定最大值会缩短传感器的寿命,这样做还会使精度下降。于是可以用一个缓冲器来降低压力毛刺,但这样会降低传感器的响应速度。所以在选择变送器时要充分考虑压力范围、精度与其稳定性。 二、什么样的压力介质 黏性液体、泥浆会堵上压力接口,溶剂或有腐蚀性的物质会不会破坏变送器中与这些介质直接接触的材料。以上这些因素将决定是否选择直接的隔离膜及直接与介质接触的材料。 三、变送器需要多大的精度 决定精度的有,非线性,迟滞性,非重复性,温度、零点偏置刻度,温度的影响。但主要由非线性,迟滞性,非重复性,精度越高,价格也就越高。 四、变送器的温度范围 通常一个变送器会标定两个温确段,其中一个温度段是正常工作温度,另外一个是温度补偿范围,正常工作温度范围是指变送器在工作状态下不被破坏的时候的温度范围,在超出温度补偿范围时可能会达不到其应用的性能指标。 温度补偿范围是一个比工作温度范围小的典型范围。在这个范围内工作变送器肯定会达到其应有的性能指标。温度变从两方面影响着其输出,一是零点漂移,二是影响满量程输出。如:满量程的+/-X%/℃,读数的+/-X%/℃,在超出温度范围时满量程的+/-X%,在温度补偿范围内时读数的+/-X%,如果没有这些参数,会导至在使用中的不确定性。变送器输出的变化到度是由压力变化引起的,还是由温度变化引起的。温度影响是了解如何使用变送器时最复杂的一部分。 五、需要得到怎样的输出信号 mV、V、mA及频率输出数字输出,选择怎样的输出取决于多种因素,包括变送器与系统控制器或显示器间的距离,是否存在“噪声”或其他电子干扰信号,是否需要放大器,放大器的位置等。对于许多变送器和控制器间距离较短的OEM设备采用mA输出的变送器最为经济而有效的解决方法。 如果需要将输出信号放大,最好采用具有内置放大的变送器。对于远距离传输或存在

定压补水系统的设计计算含实例说明

定压补水系统的设计计算<含实例说明> 空调冷水膨胀、补水、软化设备选择计算: 已知条件:建筑面积:90000 m2,冷水水温:7.0/12.0℃, (一)空调系统: 风机盘管加新风系统为主,系统最高点70+11.0(地下)=81m, 采用不容纳膨胀水量的隔膜式气压罐定压。 1. 空调系统水容量Vc = 0.7~1.30(L/m2)(外线长时取大值):1.30 *90000/1000=117 m3 2. 空调系统膨胀量Vp =a*⊿t*Vc:0.0005*15*117=0.88 m3 (冷水系统) 3. 补水泵选择计算 系统定压点最低压力:81+0.5=81.5(m)=815(kPa) (水温≤60℃的系统,应使系统最高点的压力高于大气压力5kPa以上) 补水泵扬程:≥815+50=865(kPa) (应保证补水压力比系统补水点压力高30-50kPa,补水泵进出水管较长时,应计算管道阻力) 补水泵总流量:≥117*0.05=5.85(m3/h)=1.8(L/s) (系统水容的5-10%) 选型:选用2台流量为1.8 L/s,扬程为90m(900 kPa)的水泵,平时一用一备,初期上水和事故补水时2台水泵同时运行。水泵电功率:11Kw。 4. 气压罐选择计算 1)调节容积Vt应不小于3min补水泵流量采用定频泵Vt≥5.8m3/h*3/60h=0.29m3=290 L 2)系统最大膨胀量:Vp=0.88 m3 此水回收至补水箱 3)气压罐压力的确定: 安全阀打开压力:P4=1600(kPa)(系统最高工作压力1200kPa) 电磁阀打开压力:P3=0.9*P4=1440(kPa) 启泵压力:(大于系统最高点0.5m)P1= 865kPa 停泵压力(电磁阀关闭压力): P2=0.9*1440=1296kPa 压力比αt= (P1+100)/( P2+100)=0.69,满足规定。 4)气压罐最小总容积Vmin=βVt/(1-αt)=1.05*290/(1-0.69)=982 L 5)选择SQL1000*1.6隔膜式立式气压罐,罐直径1000mm,承压1.6Mpa,高 2700mm,实际总容积VZ=1440 (L) 5.空调补水软化设备 自动软化水设备(双阀双罐单盐箱)软水出水能力:(双柱)0.03Vc=0.03*117=3.5m3/h 租户24小时冷却膨胀、补水设备选择计算: 已知条件:建筑面积:90000 m2,冷却水温:32/37.0℃, 系统最高点70+11.0(地下)=81m, 采用不容纳膨胀水量的隔膜式气压罐定压。 1. 空调系统水容量45m3

