烟气喷淋降温除尘计算书

烟气喷淋降温除尘计算书
烟气喷淋降温除尘计算书

计算说明:此计算书为脱硫烟气除尘降温喷淋量计算书,喷淋液(水)最终状态仍未液体,因此,计算时未考虑水变为水蒸气带走热量,水的比热容以液体状态的4.178带入计算,如液体最终状态为饱和水蒸气,式中带出热量公式所带入数值应为饱和水蒸气比焓,查表可得。

一、初始条件0 M- z2 R. R9 t" f9 W9 G

烟气温度:150℃

85000M3/h,气体体积组成如下:) N+ b: p4 e; h Y7 I

CO2:13.66%4 z7 L* x; w3 W' W& M

H2O:14.54%- k# P, X& g3 V2 q5 B

SO2:0.02%* b5 d* B ?' w. A5 E6 g% h

N2:67.16%8 l2 c0 m. d7 i+ b: h

O2:4.62%

冷却水温度按32℃考虑,水温和烟气最终温度按100℃" ~ e, r/ {! A- a 二、计算说明

烟气喷水降温,通过气液接触热量传递达到降温效果。

三、物性查询

所有物性数据全部查自2002版化学工业出版社出版的《化学化工物性数据手册无机卷》。+ E! H8 M7 ?. @( T& `1 X* K; X4 m

1、饱和水的比热为4.178 J/g·K;

2、各气体的比热见下表,单位为KJ/kg·K2 }# F

5 g; t4 x g/ d

项目0℃50℃

& `5 U( H7 x0 @. 100℃150℃

% E8 I4 k! F/ I9 i3

200℃

T' G`* }' |! @' N- i

CO2/

/0.84790.8855

/

SO2/

/0.62530.6473

5 `: V/ j7 V* K4 N

/

O2

/

: I4 U6 R: [( Q

C1 |; @2 r% H

/

0.9192

0.9277

! q* q- H1 P/ l! T8

w: F

/

N2

& R! m: `% e6 o% o0 C3 `/

/

, n# _2 l6 v' ]5 E

1.0396 3 k 1.042

r; F2 Y8 r, @$ H9

/

, n# _2 l6 v' ]5 E

H2O

5 [/ {$ I m4.1781 ~- l

四、进出口温度下比热计算

按上面表格中物性采用内插法计算进出口温度下的气体比热(单位:KJ/kg·K)。

项目CO2

SO2

" B# N# n& o) P,

y3 T2 i8 [

O2N2

H2O

% H/ b" z x"

Q$ r: [

150℃0.88550.64730.9277

# o. i/ l5 e, X9 I

1.042

, S- N, }7 I# \6 r

4.178

100℃

0.8479

! ^7 e7 i& a) n( d"

C2 O2 U0 ]

0.6252

7 _( m9 t9 r: X9

G9 h6 b

0.9192

8 i' d' ]* l d" ?9 }

E

1.0396

4.178

五、能量衡算

假定需水量为n kmol+ z/ ?$ q4 [9 |9 s

CO2:85000×13.66%=11611 NM3/h=518.35 kmol

H2O:85000×14.54%=12358 NM3/h=551.74 kmol2 p. ]+ U7 i( T6 U. U9 X N2: 85000×67.16%=57086 M3/h=2548.48 kmol

O2: 85000×4.62%=3927 NM3/h=175.31 kmol

SO2:85000×0.02%=1700 NM3/h=75.89 kmol) v6 R$ }* y& Q3 t

1、输入热量& W1 q7 f- ?! r

气体带入热量:

(518.35×44.01×0.8855+551.74×18.02×4.178+2548.48×28.01×1.042+175.31×32×0.9277+75.89×64.06×0.6473)×1504 E% {& { }, D# g" L0 `' @0 c- A

=21670783.36 KJ! A6 H0 W5 A0 T5 n

水带入热量:n×18.02×4.178×32=2409.2n KJ: i4 ^9 \" J8 R8 M6 O

2、输出热量9 t1 u( X" V+ P5 ^; d( _

气体带出热量:, m: ]( o* y# l/ H3 b

(518.35×44.01×0.8479+551.74×18.02×4.178+2548.48×28.01×1.0396+175.31×32×0.9192+75.89×64.06×0.6252)×100

=14328769.32KJ

水带出热量:) Z# J8 Q! q' Q: q( |4 j5 L9 f

n×18.02×4.178×100=7528.76n KJ

3、进出能量平衡

21670783.36+2409.2n=14328769.32+*7528.76n W R( N/ @* z: v- ^

解得:n=1434 kmol=25813 kg

由以上所得:当烟气进气温度150℃,进水温度为32℃,出气温度为100℃时所需喷淋装置喷淋量为25.813t/h.

喷头选择要求:未实现除尘降温效果建议螺旋喷头。

说明:气体按理想气体的比热,比热不是线性变化的,按内插法等比例折算后计算所用的比热要小于实际的比热,且废气中所含成分比例有变化,但对整体计算结果影响不大。

结论说明;此计算为理想状态下的计算结果,实际应用需考虑气液热交换效率,热交换时间等问题,可适当加大总喷淋量,以到达预期效果。

XXX

XXXX年XX月XX号

布袋除尘器设计说明书

课程设计任务书 课程名称:大气污染控制工程 题目:车间布袋除尘系统设计 学院:环化学院系:环境工程系 专业班级:环工121班 学号:5802112002 学生姓名:杨强 起讫日期:2015-06-29——2015-07-03 指导教师:李丹职称: 学院审核(签名): 审核日期:

目录 一、概述 (3) 1、大气污染的概念 (3) 2、大气污染的分类 (3) 3、大气污染的危害 (3) 4、治理大气污染的必要性 (4) 5、除尘的必要性 (4) 二、课程设计题目描述和要求 (5) 1、设计目的 (5) 2、设计任务 (5) 3、设计课题与有关数据 (5) 4、局部排气通风系统的组成 (6) 5、管道设计的原则 (7) 三、袋式除尘器除尘方式的选取与布置 (8) 1、袋式除尘器的原理 (8) 2、袋式除尘器的优点 (9) 3、袋式除尘器的缺点 (10) 4、袋式除尘器方案设计 (10) 4.1进气方式的确定 (10) 4.2进气过滤方式的确定 (11) 4.3滤料的确定 (11) 四、集气罩的设计 (11) 1、控制点控制速度Vx的确定 (11) 2、集气罩排风量、尺寸的确定; (12) 3、集气罩设计小结 (13) 五.袋式除尘器设计计算 (13) 1、过滤面积的确定 (13) 2、滤袋的排列和平面布置的确定 (13) 2.1滤袋长度的确定 (13) 2.2滤袋的排列与间距 (13) 3、清灰装置的确定及计算 (14) 4、灰斗高度的确定 (16) 5、袋式除尘器压力损失的计算 (16) 六、管道设计及风机选择 (17) 1、管道的初步设计及压损的确定; (17) 2、选择风机和电机 (23) 七、主要参考资料 (24)

除臭设备设计计算书

8、除臭设备设计计算书 8.1、生物除臭塔的容量计算 1#生物除臭系统 参数招标要求计算过程 序 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 2.5×2.0× 3.0m 2000m3/h Q=2000m3/h V=处理能力Q/(滤床接触面积m2)/S=2000/ (2.5×2)/3600=0.1111m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa 2#生物除臭系统 参数 序 招标要求计算过程 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 4.0×2.0×3.0m 3000m3/h Q=3000m3/h V=处理能力Q/(滤床接触面积m2)/S=3000/ (4×2)/3600=0.1041m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1041=15.36S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa

3#生物除臭系统 参数招标要求计算过程 序 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 7.5×3.0×3.3m(两台) 20000m3/h Q=20000m3/h V=处理能力Q/2(滤床接触面积m2)/S=10000/ (7.5×3.0)/3600=0.1234m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.7/0.1234=13.77S 炭质填料风阻220Pa/m×填料高度 1.7m=374Pa 设备风阻<600Pa 4#生物除臭系统 参数 序 招标要求计算过程 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 7.5×3.0×3.0m(两台) 18000m3/h Q=18000m3/h V=处理能力Q/2(滤床接触面积m2)/S=18000/ (7.5×3)/3600=0.1111m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa 8.2、喷淋散水量(加湿)的计算 生物除臭设备采用生物滤池除臭形式,池体上部设有检修窗,进卸料口,侧面设有观察窗等,其具体计算如下:

喷淋系统设计规范

喷淋系统设计规范: 1、短立管:连接喷头与配水支管的立管 2、信号阀:具有输出启闭状态信号功能的阀门 3、环境温度不低于4℃,且不高于70℃的场所应采用湿式系 统。 环境温度低于4℃,或高于70℃的场所应采用干式系统。 4、自动喷水灭火系统应有下列组件、配件和设施: (1)应设有洒水喷头、水流指示器、报警阀组、压力开关等组件和末端试水装置,以及管道、供水设施。 (2)控制管道静压的区段宜分区供水或设减压阀,控制管道动压的区段宜设减压孔板或节流管。 (3)应设有泄水阀(或泄水口)、排气阀(或排气口)和排污口 (4)干式系统和预作用系统的配水管道应设快速排气阀 5、一个报警阀组控制的喷头数:湿式系统、预作用系统不宜 超过800只,干式系统不宜超过500只。 6、报警阀距地面的高度宜为1.2m。 7、连接报警阀进出口的控制阀,宜采用信号阀。 8、每个防火分区,每个楼层均应设水流指示器。 9、仓库内顶板下喷头与货架内喷头应分别设置水流指示器。 10、水流指示器入口前设置信号阀。 11、末端试水装置由试水阀、压力表及试水接头组成。

12、货架内喷头上方如有孔洞、缝隙,应在喷头上方设置集热 挡水板。集热挡水板应为正方形或圆形金属板,其平面面 积不宜小于0.12m2,周围弯边的下沿,宜与喷头的溅水盘平 齐。 管道: 1、配水管道应采用内外壁热镀锌钢管,当报警阀入口前管道 采用内壁不防腐的钢管时,应在该段管道的末端设过滤器。 2、管道连接应采用沟槽式卡箍,或丝扣、法兰连接。 3、短立管及末端试水装置的连接管,其径不应小于25mm 4、减压孔板应符合下列规定: (1)应设在直径不小于50mm的水平直管段上,前后管段 的长度均不宜小于该管段直径的5倍。 (2)孔口直径不应小于设置管段直径的30%,且不应小于 20mm (3)应采用不锈钢板材制作 水泵 1、系统的供水泵、稳压泵,应采用自灌式吸水方式。 2、供水泵的吸水管应设控制阀;出水管应设控制阀、止回阀、 压力表和直径不小于65mm的试水阀。 3、当水泵接合器的供水能力不能满足最不利点处作用面积的 流量和压力要求时,应采取增压措施。

袋式除尘器的过滤面积的计算方法

袋式除尘器的过滤面积的计算方法 关于袋式除尘器的过滤面积的计算方法 通风除尘设计手册上是这样子的: A=L/3600v A-过滤面积M2 L-处理风量,M3/h v-过滤风速,m/s 采纳 过滤面积:L=3600v×A v的单位(m/s) L=60v×A v的单位(m/min) 一般过滤风速都是用m/min做单位. 回答 过滤面积=风量/(60*过滤风速)。例:风量10000m3/h;过滤风速2m/min;过滤面积=10000/(60*2)=83.3平方米。 除尘器过滤面积怎么计算知道直径高度 采纳 通常情况下考虑下缝制的重叠边大概是1到2cm d*3.14+1 长度要考虑到口部分的翻边加个10cm (直径*3.14+1)*(长度+10)在加上低面积就好了 其他回答 每个袋子的面积S x 除尘器内布袋的数量n 即:S=S1.n