为高速ADC选择最佳的缓冲放大器

为高速ADC选择最佳的缓冲放大器 现代通信系统创新设计主要表现在直接变频和高中频架构,全数字接收机的设计目标要求模数转换器(ADC)以更高的采样率提供更高的分辨率(扩大系统的动态范围)。在新兴的3G 和4G数字无线通信系统中,无杂散动态范围(SFDR)和线性度都需要高性能的ADC来保证。幸运的是,在接收信号链路中,ADC的前级增益电路—缓冲放大器的性能在最近几年得到了极大提高,有助于ADC确保满足现代无线通信系统的带宽和失真要求。但是,缓冲放大器和ADC之间的匹配要求非常严格,深刻理解缓冲放大器对ADC性能指标的影响非常重要。 长期以来,得到无线通信系统设计工程师认可的理想数字接收机的信号链路是:天线、滤波器、低噪声放大器(LNA)、ADC、数字解调和信号处理电路。虽然实现这个理想的数字接收机架构还要若干年的时间,但用于射频前端的ADC的性能越来越高,通信接收机正逐渐消除频率变换电路。从发展趋势看,接收机的一些中间处理级会被逐步消除掉,但ADC前端的缓冲放大级却是接收机中相当重要的环节,它是保证ADC达到预期指标的关键。信号链路的缓冲放大器是包括混频器、滤波器及其它放大器的功能模块的一部分,它必须作为一个独 立器件考察其噪声系数、增益和截点指标。给一个既定的ADC选择合适的缓冲放大器,可以在不牺牲总的无杂散动态范围的前提下改善接收机的灵敏度。 定义动态范围 接收灵敏度是系统动态范围的一部分,它定义为能够使接收机成功恢复发射信息的最小接收信号电平,动态范围的上限是系统可以处理的最大信号,通常由三阶截点(IP3)决定,对应于接收机前端出现过载或饱和而进入限幅状态的工作点。当然,动态范围也需要折衷考虑,较高的灵敏度要求低噪声系数和高增益。然而,具有30dB或者更高增益、噪声系数低于2dB 的LNA其三阶截点会受到限制,常常只有+10到+15dBm。由此可见,高灵敏度的放大器有可能在接收前端信号处理链路中成为阻塞强信号的瓶颈。在接收机的前端加入ADC后,对动态范围的折衷处理变得更加复杂。引入具有数字控制的新型线性放大器作为缓冲器,能够在扩展动态范围的同时提高接收机的整体性能。 为了理解缓冲放大器在高速ADC中的作用,我们需要了解一下每个部件的基本参数及其对接收机性能的影响。传统的接收机前端一般采用多级变频,将来自天线的高频信号解调到中频,然后再作进一步处理。通常,信号链路会将射频输入转换到第一中频的70MHz或140MHz,然后再转换到第二中频的10MHz,甚至进一步转换至第三中频的455kHz。这种多级变频的超外差接收机架构的应用仍然很广泛,但考虑到现代通信系统所面临的降低成本、缩小尺寸的压力,设计工程师不得不尽一切可能去除中间变频电路。长期以来,军品设计工程师也一直都在探索实现全数字化接收机的解决方案,用ADC直接数字化来自天线和滤波器组的射频信号。 近几年,ADC的性能指标得到了飞速提高,但还没有达到可以支持全数字化军用接收机的水平。尽管如此,商用接收机的设计已经从三级或更多级的变频架构简化到一次变频架构。减少频率变换级意味着ADC输入将是较高中频的信号,需要ADC和缓冲放大器具有更宽的频带。对ADC分辨率的要求取决于具体的接收机,对于一些军用设备,例如有源接收机,10位分辨率即可满足要求。对于当前和正在兴起的商用通信接收机,比如3G、4G蜂窝系统,为了降低经过复杂的相位和幅度调制的波形的量化误差,需要ADC具有更高的分辨率。对于多载波接收机,通常需要14位甚至更高的分辨率,同时也要足够的带宽来处理整个中频频带的信号。 如果一个接收机架构已具备高速、高分辨率ADC,那么关系到灵敏度和动态范围的其它关键参数是什么呢?ADC常用SFDR作为其关键指标,SFDR定义为输入信号的基波幅度与指定

生活给水定压罐容积的计算方法

生活给水定压罐容积的计算方法

稳压罐各种容积计算 默认分类2009-12-29 08:16:52 阅读164 评论0 字号:大中小订阅 气压给水设备的设计: 1. 气压罐总容积: VZ=βVω/(1-α)=1.1×045/(1-0.75)=1.98m3 式中:VZ——气压罐总容积(m3); α——压缩空气充装比,取α=0.75;

β——容积附加系数,取β=1.1 2. 气压水罐非调节水容积: △Vω=(1-1/β)VZ =(1-1/1.1)×1.98=0.18m3 3. 气压水罐空气部分容积: Vk=αVZ/β =0.75×1.98/1.1=1.35m3 4. 立式气压水罐设计水位的计算 设计最高水位: hmax=(1-α/β)H=(1-0.75/1.1)×1.75=0.557m 式中:H——立式气压罐总高度(m); 设计最低水位: hmin=(1-1/β)H =(1-1/1.1)×1.75=0.159m;

5. 设计最小工作压力和设计最大工作压力的计算: 为保证消防供水安全可靠,气压罐设计最小工作压力,应满足最不利点灭火设备或用水设备的水压要求: Pmin=HC+∑hω+HZ 式中:Pmin——气压罐设计最小工作压力(MPa); HC——最不利点灭火设备或用水设备所需的水压(MPa); ∑hω——最不利管路的沿程和局部水头损失(MPa); HZ——最不利点灭火设备或用水设备与气压给水设备最低水位间的静水压(MPa); (1)消火栓系统: Pmin=HC+∑hω+HZ=0.50MPa P max=Pmin/α=0.50/0.75=0.667MPa (2)自动喷洒系统:

膨胀罐

关于膨胀罐选型计算及使用的相关探讨 1.粗略选型计算方法 V=S*/0.04-0.05 S-建筑面积 V=膨胀罐体积 例子: 建筑面积100平方米时V=100*0.4-0.5=4-5L 不同建筑面积对应数值 2、利用公式计算 公式V=C*e/(1-P1/P2) C-系统总的水容量 水容量的计算,管道水量C1=πr2=3.14*0.008*0.008=0.00020096m3=0.2L 地板热每平方米铺管量5-6米则每平方米的水量为1-1.2L,我们暂时按1.1计算则不同面积地热部分水量为: 主管部分对应De32的主管,R=(32-3.6*2)/2=12.4 C1=πr2=3.14*0.0124*0.0124=0.004828064=4.83L 200-400平方米的取20米,水量为C=4.83*20=96.6L 400-600平方米的取30米,水量为C=4.83*30=144.9L 700-1000平方米的取40米,水量为C=4.83*40=193.2L 则用户总水量为

地热我认为注水温度可以达到差不多室内的温度,取20C°,室内正常供水温度取50 C°则水的膨胀率e=e(50)-e(20)=0.0121-0.00177=0.01033 3、P1为起跳压力,我们买的膨胀罐压力为3Bar,地热侧运行压力为在0.8bar一下运行就没有什么问题,所以起跳压力可以取3Bar 4、P2为系统最大承压,压力罐厂家的承压是10Bar,其它部分均大于此压力,所以系统最大承压为选10Bar。 根据公式算出膨胀管体积V如下 5则当面积为200平的时候膨胀罐体积 水量:水箱容积150L和200L,水管接口De25,每米数量

太阳能换热系统膨胀罐选型计算及案例

太阳能工程换热系统膨胀罐的选型 在集热循环系统内,为了避免液体加热膨胀从安全阀泄漏及防止汽化,膨胀罐是必不可少的元件,其容积的选择遵循以下公式: ※系统各部分液体量计算表 一、单块集热器容水量 名称 内管规格 数量/m 容水量L/m 小计/L 集管 2*φ22 2.12 0.34 0.721 排管 8*φ8 16 0.036 0.576 合计 1.297 二、集热板液体量/L (Vp ) 集热器 面积/㎡ 数量/块 容水量L/块 小计/L 2000*1000 150 75 1.297 97.260 三、管道液体量/L 名称 管内径(mm) 管道长度(m) 容水量L/m 小计/L 介质循环管道 DN20 15 0.314 4.710 介质循环管道 DN40 70 1.257 87.990 介质循环管道 DN65 50 3.318 165.900 合计 258.600 四、集热循环系统液体量/L (Vc ) 合计/L 355.860 1.求膨胀罐有效容积: k V e V V p c u ×+×=)(=(355.860×0.07+97.260)×1.1= 134.39L 2.求膨胀罐额定容积: )/()1(i f f u n P P P V V ?+×== 134.39L ×(5+1)/(5-1.5)= 230.38L 根据产品规格取大于Vn 值的膨胀罐:实际取250L 或更大的膨胀罐如300L 。 注:如果太阳能系统循环出口管道(上循环)高出太阳能上出口或与集热器上出口平齐,则Vp 部分的液体量还包括这部分管道的液体量,太阳能膨胀罐系统设计参照《太阳能组合系统的过热保护》一文。

缓冲区分析

1、空间缓冲区分析。 (1)为点状、线状、面状要素建立缓冲区。 1)打开菜单“自定义”下的“自定义模式”,在对话框中选择“命令”,在“类别” 中选择“工具”,在右边的框中选择“缓冲向导”(如图 1 所示),拖动其放置 到工具栏上的空处。 图1提出“缓冲向导” 2)利用选择工具选择要进行分析的点状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息,如图2及图3所示。 图2 线状缓冲区信息设置1

图3线状缓冲区信息设置2 3)利用选择工具选择要进行分析的线状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息。 4)利用选择工具选择要进行分析的面状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息,如图4所示。 图4 面状缓冲区信息设置 2、学校选址。 要求: (1) 新学校选址需注意如下几点: 1)新学校应位于地势较平坦处; 2)新学校的建立应结合现有土地利用类型综合考虑,选择成本不高的区域; 3)新学校应该与现有娱乐设施相配套,学校距离这些设施愈近愈好; 4)新学校应避开现有学校,合理分布。 (2) 各数据层权重比为:距离娱乐设施占0.5,距离学校占0.25,土地利用类型和地势 位置因素各占0.125。 (3) 实现过程运用ArcGIS的扩展模块(Extension)中的空间分析(Spatial Analyst)部 分功能,具体包括:坡度计算、直线距离制图功能、重分类及栅格计算器等功能完 成。 (4) 最后必须给出适合新建学校的适宜地区图,并对其简要进行分析。