底面积+底面周长乘以高=过滤面积 布袋除尘器的风量是如何计算 计算布袋除尘器的处理气体时,首先要求出工况条件下的气体量,即实际通过布袋除尘器的气体量,并且还要考虑除尘器本身的漏风量。这些数据,应根据已有工厂的实际运行经验或检测资料来确定,如果缺乏必要的数据,可按生产工艺过程产生的气体量,再增加集气罩混进的空气量(约20%~40%)来计算。过滤风速的大小,取决于含尘气体的性状、织物的类别以及粉尘的性质,一般按除尘设备样本推荐的数据及使用者的实践经验选取。 布袋除尘器的尺寸怎样计算出来 在知道锅炉烟气量、过滤风速、煤种等资料后,怎么计算出龙骨的高度和尺寸,从而计算出布袋除尘器的尺寸(长、宽、高)? 采纳 设锅炉烟气量为Q(m3/h),过滤风速为v(m/min),可计算出所需要的布袋除尘器的过滤面积S(m2),即:S=Q/(60*v),而除尘器的尺寸取决于使用的滤袋的直径D和长度L以及滤袋的布置方式,在选定滤袋的直径D和长度L的情况下,可计算滤袋的条数N, N=S/(D*D*3.1415926*0.25*L),再根据N排布滤袋,之后结合除尘器的进出口形式确定除尘器的尺寸(长、宽、高)即可。 如何选择布袋除尘器的风量

布袋除尘器结构设计及强度计算

?布袋除尘器结构设计及强度计算 ?前言 低压脉冲布袋除尘器广泛应用于电厂脱硫除尘及一般钢厂除尘中(应用于钢厂及电厂的主要区别是除尘器外表是否需要保温、烟气对钢板的腐蚀程度及滤料的选择等),脱硫后的烟尘经过该除尘器后,其排放到大气中的浓度基本控制在20~30mg/m3,低于国家环保部门规定的50mg/m3。 低压脉冲布袋除尘器的工作原理:含尘气体由导流管进入各单元,大颗粒粉尘经分离后直接落入灰斗、其余粉尘随气流进入中箱体过滤区,过滤后的洁净气体透过滤袋经上箱体、排风管排出。随着过滤工况的进行,当滤袋表面积尘达到一定量时,由清灰控制装置(差压或定时、手动控制)按设定程序打开电磁脉冲阀喷吹,抖落滤袋上的粉尘。落入灰斗中的粉尘借助输灰系统排出。 低压脉冲除尘器的主要结构组成如下:底柱组件、滑块组件、顶柱组件、灰斗组件(含三通及风量调节阀,如果有的话)、进风装置、中箱体、上箱体、喷吹系统、离线装置、内旁路装置(外旁路,可供选择)、平台扶梯、防雨棚、气路配管及控制元件等组成。其结构简图如下: 除尘器的设计过程中,应当对除尘器的载荷(包括静载、动载、风载、雪载及地震载荷等,单位KN)、除尘器承受的设计负压(单位Pa)、板件材料的屈服极限及抗拉伸极限等(单位

MPa),要有一定程度的了解。必要时,结构设计人员可以查阅相关的机械设计手册,以加深自己对这方面的理解。 如下的设计过程仅供除尘设备制造厂家及相关设计 单位参考。 1.除尘器载荷的确定: 1.1静载的确定:G静载=∑Gi(i=1~5) 式中,G1本体钢结构部分的重量,G2滤袋总重,G3袋笼总重,G4滤袋表面积灰5mm的重量,G5灰斗允许积灰重量。按本公司多年来的设计经验,静载荷在除尘器基础上的分布,一般是,最外面一圈基础柱桩的载荷为总静载分布在所有柱桩上的平均值Gp的110%。次外圈一圈柱桩的载荷为Gp的120~200%,以此类推,直到最内圈载荷。内圈载荷高于外圈载荷,但内外圈载荷最大差别不得超过300KN。这样设计载荷的目的是保证本体结构系统的地基稳定性。关于载荷部分的详细分配及计算过程可以参考《建筑荷载设计规范》手册。 1.2动载的确定 按楼面及屋面活荷载取标准值2.5KN/m2(检修平台按4KN/m2)来计算。 除尘器总动载荷:F=KA0A1+KA1A2,KA1检修平台活荷载取标准值,A1除尘器平面投影面积,A2平台扶梯平面投影面积。 设计时,单个承载点荷载值是平均值的100~120%左右。具体分布时,可以是平台扶梯结构多的部分取偏大值,结构少的部分取较小

喷淋计算 K

采用作用面积法计算K = 80 计算原理参照《自动喷水灭火系统设计规范GB 50084-2001》,采用作用面积法基本计算公式 1. 喷头流量 q = K * SQRT(10P) 式中: q-喷头处节点流量,L/min P-喷头处水压,MPa K-喷头流量系数 2. 流速V V = (4 * Q) / (π * Dj * Dj) 式中: Q-管段流量L/s Dj-管道的计算内径(m) 3. 水力坡降 i = 0.00107 * V * V / (pow(Dj, 1.3) 式中: i-每米管道的水头损失(m H20/m) V-管道内水的平均流速(m/s) Dj-管道的计算内径(m) 4. 沿程水头损失 h = i * L 式中: L-管段长度m 5. 局部损失(采用当量长度法) h = i * L(当量) 式中: L(当量) 管段当量长度,单位m(《自动喷水灭火系统设计规范》附录C) 6. 总损失 h = h(局) + h(沿) 7. 终点压力 Hn = Hn-1 + h 管段名称起点压 力mH2O 管道流 量L/s 管长 m 当量 长度 管径 mm K 水力坡降 mH2O/m 流速 m/s 损失 mH2O 终点压力 mH2O 1-2 5.00 0.94 3.60 1.70 25 80 0.385 1.77 2.04 7.04 2-3 7.04 2.05 1.44 1.80 32 80 0.395 2.17 1.28 8.32 3-4 8.32 2.05 2.40 1.20 32 80 0.395 2.17 1.42 9.75 19-2 6.04 1.03 3.60 0.80 25 80 0.465 1.94 2.05 8.09 20-4 8.09 2.23 1.44 2.10 32 80 0.465 2.35 1.65 9.74 4-5 9.75 4.28 1.87 3.70 50 80 0.203 2.02 1.13 10.88 21-2 2 5.00 0.94 3.60 0.80 25 80 0.385 1.77 1.69 6.69

布袋除尘器的设计计算书

布袋除尘器的设计计算书 由于公司要求设计一套较小型的除尘设备,所以查了很多资料,现在把设计计算方法发下。 下面给出已知条件: 处理风量:200立方/min 滤袋尺寸:①116X3m 1.根据已知条件选择过滤风速 一般的过滤风速的选择范围是在0.8?1.5m/min 此时根据除尘设备大小和滤带选择风速,本人选择的是1m/min 2.根据过滤风速和处理风量计算过滤面积 公式为:S=Q/V V ---- 过滤风速 S ---- 过滤面积 Q ---- 处理风量 计算后得S=Q/V=200/1=200平方米 3.计算滤带数量 每条滤带的表面积S=n DL n ---- 3.14 (这个不需要说明了把) D ---- 滤带直径 L ---- 滤带长度 "1平方米 滤带数量N=S/S仁200/1=200条 (注意:这里的滤带面积计算约等于200是为了方便计算,实际计算值为1.1,除下来滤带数量小于200条,为了方便,选择(200/1 )条 > (200/1.1 )条, 其实多几条可以满足处理风量,对计算无影响) 4.其实以上的全是基础,接下来的几点才是精髓 前面计算了这么多,是为什么?接下来要做什么? 首先我们要明确,除尘器的心脏是什么?是电磁阀! 所以接下来我们选型电磁阀 一般常用的电磁阀厂家有澳大利亚高原、SMC等等 此处本人选择的是澳大利亚GOYE的电磁脉冲阀。(至于为什么选这个型号,那是领导安排的) 如果真要了解怎么选型的话,最好是多搞点电磁阀厂家的样本 本次选的GOYE的电磁阀的几个参数很重要 MM型淹没式电磁脉冲阀 1).阀门标称尺寸 有三种25/40/76 对应的口内径尺为25mm/40mm/76m换成英尺为1"/1.5"/3" 2).这个叫流动系数Cv的很重要 相对上述三种尺寸的Cv值为30/51/416 好,知道这些后,我选择的是中间那种40mm/Cv=51 3)脉冲长度0.15sec(可以理解为膜片打开到关闭的时间)

烟气喷淋降温除尘计算书

计算说明:此计算书为脱硫烟气除尘降温喷淋量计算书,喷淋液(水)最终状态仍未液体,因此,计算时未考虑水变为水蒸气带走热量,水的比热容以液体状态的4.178带入计算,如液体最终状态为饱和水蒸气,式中带出热量公式所带入数值应为饱和水蒸气比焓,查表可得。 一、初始条件0 M- z2 R. R9 t" f9 W9 G 烟气温度:150℃ 85000M3/h,气体体积组成如下:) N+ b: p4 e; h Y7 I CO2:13.66%4 z7 L* x; w3 W' W& M H2O:14.54%- k# P, X& g3 V2 q5 B SO2:0.02%* b5 d* B ?' w. A5 E6 g% h N2:67.16%8 l2 c0 m. d7 i+ b: h O2:4.62% 冷却水温度按32℃考虑,水温和烟气最终温度按100℃" ~ e, r/ {! A- a 二、计算说明 烟气喷水降温,通过气液接触热量传递达到降温效果。 三、物性查询 所有物性数据全部查自2002版化学工业出版社出版的《化学化工物性数据手册无机卷》。+ E! H8 M7 ?. @( T& `1 X* K; X4 m 1、饱和水的比热为4.178 J/g·K; 2、各气体的比热见下表,单位为KJ/kg·K2 }# F 5 g; t4 x g/ d 项目0℃50℃ & `5 U( H7 x0 @. 100℃150℃ % E8 I4 k! F/ I9 i3 200℃

T' G`* }' |! @' N- i CO2/ /0.84790.8855 / SO2/ /0.62530.6473 5 `: V/ j7 V* K4 N / O2 / : I4 U6 R: [( Q C1 |; @2 r% H / 0.9192 0.9277 ! q* q- H1 P/ l! T8 w: F / N2 & R! m: `% e6 o% o0 C3 `/ / , n# _2 l6 v' ]5 E 1.0396 3 k 1.042 r; F2 Y8 r, @$ H9 / , n# _2 l6 v' ]5 E H2O 5 [/ {$ I m4.1781 ~- l 四、进出口温度下比热计算 按上面表格中物性采用内插法计算进出口温度下的气体比热(单位:KJ/kg·K)。 项目CO2 SO2 " B# N# n& o) P, y3 T2 i8 [ O2N2 H2O % H/ b" z x" Q$ r: [ 150℃0.88550.64730.9277 # o. i/ l5 e, X9 I 1.042 , S- N, }7 I# \6 r 4.178 100℃ 0.8479 ! ^7 e7 i& a) n( d" C2 O2 U0 ] 0.6252 7 _( m9 t9 r: X9 G9 h6 b 0.9192 8 i' d' ]* l d" ?9 } E 1.0396 4.178 五、能量衡算 假定需水量为n kmol+ z/ ?$ q4 [9 |9 s CO2:85000×13.66%=11611 NM3/h=518.35 kmol H2O:85000×14.54%=12358 NM3/h=551.74 kmol2 p. ]+ U7 i( T6 U. U9 X N2: 85000×67.16%=57086 M3/h=2548.48 kmol O2: 85000×4.62%=3927 NM3/h=175.31 kmol SO2:85000×0.02%=1700 NM3/h=75.89 kmol) v6 R$ }* y& Q3 t