具体操作: (1)打开加载地图文档对话框,选择E:\Chp8\Ex1\school.mxd。 (2)从DEM 数据提取坡度数据集: 打开工具箱→“Spatial Analyst 工具”→“表面分析”→“坡度”工具;在打开对话框中设置,如图5所示;生成坡度图,如图6所示。 图5 “坡度”对话框设置 图6 坡度图 (3)从娱乐场所数据“Rec_sites”提取娱乐场所欧氏距离数据集: 打开工具箱→“Spatial Analyst 工具”→“距离分析”→“欧氏距离”工具;在打开对话框中设置,如图7所示;生成欧氏距离数据集,如图8所示。

气压罐的选型参数

气压罐的选型参数 气压罐调节水量不是气压罐的容积,而是气压罐在此压力范围内的调节容积,在变频系统上,为最大限度的利用气压罐的体积,可把气压罐预充气体的压力和水泵的启动压力下限设为一致,这样当气压罐内的水全部补充到系统后水泵恰好启动。 如:生活管网变频供水恒压值为P1=0.5MPa,压力下限(水泵再启动压力)P2=0.15MPa,在正常情况下,假设管网夜间用水量为15L/h,在夜间水泵停止工作按7h(22:00-5:00)计算,用水量为105L,那么,如果气压罐在P1与P2压力范围内的调节水量大于105L,即可保证水泵睡眠7小时,因此,选用调节水量在略大于105L的气压罐是比较合适的,如选用调节水量大大超出105L (上述压力范围内)的气压罐,虽然水泵的间歇时间更长,但超过7小时已经开始进入用水阶段,延长睡眠时间已无意义,因此,不是气压罐体积越大效果越好。 假设需要选用的气压罐容积为V,气压罐预充压力为P2,则由波义耳(RobertBoyle)气体定律,在一定温度下气体压力(P)与容积(V)乘积等于常数的原理, 即PV =定值,P1×V1=P2×V2=P×V 其中:P=气压罐预充气体压力 V=气压罐体积(也为初始状态预充气体的体积) V1=系统压力为P1时气压罐气体的体积 V2=系统压力为P2时气压罐气体的体积 由以上可知:0.5V1=0.15V2=0.15V V1=0.3V2 V2=V 气压罐的调节容积△V=V-V1=0.7V=105L V=150L

即应该选用体积为150L的气压罐,因为气压罐型号的限制,所以按选大不选小和就近原则,来选择相应的气压罐。 热力系统中(锅炉、空调、热泵、热水器等)膨胀罐的选型 V = C =系统中水总容量(包括锅炉、管道、散热器等) e =水的热膨胀系数(系统冷却时水温和锅炉运行时的最高水温的水膨胀率之差),标准设备中e=0.0359(90℃) P1=膨胀罐的预充压力 P2=系统运行的最高压力(即系统中安全阀的起跳压力)V =膨胀罐的体积 不同温度下水的膨胀率 温度(℃) 4 10 20 30e 0.00013 0.00027 0.00177 0.00435温度(℃) 40

定压罐计算经验公式

暖通空调计算书 系统水容量Vc =建筑面积X 0.7?1.30 (L/m2 )(建筑面积大选小值,建筑面积小选大值) 补水泵的选择:扬程比系统补水点压力高30-50kPa,补水泵进出水管较长时,应计算管道阻力, 流量是系统水容量的5%?10% (建筑面积大选小值,建筑面积小选大值) 气压罐的选择:调节容积Vt应不小于3min补水泵流量 气压罐最小总容积Vmin= 3 Vt/(1 - a t) Vt----调节容积 3----取值1.05 at--取值0.69-0.85 (建筑面积大选小值,建筑面积小选大值) 50 直接公式:Vmi n= 空调冷水膨胀、补水、软化设备选择计算 已知条件:建筑面积:90000 m 2冷水水温:7.0/12.0 C, (一)空调系统:风机盘管加新风系统为主,系统最高点70+11.0(地下)=81m , 采用不容纳膨胀水量的隔膜式气压罐定压。 1. 空调系统水容量V c = 0.7?1.30 (L/m2)(外线长时取大值):1.30 *90000/1000=117 m 2. 空调系统膨胀量V p =a* " t*V c: 0.0005*15*117=0.88 m 3(冷水系统) 3. 补水泵选择计算 系统定压点最低压力:81 +0.5=81.5(m)=815(kPa) (水温W60C的系统,应使系统最高点的压力高于大气压力5kPa以上) 补水泵扬程:为15+50=865 (kPa) (应保证补水压力比系统补水点压力高30-50kPa,补水泵进出水管较长时,应计算管道阻力)补水泵总流量:羽17*0.05=5.85(m 3/h)=1.6 (L/s)