布袋除尘器的性能参数计算

袋式除尘器的性能参数计算 1. 除尘效率 袋式除尘器的除尘效率与滤料表面的粉尘层有关,滤料表面的粉尘初层比滤料起着更重要的捕集作用,以滤料在不同运行状态下的分级除尘效率变化曲线即可看出这个结论。由于过滤过程复杂,难于从理论上求得袋式除尘器的除尘效率计算式。 过滤风速 单位时间通过每平方米滤料表面积的空气体积,即为过滤风速,其单位为m3/m2·min。计算式为: V F=L/60F m3/min·m2 (1) 式中V F——过滤风速,m3/min·m2; L——除尘器处理风景,m3/h; F——过滤面积,m2。 过滤风速对除尘器的性能有很大的影响。过滤风速增大,过滤阻力增大,除尘效率下降,滤袋寿命降低;在低过滤风速的情况下,阻力低,效率高,但需设备尺寸增大。每一个过滤系统根据它的清灰方式、滤料、粉尘性质、处理气体温度等因素都有一个最佳的过滤风速。一般要求,细粉尘的过滤风速要比粗粉尘的低,大除尘器的过滤风速要比小除尘器的低(因大除尘器气流分布不均匀)。设计时可参照表1确定。 表1 袋式除尘器推荐的过滤风速(m/min)

注:①指基本上为高温粉尘 袋式除尘器阻力 袋式除尘器阴力与除尘器结构、滤袋布置、粉尘层特性、清灰方法、过滤风速、粉尘浓度等因素有关。袋式除尘器的阻力(ΔP)一般由除尘器的结构阻力(ΔPg)、滤料阻力(ΔPo)和粉尘层阻力(ΔPC)三部分组成,即 ΔP=ΔPg+ΔPo+ΔPC Pa (1) 式中ΔPg——除尘器结构阻力,Pa; ΔPo——滤料本身的阻力,Pa; ΔPC——粉尘层阻力,Pa。 除尘器结构阻力是指设备进、出口及内部流道内挡板等造成的流动阻力。通常ΔPg=200~500Pa。

大气除尘设计计算书资料

环境工程课程设计 《环境工程专题课程设计(气)》(除尘部分) 设计说明书 班级: 姓名: 学号: 指导教师: 环境科学与工程学院 2015年12月

一、工程概况 (1) 二、设计说明 (1) 2.1 设计原则 (1) 2.2 设计范围 (2) 2.3 设计规模 (2) 2.4 设计参数与指标 (2) 三、工艺选择 (2) 3.1 除尘技术简介 (2) 3.2 可供选择的除尘技术 (3) 3.3 方案的技术比较 (3) 四、处理流程 (4) 4.1 除尘系统 (4) 4.2 除尘器系统 (4) 4.3 输灰系统 (4) 4.4 控制系统(不作设计要求) (4) 五、预期处理效果 (5) 六、主要设施与设备设计选型 (5) 6.1 设计计算 (5) 6.1.1 烟气流量与净化效率计算 (5) 6.1.2 除尘器设计计算 (6) 6.1.3 管道的设计计算 (10) 6.1.4 风机的选择计算 (12) 6.1.5 除尘器的总装配图 (13) 6.2 主要设备型号及技术参数确定 (14) 七、技术经济分析 (15) 7.1 综合技术经济指标 (15) 7.2 人员编制 (15) 7.3 工程概算 (15) 7.4 运行费用分析 (16)

一、工程概况 已知杭州市某厂新建2台35t/h燃煤工业锅炉(沸腾床锅炉直径4m),其除尘系统管道布置如图1。每台锅炉产生的烟气量估计为:基数61000 Nm3/h+学号序号*100Nm3/h,烟尘浓度为35.0g/Nm3,其粒径<5μm占70%,烟气经降温至120℃进入除尘器,烟窗的直径3m,高度45m,局部阻力损失60Pa。试设计该除尘净化系统。 排放烟尘浓度要求达到《锅炉大气污染物排放标准》(GB13271-2014)规定的重点地区锅炉大气污染物特别排放限值的规定。 图1 除尘系统平面布置图 二、设计说明 2.1 设计原则 (1)基础数据可靠,总体布局合理。 (2)避免二次污染,降低能耗,近期远期结合、满足安全要求。 (3)采用成熟、合理、先进的处理工艺,处理能力符合处理要求; (4)投资少、能耗和运行成本低,操作管理简单,具有适当的安全系数; (5)在设计中采用耐腐蚀设备及材料,以延长设施的使用寿命; (6)废气处理系统的设计考虑事故的排放、设备备用等保护措施; (7)工程设计及设备安装的验收及资料应满足国家相关专业验收技术规范。

自动喷淋系统的计算

自动喷淋系统的计算 自动喷淋系统由水源、加压贮水设备、喷头、管网、报警阀等组成。自动喷淋系统前十分钟所用水由设在高位水箱提供,十分钟至一小时的喷淋用水由地下室贮水池提供。根据规范中的要求选择闭式喷水灭火系统。 自动喷淋灭火系统的基本数据 (1)喷头的选择《自动喷洒灭火系统设计规范》,闭式湿式自动喷水灭火系统适用范围:因管网及喷头中充水,故适用于环境温度为4~700C之间的建筑物内,所以选用闭式湿式喷头。 (2) 由于该建筑为中度危险等级,喷头总数大于800 个,故需进行分区,地下一层至五层为低区,六至二十七层为高区。本系统设置7个报警阀,每个报阀组控制的最不利喷头处,都设末端试水装置,每层最不利喷头处均设直径为25mm的试水阀。每个报警阀部位都设有排水装置,其排水管径为试水阀直径的2倍,取50mm。 (3)查高规,自动喷水灭火系统的基本设计数据见下表: 表3-1

最不利点喷头最低工作压力不应小于0.05MPa。 (4)管径确定如下表 自动喷洒管径确定表 表3-2 喷头的布置 根据建筑物结构与性质,本设计采用作用温度为68℃闭式吊顶型玻璃球喷头,喷头采用2.5m×3.0m和2.7m×3.0m矩形布置,使保护范围无空白点。 作用面积划分 作用面积选定为矩形,矩形面积长边长度:L=1.2F=(1.2×160)m=15.2m,短边长度为:10.5m。 最不利作用面积在最高层(五层和二十七层处)最远点。矩形长边平行最不利喷头配水支管,短边垂直于该配水支管。 每根支管最大动作喷头数n=(15.2÷2.5)只=6只 作用面积内配水支管N=(10.5÷3)只=3.5只,取4只 动作喷头数:(4×6)=24只 实际作用面积:(15.2×9.8)2m=148.962m﹤1602m

布袋除尘器的设计计算书

布袋除尘器的设计计算 书 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

布袋除尘器的设计计算书 由于公司要求设计一套较小型的除尘设备,所以查了很多资料,现在把设计计算方法发下。 下面给出已知条件: 处理风量:200立方/min 滤袋尺寸:Φ116X3m 1.根据已知条件选择过滤风速 一般的过滤风速的选择范围是在0.8~1.5m/min 此时根据除尘设备大小和滤带选择风速,本人选择的是1m/min 2.根据过滤风速和处理风计算过滤面积 公式为:S=Q/V V---------过滤风速 S---------过滤面积 Q---------处理风量 计算后得S=Q/V=200/1=200平方米 3.计算滤带数量 每条滤带的表面积S=ПDL Π--------3.14(这个不需要说明了把) D---------滤带直径 L---------滤带长度 ≈1平方米 滤带数量N=S/S1=200/1=200条

(注意:这里的滤带面积计算约等于200是为了方便计算,实际计算值为1.1,除下来滤带数量小于200条,为了方便,选择(200/1)条>(200/1.1)条, 其实多几条可以满足处理风量,对计算无影响) 4.其实以上的全是基础,接下来的几点才是精髓 前面计算了这么多,是为什么?接下来要做什么? 首先我们要明确,除尘器的心脏是什么?是电磁阀! 所以接下来我们选型电磁阀 一般常用的电磁阀厂家有澳大利亚高原、SMC、等等 此处本人选择的是澳大利亚GOYEN的电磁脉冲阀。(至于为什么选这个型号,那是领导安排的) 如果真要了解怎么选型的话,最好是多搞点电磁阀厂家的样本 本次选的GOYEN的电磁阀的几个参数很重要 MM型淹没式电磁脉冲阀 1).阀门标称尺寸 有三种25/40/76 对应的口内径尺为25mm/40mm/76mm换成英尺为1"/1.5"/3" 2).这个叫流动系数Cv的很重要 相对上述三种尺寸的Cv值为30/51/416 好,知道这些后,我选择的是中间那种40mm/Cv=51 3)脉冲长度0.15sec(可以理解为膜片打开到关闭的时间) 5.电磁阀的吐出流量

吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型 (2) 喷淋塔吸收区高度设计(二) 对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。 逆流式吸收塔的烟气速度一般在 2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。 湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。 (3)喷淋塔吸收区高度的计算 含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。 首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量 ζ= h C K V Q η = (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3 η为给定的二氧化硫吸收率,%;本设计方案为95% h 为吸收塔内吸收区高度,m K 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ; K 0=3600u ×273/(273+t) 按照排放标准,要求脱硫效率至少95%。二氧化硫质量浓度应该低于580mg/m 3 (标状态) ζ的单位换算成kg/( m 2.s),可以写成 ζ=3600× h y u t /*273273 *4.22641η+ (7) 在喷淋塔操作温度 10050 752 C ?+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×

布袋除尘器结构设计及强度计算(精)

?布袋除尘器结构设计及强度计算 2009-9-28 2:05:30 ?前言 低压脉冲布袋除尘器广泛应用于电厂脱硫除尘及一般钢厂除尘中(应用于钢厂及电厂的主要区别是除尘器外表是否需要保温、烟气对钢板的腐蚀程度及滤料的选择等),脱硫后的烟尘经过该除尘器后,其排放到大气中的浓度基本控制在20~30mg/m3,低于国家环保部门规定的50mg/m3。 低压脉冲布袋除尘器的工作原理:含尘气体由导流管进入各单元,大颗粒粉尘经分离后直接落入灰斗、其余粉尘随气流进入中箱体过滤区,过滤后的洁净气体透过滤袋经上箱体、排风管排出。随着过滤工况的进行,当滤袋表面积尘达到一定量时,由清灰控制装置(差压或定时、手动控制)按设定程序打开电磁脉冲阀喷吹,抖落滤袋上的粉尘。落入灰斗中的粉尘借助输灰系统排出。 低压脉冲除尘器的主要结构组成如下:底柱组件、滑块组件、顶柱组件、灰斗组件(含三通及风量调节阀,如果有的话)、进风装置、中箱体、上箱体、喷吹系统、离线装置、内旁路装置(外旁路,可供选择)、平台扶梯、防雨棚、气路配管及控制元件等组成。其结构简图如下: 除尘器的设计过程中,应当对除尘器的载荷(包括静载、动载、风载、雪载及地震载荷等,单位KN)、除尘器承受的设计负压(单位Pa)、板件材料的屈服极限及抗拉伸极限等(单位