气压罐定压计算

附录C 设置隔膜式气压罐定压的采暖空调系统设备选择和补水泵工作压力计算例题 C. 1 例题一 某两管制空调系统冬季采用60/50℃热水,系统水容量约75m3;定压补水点设在循环水入口,根据空调设备和管网允许工作压力,确定循环水泵入口最高允许工作压力为 1.OMPa(1000kPa);采用不容纳膨胀水量的隔膜式气压罐定压;补水箱与系统最高点高差为45m;试进行定压补水设备的选择计算。 C. 1. 1 根据本措施6. 9节的有关规定和公式进行计算,各公式和图示中容积和压力名称如下: V P——系统的最大膨胀水量(L); V t——气压罐计算调节容积(L); V min—气压罐最小总容积(L); V Z——气压罐实际总容积(L); P1——补水泵启动压力(表压kPa); P2——补水泵停泵压力(电磁阀的关闭压力)(表压kPa); P3——膨胀水量开始流回补水箱时电磁阀的开启压力(表压kPa) P4--安全阀开启压力(表压kPa); ——补水泵启动压力P1和停泵压力P2的设计压力比; ——容积附加系数,隔膜式气压罐取1.05。 C.1. 2 补水泵选择计算 1 系统定压点最低压力为P1=45+0.5+1=46.5(m)=465(kPa)。 2 考虑到补水泵的停泵压力P2,确定补水泵扬程为(P1十P2)/2=(465十810)/ 2=638(kPa)(P2数值见C. 1.3条3款),高于P1压力173kPa,满足6. 9.3条1款要求。 3 补水泵设计总流量应不小于75×5%=3.75(m3/h)。 4 选用2台流量为2.Om3/h,扬程为640kPa(扬程变化范围为465~810kPa)的水泵,平时使用1台,初期上水或事故补水时2台水泵同时运行。 C. 1.3 气压罐选择计算 1 调节容积不宜小于3min补水泵设计流量。 1)当采用定速泵时V t≥2.0(m3/h)×3/60(h)=0.1(m.3)=100(L)。 2)当采用变频泵时V t≥2.0(m3/h)×1/3×3/60(h)=0.033(m3)=33(L)。 2 系统最大膨胀量为:V P=14.51(L/m3)×75(m3)=1088(L)(单位容积膨胀量见6.9.6条注释),此水量回收至补水箱。 3 气压罐最低和最高压力确定: 1)安全阀开启压力取P4=1000(kPa)(补水点处允许工作压力); 2)膨胀水量开始流回补水箱时电磁阀的开启压力P3=0.9Pa=0.9×1000=900(kPa); 3)补水泵启动压力P1=465(kPa); 4)补水泵停泵压力(电磁阀的关闭压力)P2=0.9P3=0.9×900=810(kPa);

热水膨胀罐资料

热水膨胀罐资料 -得汛胡鑫独家讲解意大利阿库斯坦热水膨胀罐-深圳市得汛科技有限公司本文详述了热水膨胀罐的定义,热水膨胀罐的型号及技术参数,热水膨胀罐的结构,热水膨胀罐的工作原理,热水膨胀罐的分类,热水膨胀罐的选型,热水膨胀罐的安装

目录 一:热水膨胀罐的定义 二:热水膨胀罐的型号及技术参数三:热水膨胀罐的结构 四:热水膨胀罐的工作原理 五:热水膨胀罐的分类 六:热水膨胀罐的选型 七:热水膨胀罐的安装

热水膨胀罐的定义 热水膨胀罐:用于系 统中起缓冲压力波动及部分 给水的作用,在热力系统中 主要是用来吸收工作介质因 温度变化增加的那部分体 积;在供水系统中主要用来 吸收系统因阀门、水泵等开 和关所引起的水锤冲击,以 及夜间少量补水使供水系统 主泵休眠从而减少用电,延 长水泵使用寿命。

热水膨胀罐的型号及技术参数VR系列热水膨胀罐产品说明: 热水膨胀罐广泛应用于空调、热泵等系统,吸收系统水因温度升高而膨胀的那部分体积,热水膨胀罐能有效防止闭式系统的压力波动,配合自动补水阀使用,热水膨胀罐可起定压补水作用。

VR VR系列系列系列热水膨胀罐热水膨胀罐热水膨胀罐的技术参数的技术参数VR 系列热水膨胀罐的技术参数: 最大工作压力:8bar/10bar 最高工作温度:-10-100℃ 预充压力:1.5bar VR 系列空热水膨胀罐的结构: 罐体:碳钢 法兰盘:碳钢镀锌 气囊:EPDM (三元乙丙橡胶) 颜色:红色

VRV热水膨胀罐的产品说明 VRV热水膨胀罐广泛应用于太阳能系统,特别是分体是承压太阳能系统,吸收系统水因温度升高而膨胀的那部分体积,能有效防止闭式系统的压力波动,配合自动补水阀使用,可起定压补水作用。

计量泵的选型参数

计量泵的选型参数 恰当地选择计量泵都需要哪些信息? 1. 被计量液体的流量。 2. 被计量液体的主要特性,例如化学腐蚀性、黏度和比重等。 3. 系统的背压。 4. 合适的吸升高度。 5. 需要的其他选项,如模拟量控制、脉冲量控制、流量监视和定时器。 电磁驱动计量泵有哪些主要优势? 电磁驱动计量泵只有一个运动部件—电枢轴。通常来讲,运动部件越少则计量泵工作越可靠。计量泵非常适合于低流量、低压力工作场合,并且在供电电压波动时有良好的补偿作用。 与固定频率、改变冲程长度的计量泵相比较,固定冲程长度、改变频率的计量泵有哪些优势? 通过校正,每一个冲程的投加量是已知的。因此总的投加量可以通过计算得出(投加量=每冲程投加量*频率)。总投加量与频率成线性关系(50 % 频率 = 50 % 投加量) 。通过外部的脉冲或模拟量控制,投加量可以在一秒钟之内从最小调到最大。另外它比电机驱动的冲程长度调节成本要低的多。 如何使用计量泵的性能曲线图? 1. 找到与所选用的计量泵相应的性能曲线图。 2. 在下面的图表中标示出当前的背压。 3. 确定修正因数,取以bar为单位的背压值,向上延伸至曲线,在交叉点垂直向左读取修正因数值。 4. 用需要的投加量值除以修正因数值,得出以 ml/min.或 L/h为单位的值。 5. 把计算结果放在投加量刻度的中间。 6. 当把这个值放在投加量刻度上时,可以使用一把直尺,查找出冲程长度设定和冲程频率设定。