MPa),要有一定程度的了解。必要时,结构设计人员可以查阅相关的机械设计手册,以加深自己对这方面的理解。 如下的设计过程仅供除尘设备制造厂家及相关设计 单位参考。 1.除尘器载荷的确定: 1.1静载的确定:G静载=∑Gi(i=1~5) 式中,G1本体钢结构部分的重量,G2滤袋总重,G3袋笼总重,G4滤袋表面积灰5mm的重量,G5灰斗允许积灰重量。按本公司多年来的设计经验,静载荷在除尘器基础上的分布,一般是,最外面一圈基础柱桩的载荷为总静载分布在所有柱桩上的平均值Gp的110%。次外圈一圈柱桩的载荷为Gp的120~200%,以此类推,直到最内圈载荷。内圈载荷高于外圈载荷,但内外圈载荷最大差别不得超过300KN。这样设计载荷的目的是保证本体结构系统的地基稳定性。关于载荷部分的详细分配及计算过程可以参考《建筑荷载设计规范》手册。 1.2动载的确定 按楼面及屋面活荷载取标准值2.5KN/m2(检修平台按4KN/m2)来计算。 除尘器总动载荷:F=KA0A1+KA1A2,KA1检修平台活荷载取标准值,A1除尘器平面投影面积,A2平台扶梯平面投影面积。 设计时,单个承载点荷载值是平均值的100~120%左右。具体分布时,可以是平台扶梯结构多的部分取偏大值,结构少的部分取较小

袋式除尘器选型风量等计算公式

袋式除尘器的种类很多,因此,其选型计算显得特别重要,选型不当,如设备过大,会造成不必要的流费;设备选小会影响生产,难于满足环保要求。 选型计算方法很多,一般地说,计算前应知道烟气的基本工艺参数,如含 尘气体的流量、性质、浓度以及粉尘的分散度、浸润性、黏度等。知道这些参数后,通过计算过滤风速、过滤面积、滤料及设备阻力,再选择设备类别型号。 1、处理气体量的计算 计算袋式除尘器的处理气体时,首先要求出工况条件下的气体量,即实际 通过袋式除尘器的气体量,并且还要考虑除尘器本身的漏风量。这些数据,应根据已有工厂的实际运行经验或检测资料来确定,如果缺乏必要的数据,可按生产工艺过程产生的气体量,再增加集气罩混进的空气量(约20%~40%)来计算。应该注意,如果生产过程产生的气体量是工作状态下的气体量,进行选型比较时则需要换算为标准状态下的气体量。 2、过滤风速的选取 过滤风速的大小,取决于含尘气体的性状、织物的类别以及粉尘的性质, 一般按除尘器样本推荐的数据及使用者的实践经验选取。多数反吹风袋式除尘器的过滤风速在0.6~13/m 之间,脉冲袋式除尘器的过滤风速在1.2~2m/s 左右,玻璃纤维袋式除尘器的过滤风速约为0.5~0.8m/s 。 3、过滤面积的确定 (1) 总过滤面积根据通过除尘器的总气量和先定的过滤速度,求出总过 滤面积后,就可以确定袋式除尘器总体规模和尺寸。 (2)单条滤袋面积单条圆形滤袋的面积 在滤袋加工过程中,因滤袋要固定在花板或短管,有的还要吊起来固定在袋帽上,所以滤袋两端需要双层缝制甚至多层缝制:双层缝制的这部分因阻力加大已无过滤的作用,同时有的滤袋中间还要固定环,这部分也没有过滤作用。 (3) 滤袋数量求出总过滤面积和单条除尘布袋的面积后,就可以算出滤 袋条数。如果每个滤袋室的滤袋条数是确定的,还可以由此计算出整个除尘器的室数。尽管在除尘器的设计或选用中按需要确定室数,但从场地布置和维修方便考虑,常把超过6个室的除坐器的室数定为双排。把少于5个室的除尘器的各

袋式除尘器设备计算书

袋式除尘器设备计算书 一、基础参数 设计参数 1)烟气量:Q’=43223Nm3/h 2)烟气温度 T=180℃ 3)进口含尘浓度:C1≤15g/Nm3 4)出口含尘浓度:C2≤10mg/Nm3 5)除尘器阻力:△P≤1500Pa 6)在线过滤风速:Vf≤0.5m/min 7)离线过滤风速:Vf′≤0.6m/min 二、基本设计参数选择、计算 1、除尘效率计算: η=(1-C2÷C1)*100%=[1-10÷(15*1000)]*100%=99.93% 2、工况烟气量计算: Q=Q′÷[273÷(273+T)]=43223÷[273÷(273+180)]=71722m3/h 3、过滤面积计算:A=Q ÷(60*Vf) =71722÷(60*0.5)=2391m2 4、滤袋规格选择:根据场地情况和清灰方式选取滤袋规格为:?160×6000mm: 单条滤袋过滤面积计算: Sd=D*π*L=0.16*π*6=3.0159m2 滤袋数量初步计算:n=A÷Sd=793 条pcs 5、室数设定:=2391÷3.0159 根据场地情况设置为双列形式,共6 仓室,考虑每个仓室行、列滤袋排列数量以及设计余量,设定每室滤袋排列为每列14 条,每行10 条,则每个室的滤袋数量为: n1=14*10=140 条pcs,则滤袋总数为n′=140*6=840 条。 三、计算复核参数 1、则修正后的过滤面积为: A’=n’*Sd=840*3.0159 =2533m2 2、实际在线过滤风速计算: Vf=Q÷60÷(n’*Sd)

=71722÷60÷(840*3.0159) =0.47m/min 3、实际离线过滤风速计算:Vf’=Q÷60÷[(n′-n1)*Sd] =0.56m/min =71722÷60÷[(840-140)*3.0159] 四、结论:经过复核,满足设计要求。

自动喷淋系统计算

自动喷淋系统计算 1、设计数据 设计喷水强度qp=6L/min·m 2,计算作用面积160m 2,最不利点喷头出口压力p=50kpa.。 室内最高温度40℃,采用68℃温级玻璃球吊顶型(或边墙型)d=15闭式喷头。一个喷头的最大保护面积为12.5m 2。布置在电梯前的走廊上。在走廊上单排设置喷头,其实际的作用面积为22.5m 2 轻危险级、中级场所中配水支管 2、流量计算 (1)理论设计流量: s L m L Q /1660 160min /62=??= (2)一个放火分区的实际作用面积的计流量: s L m L q /25.260 5.22min /62=??= 3、喷头布置的间距计算: (1)一个喷头最大保护半径,A=12.5m 2 R= 14 .35 .12=1.9m (2)走廊最宽为1.5m ,所以b=0.75m 喷头的最大间距为: S=222b R -=2275.09.12-=3.4m (3)喷头的个数: n= S L = 54 .32 .16≈个 4、水力计算 最不利层自喷各支管段的计算根据图2--2

1 最不利层喷头计算图 图2—2 (1)各支管段的流量计算: ①a 处的喷头出水量;/94.050133.0S L H k q a a === a-b 管采用DN=25mm ,A=0.4367 h a-b =2 10b a ALq -=2 94.04.34367.010???=13.1Kpa Hb=Ha+ha-b=50+13.1=63.1Kpa ②b 处的喷头出水量;/06.11.63133.0S L H k q b b === q b-c =q a +q b =0.94+1.06=2.00L/S b-c 管采用DN=32mm ,A=0.09386 h b-c =2 10c b ALq -=2 00.24.309386 .010???=12.76Kpa H c = H b +H b-c =63.1+12.76=75.86Kpa ③c 处的喷头出水量;/16.186.75133.0S L H k q c c === ④其它喷头都以上面一样算,为了计算简便以表格的形式。计算结果在下表2-5

烟气脱硫设计计算

烟气脱硫设计计算 1?130t/h循环流化床锅炉烟气脱硫方案 主要参数:燃煤含S量% 工况满负荷烟气量 285000m3/h 引风机量 1台,压力满足FGD系统需求 要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程) 出口SO2含量?200mg/Nm3 第一章方案选择 1、氧化镁法脱硫法的原理 锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应, 氧化镁法脱硫法 脱去烟气中的硫份。吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。净烟气经过除雾器降低烟气中的水分后排入烟囱。粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。 吸收过程 吸收过程发生的主要反应如下: Mg(OH)2 + SO2 → MgSO3 + H2O MgSO3 + SO2 + H2O → Mg(HSO3)2 Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O 吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。 氧化过程 由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。这个阶段化学反应如下: MgSO3 + 1/2O2 → MgSO4

Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3 H2SO3 + Mg(OH)2 → MgSO3 + 2H2O MgSO3 + 1/2O2 → MgSO4 循环过程 是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。 镁法脱硫优点 技术成熟 氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有非常多的应用业绩,其中在日本已经应用了100多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。 原料来源充足 在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160亿吨,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。 脱硫效率高 在化学反应活性方面氧化镁要远远大于钙基脱硫剂,并且由于氧化镁的分子量较碳酸钙和氧化钙都比较小。因此其它条件相同的情况下氧化镁的脱硫效率要高于钙法的脱硫效率。一般情况下氧化镁的脱硫效率可达到95-98%以上,而石灰石/石膏法的脱硫效率仅达到90-95%左右。

自动喷淋设计流程之计算原理和方法

1.作用面积,喷规 2.1.6以及5.0.1,也就是整个喷淋系统在一次火灾中所考虑的最大保护面积,火灾总时从建筑某一点开始的,不论这个建筑规模多大,设计计算只考虑这某一点附近的160平米,当然这一点可能是建筑中的任何一点160平方是个例子,严重危险级是260,及其他一些 2.喷水强度,这个不用太多描述,喷淋的设计流量的基本计算就是基于5.0.1作用面积与喷水强度进行的以地下室为例,中危2,喷水强度8,作用面积160,那么理论设计流量就是160*8/60=21.333L/s。还要考虑规范其他一些规定,比如5.0.3,理论流量需要乘以1.3的系数,很多商业就可能存在这种情况,21.333*1.3=27.733,所以很多地下室,多数设计人员就直接选用30L/S的喷淋泵了 上面的计算都只是理论设计流量,实际设计流量与实际的喷淋布置有关,下面讲喷淋最不利作用面积的计算 然后作用面积的划分,见9.1.2,以160平米为例,长边需要15米多,我做了几个计算简图实例,长边16m,短边10m 图1: 地下室喷头布置,正方形最大间距3.4m,上图就按最大间距布置,最不利点喷头压力取0.05,用天正软件算的,具体计算估计多数朋友会,不会的自己摸索一下,不难 然后是支管管径,很多设计人员是直接套8.0.7的表,而没有进行实际计算了,我在这做几个对比,各位就能明白实际计算和理论有差距 计算表

从表1,就能看出来,平均喷水强度7.1,没有达到8的规定值,所以最不利点喷头压力取小了那么把最不利点压力值改为0.07,管径不需要做修改 计算表2: 从表2,可以看出来,这时的喷水强度是满足规定的,那么设计流量就是表2的22.43,而这个最不利点作用面积内入口处所需压力值是31.34m,这几个参数就是实际选泵和扬程的重要参数了注意看,表中,6-7,7-8号管段,设计流量是不会变化的,也就是说从这个管段开始,一直到泵房流量都是22.43,也就是实际所需设计流量,那么从这个入口段到水泵的水损就可以计算了水泵的实际所需的扬程就是,静扬程+总水损+入口所需压力值,有些朋友还会再乘以一个系数,看设计人员思路了 入口压力怎么确定? 计算表中已经算出来了,注意看 然后上次有哪位群友说最不利点喷头压力取0.1MPa,因为他想采用边墙扩展型喷头,加大保护半径,那么如果以0.1来算是什么结果呢? 看图2

相关文档
最新文档