计量泵的基本工作原理 众所周知,计量泵主要由动力驱动、流体输送和调节控制三部分组成。动力驱动装置经由机械联杆系统带动流体输送隔膜实现往复运动: 隔膜(活塞)于冲程的前半周将被输送流体吸入并于后半周将流体排出泵头;所以,改变冲程的往复运动频率或每一次往复运动的冲程长度即可达至调节流体输送量之目的。精密的加工精度保证了每次泵出量进而实现被输送介质的精密计量。 因其动力驱动和流体输送方式的不同,计量泵可以大致划分成柱塞式和隔膜式两大种类。 1、柱塞式计量泵 主要有普通有阀泵和无阀泵两种。柱塞式计量泵因其结构简单和耐高温高压等优点而被广泛应用于石油化工领域。针对高粘度介质在高压力工况下普通柱塞泵的不足,一种无阀旋转柱塞式计量泵受到愈来愈多的重视,被广泛应用于糖浆、巧克力和石油添加剂等高粘度介质的计量添加。因被计量介质和泵内润滑剂之间无法实现完全隔离这一结构性缺点,柱塞式计量泵在高防污染要求流体计量应用中受到诸多限制。 2、隔膜式计量泵 顾名思义,隔膜式计量泵利用特殊设计加工的柔性隔膜取代活塞,在驱动机构作用下实现往复运动,完成吸入-排出过程。由于隔膜的隔离作用,在结构上真正实现了被计量流体与驱动润滑机构之间的隔离。高科技的结构设计和新型材料的选用已经大大提高了隔膜的使用寿命,加上复合材料优异的耐腐蚀特性,隔膜式计量泵目前已经成为流体计量应用中的主力泵型。在隔膜式计量泵家族成员里,液力驱动式隔膜泵由于采用了油均匀地驱动隔膜,克服了机械直接驱动方式下泵隔膜受力过分集中的缺点,提升了隔膜寿命和工作压力上限。为了克服单隔膜式计量泵可能出现的因隔膜破损而造成的工作故障,有的计量泵配备了隔膜破损,实现隔膜破裂时自动连锁保护;具有双隔膜结构泵头的计量进一步提高了其安全性,适合对安全保护特别敏感的应用场合。 作为隔膜式计量泵的一种,电磁驱动式计量泵以电磁铁产生脉动驱动力,省却了电机和变速机构,使得系统小巧紧凑,是小量程低压计量泵的重要分支。 计量泵配件的基本知识

定压罐计算

定压罐的计算 定压系统中(变频供水、恒压供水等)膨胀罐(气压罐、压力罐)的选型 为避免水泵频繁启动,膨胀罐的调节容积应满足一定时间的水泵流量(L/min),计算公式如下: Amax = 水泵的最大流量(L/min) Pmax = 水泵的最高工作压力(水泵停机时系统的压力,此处压力为绝对压力)Pmin = 水泵的最低工作压力(水泵启动时系统的压力,此处压力为绝对压力)Ppre = 气压罐的预充压力(此处压力为绝对压力) V = 气压罐的体积 其中1HP(马力)= 0.75KW 例如: 一恒压供水设备水泵功率为4HP,水泵最大流量为120L/min,系统压力低于 2.2bar时水泵自动启动,系统压力达到7bar时,水泵自动停机,气压罐预充压力为2bar,该系统要选用多大的气压罐? 由上表可知:水泵功率为4HP时,K=0.375 气压罐型号里面没有72L的,所以直接选用最接近的型号80L的膨胀罐即可。热力系统中(锅炉、空调、热泵、热水器等)膨胀罐的选型

C = 系统中水总容量(包括锅炉、管道、散热器等) e = 水的热膨胀系数(系统冷却时水温和锅炉运行时的最高水温的水膨胀率之差,见下表),标准设备中e=0.0359(90℃) P1=膨胀罐的预充压力(绝对压力) P2=系统运行的最高压力(绝对压力) 例如: 系统水总容积为400L的锅炉,安全阀起跳压力为3bar.应该选用多大体积的膨胀罐 按选大不选小原则,最接近的是36L的膨胀罐,即该系统需选用36L的膨胀罐 经验公式: 空调、热泵系统: 结合我们在空调中的为客户选型的应用,我跟大家分享一下我们常用的一个经验公式,也是一个速算公式吧,可能没有算系统膨胀水体积那个方法准确,但一般情况下不会有什么问题的,具体如下: 5-10P 选用的5L膨胀罐VR5 10-18P选用的8L膨胀罐VR8 18-30P选用的12L膨胀罐VR12 30-45P选用的18L膨胀罐VR18 45-60P选用的24L膨胀罐VR24 其中制冷量KW和P的换算关系为1 P ≈ 2.5KW

膨胀罐的安装

膨胀罐的安装 膨胀罐的安装 1.建议将膨胀罐安装在系统水温较低的地方,避免高温水加速气囊的老化,如供暖系统的回水端,储热水箱冷水进水口; 2.闭式循环系统严禁将膨胀罐安装在循环泵的出口,以免造成水泵的气蚀,降低水泵的使用寿命; 3.膨胀罐可水平或垂直安装,35L及以下的膨胀罐一般可直接连到系统管道上,35L及以上的膨胀罐自带三脚支架,避免膨胀罐在工作时自重对系统管道产生较大的载荷,使用金属软管把膨胀罐连接到系统,埋地螺钉固定膨胀罐支脚,保证使用过程中的平稳; 4.膨胀罐附近要安装安全阀,避免在系统压力异常的时候损坏膨胀罐和系统其他部件; 5.膨胀罐跟系统之间要安装球阀,便于膨胀罐的检测、维护以及气囊的更换;

膨胀罐使用注意事项 1.膨胀罐出厂时预充压力已设定,根据罐子的大小一般体积小于150L以下的膨胀罐预充压力为1.5bar,200L或以上的预充压力为2bar,用户若认为此压力不合适,可在供应商的指导下进行充/放气; 2.测试膨胀罐气囊时建议直接用水压测试,严禁使用锐利的器件碰触气囊; 3.若该膨胀罐是放在特殊场合,应告知供应商,以便选择最合适的罐体和油漆; 4.膨胀罐的工作介质一般为水或者防冻液的混合物,其他介质需打电话咨询; 5.膨胀罐应每6个月检查一次膨胀罐预充压力大小,如果发现气压不足应及时补气,以免影响其正常使用; 6.膨胀罐罐体标签上有注明工作温度和最大工作压力,严禁超出此范围使用。 7.应严格按公式来计算所需膨胀罐的大小,膨胀罐过小会引起安全阀的频繁起跳和自动补水阀的频繁补水; 8.膨胀罐的最大工作压力跟其罐体上标注的预充压力一一对应,如果因使用需要改变了其预充压力,最大工作压力随之改变,基本遵循以下规律,预充压力减小,其最大工作压力随之减小,具体减小到多少要计算,预充压力增大其最大工作压力不变。 9.体积小的膨胀罐可直接安装到系统预留接口上,体积大于24L的膨胀罐应使用 金属软管连接到系统预留接口,严禁使用硬质胶管连接到系统,如管道有振动,

膨胀水箱的选型

供暖系统膨胀罐容积选型公式: f i 1C e P P V -?= V =膨胀罐选型容积(升)。 e =水加热膨胀系数,惯例选择0.035这一系数。 C =系统总水量(升)。 Pi =起始压力(公斤):由系统静压+0.3公斤+大气压力(1公斤)组成。 P f =最终压力(公斤):由系统运行时最大压力(即安全阀设定压力)+大气压力(1公斤)组成。 水加热膨胀系数“e ” 温度(℃) 系数(e ) 温度(℃) 系数(e ) 温度(℃) 系数(e ) 0 0.00013 40 0.00782 75 0.02575 10 0.00025 45 0.00984 80 0.02898 15 0.00085 50 0.01207 85 0.03236 20 0.0018 55 0.01447 90 0.03590 25 0.00289 60 0.01704 95 0.03958 30 0.00425 65 0.01979 100 0.04342 35 0.00582 70 0.02269 速算公式:将系统总水量乘以以下系数即得出膨胀罐容积(以熟悉e =0.035计算) 安全阀设定压力(公斤) 系统起始压力(公斤) 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 2.25 0.091 0.106 0.134 0.175 0.253 - - - - - - 2.50 0.082 0.094 0.111 0.136 0.175 0.254 - - - - - 2.70 0.076 0.086 0.100 0.118 0.144 0.185 0.259 - - - - 3.00 0.070 0.078 0.088 0.100 0.117 0.140 0.175 0.233 - - - 3.50 0.063 0.068 0.075 0.083 0.093 0.105 0.121 0.143 0.175 0.225 - 4.00 0.058 0.063 0.067 0.073 0.080 0.088 0.097 0.109 0.125 0.146 0.175 4.50 0.055 0.058 0.062 0.066 0.071 0.077 0.084 0.092 0.101 0.113 0.128 5.00 0.052 0.055 0.058 0.062 0.066 0.070 0.075 0.081 0.088 0.095 0.105 5.40 0.051 0.053 0.056 0.059 0.062 0.066 0.070 0.075 0.080 0.086 0.093 6.00 0.049 0.051 0.053 0.056 0.058 0.061 0.064 0.068 0.072 0.077 0.082

定压罐技术要求

三、定压装置技术规格书 本工程中央空调系统定压补水设备采用自动补水、排气、定压成套设备(简称定压补水装置)。 本工程定压补水装置设置于中央空调冷冻机房或通风空调机房内。 本工程共设置定压补水装置_1_套。 本规格书并末充分引述有关标准和规范的条文,提出的是最低限度的技术要求,卖方应提供符合本规格书和工业制造标准的优质产品。 (一)、提供的资料 (1)设备说明: a.设备及部件说明,包括:设备的供货范围;结构、原理、详细性能、特性及参数等。 b.设备的安装说明 c.设备制造质量资料及质量保证书。 (2)最终图纸: a.设备总图,应包括下列内容: ●定压装置外型图及外型尺寸 ●设备与系统联接的各接口 ●设备检修所需的空间 b.电气原理图. (3)中文设备操作维修手册: a.该手册在试运行前一个月提交 b.所有设备的规格 c.所有设备的调试手册 d.操作方法及程序,包括: ●总的要求及重要措施 ●启动程序 ●正常运行 ●停机程序 ●故障排除 e.维护保养,包括: ●总的要求及安全措施 ●投标人建议的定期保养时间及项目

●投标人的设备系列号、地址及负责人的联系电话。 f.维修,包括: ●设备和部件常见故障说明。 ●建议的紧急安全程序 ●河北紧急维修中心的电话、地址及与负责人的联系方式 ●维修项目及方法 ●特殊工具和备品备件清单 ●维修图册及有关资料 (4)技术人员培训手册及培训所需的所有资料 (5)设备交货装箱清单。 (6)本标书要求的其它资料。 (二)、技术参数与条件 1.对投标人的资质要求: (2)、投标设备的鉴定证书。 (3)、进口货物须是有合法的进口手续和途径并能通过中华人民共和国商检部门检验的货物及产品的原产地证明和报关单。 (4)、所提供的技术数据经实测证实是真实的。 2.工程装备运行条件 安装场所:户内 地处亚热带,为季风性气候,温和湿润,四季分明,年平均温度22.7℃,极端最高温度39.5℃,极端最低温度0.0℃ 安装场所户内安装 海拔高度≤1000m 环境温度5oC ~40oC 日温差25oC 相对湿度日平均不大于95%(+25 oC时),月平均不大于90%(+25 oC时)3.技术要求 a)功能:自动定压、补水、排气功能。 b)罐体为常压罐,隔膜为丁基橡胶材料。 c)罐体有效容积:根据设计要求计算相应膨胀量 d)定压值:根据设计图纸要求。 e)控制系统要求采用PLC控制 f)可直接通过RS485和RS232与控制中心进行实时通信和监控 g)控制面板:带液晶屏幕,操作语言为中文。用户可以对系统的压力,排气等 参数进行设定。同时应具备故障、水位等报警功能,可将运行状态、故障报警信号反馈给控制中心。 h)采用双重安全保护,即安全阀保护和泄水保护。 i)防护等级IP54。 j)最大操作压力:10 bar。 k)允许瞬间温度:120℃。 l)定压精度:±0. 1bar。 m)电压:380V/50Hz或220V/50Hz

起重机用聚氨酯缓冲器型号

JHQ-A型聚氨酯缓冲器: 序号型号 D mm H mm M mm h mm 缓冲容量 KN.m 缓冲行程 mm 缓冲力 KN 1JHQ-A-1658016350.57347.0526.47 2JHQ-A-2808016350.4006042 3JHQ-A-38010016350.5027542 4JHQ-A-41008016350.6286066 5JHQ-A-510010016350.7857566 6JHQ-A-610012516350.9809466 7JHQ-A-71251001635 1.22775103 8JHQ-A-81251251635 1.53394103 9JHQ-A-91251601635 1.960720169 10JHQ-A-101601251635 2.51294169 11JHQ-A-111601601635 3.215120169 12JHQ-A-121602001635 4.019150265 13JHQ-A-132001602045 5.024120265 14JHQ-A-142002002045 6.280150265 15JHQ-A-1520025020457.850188265 16JHQ-A-1625020020459.810150414 17JHQ-A-17250250204512.266188414 18JHQ-A-18250320204515.700240414 19JHQ-A-19320250204520.096188675 20JHQ-A-20320320204525.732240675

JHQ-C型聚氨酯缓冲器: 序号型号D H B b缓冲容量缓冲行程缓冲力 mm KN.m mm KN 1JHQ-C-16580100700.2656028 2JHQ-C-28080115850.46042 3JHQ-C-380100115850.5027542 4JHQ-C-4100801301000.6286066 5JHQ-C-51001001301000.7857566 6JHQ-C-61001251301000.989042 7JHQ-C-7125100165130 1.22275103 8JHQ-C-8125125165130 1.53394103 9JHQ-C-9125160165130 1.96120103 10JHQ-C-10160125200160 2.51294169 11JHQ-C-11160160200160 3.215120169 12JHQ-C-12160200200160 4.019150169 13JHQ-C-13200160250200 5.024120265 14JHQ-C-14200200250200 6.28150265 15JHQ-C-152002502502007.85188265 16JHQ-C-162502003202509.81240414 17JHQ-C-1725025032025012.266188414 18JHQ-C-1825032032025015.7240414 19JHQ-C-1932025040031520.096188675 20JHQ-C-2032032040031525.723240675 21JHQ-C-2132040040031532.154300675

相关文档
最新文档