组串式逆变器超配能力调查

组串式逆变器超配能力调查
组串式逆变器超配能力调查

作者:原中国电力工程顾问集团华东电力设计院副总工程师林利民(教授级高工)

组串式逆变器超配能力调查

1、引言

光伏系统由于组件功率的衰减、灰尘遮挡以及线路损耗的存在,再加上不同地区的光照条件差异,为了最优化系统收益,有经验的设计工程师会把光伏组件的总容量配得比逆变器容量大一些,这种情况被称为超配。适当的超配可以提高电站系统整体收益。在超配设计中,集中式大型逆变器由于单机功率大,每路组串的功率相对单机额定功率非常小,在直流输入配置时非常灵活,因此很容易进行超配设计,这已为电站业主所接受并广泛应用。

在小型屋顶电站和小型山丘电站使用组串式逆变器有优势,这些组串逆变器能否满足超配设计要求以及超配设计能力如何?笔者对国内外一些主流组串式逆变器厂家进行了调查分析,发现绝大部分厂家组串式逆变器都可达到1.1倍、甚至更高的超配能力,但同时也发现个别组串式逆变器厂家的产品在设计上存在严重缺陷,不仅不具备超配能力,甚至无法用足逆变器的额定功率。逆变器实际可用功率大打折扣,直接导致用户初始投资的增加。

2、组串式逆变器超配设计要求

组串式逆变器由于单机功率小,具有多路MPPT的特点,适用于小型屋顶、小型山丘等复杂分布式电站,可以有效解决组件布局不规则、不同朝向、局部遮挡等问题。随着国内分布式应用发展,组串式逆变器的应用也不断增加。

在超配设计中,除了考虑系统损耗以外,最优容配比(组件容量:逆变器容量)主要是由电站所处位置的光照条件决定的。国内分布式电站大多数分布在我国东南部地区,根据国家气象局风能太阳能评估中心的资源区域分类,多数处于II,III, IV类光照资源区,光照条件相对较差。在此类地区,容配比至少需要在1.1倍以上,才能达到最优的系统度电成本,投资者的收益才能最大化。在超配设计时,对组串式逆变器有哪些具体要求呢?

2.1 需要评估逆变器实际可用交流侧功率

超配是光伏电站的组件容量相对交流侧容量而言的。对于一个光伏电站,其容量应该以交流功率侧容量来标定。例如一个20MW电站,是指其交流侧输出功率可以达到20MW,而非直流侧组件功率是20MW。对于逆变器来讲,也是同样的,首先要关注其交流额定功率参数,然后分析其“实际可用交流侧功率”。借用那句“别看广告,看疗效”的经典台词,组串式逆变器“实际可用交流侧功率”才是对超配真正有意义的。如某个组串式逆变器,其交流侧额定功率参数是36kW,但按照其直流侧真实最大可配置到的功率只有34KWp,考虑逆变器自身损耗,其“实际可用交流侧额定功率”一定是小于34KW,从超配系数1.1的角度看,现实版“实际可用交流侧额定功率”可能仅仅是30KW。因此,“实际可用交流侧功率”是系统进行超配设计的前提。

2.2逆变器必须具备良好的散热能力

逆变器需要有良好的散热能力。由于组串逆变器主要应用于小型屋顶及小型山丘等复杂分布式电站,环境温度高,散热条件相对较差,如在天气较为炎热的夏天,由于屋顶彩钢瓦或水泥屋顶受光照后热辐射导致屋顶环境温度比地面电站至少要高10℃以上。在这样的场景下,系统超配后,逆变器满载及过载的运行时间会加长,对于逆变器的散热能力提出了挑战。因此高效的散热能力是逆变器稳定、不降额运行的保障。在选择逆变器时,散热方式的选取上也需要慎重,实际测试表明,对于几十KW的电力电子设备,长期工作在满载状态下,智能风扇散热效果更优。

2.3直流输入端子数量必须足够多

为了实现超配设计,组串式逆变器需要足够的端子数量。目前国内常使用组件功率分别是255W、260W、270W,通常每个组串由22块组件串联组成,以当前常见的交流额定功率为40KW的组串式逆变器为例,可以计算出不同的端子数量所对应的超配系数如表1所示。

表1 不同端子数量对应的功率及相应的超配系数情况

从表1可见,对于交流额定功率为40KW组串式逆变器,针对常见的270W及以下的组件,40KW组串式逆变器至少需要配置8串才能满足1.1以上的超配设计要求。不同于集中式逆变器方案,组串式逆变器是直接连接组件,中间没有直流汇流环节,所能连接的组件串数受限于自身的输入端子数,因此,足够的输入端子数量实现超配设计的必要保证。

2.4逆变器过载能力需要尽量大

逆变器需要有较强的过载能力,一方面,当组件可输出能量在扣除直流侧线损之后,仍然大于逆变器的额定功率,具备过载能力的逆变器,可以尽可能的减少限发时间,减少发电量损失。另一方面,随着越来越多的用户使用逆变器替代电站的SVG功能,具备过载能力的逆变器可以在响应无功调度的同时,输出超过额定容量的有功功率。

3、主流厂家组串式逆变器超配能力调研

主流厂家组串式逆变器超配能力的真实情况如何呢?实际可用交流侧功率是否与参数表相吻合?散热能力是否足够?直流侧端子数量是否足够多?逆变器过载能力到底如何?

带着这些问题,笔者对国内外主流厂家如SMA,Delta,阳光电源,古瑞瓦特,山亿等进行了调研。各家逆变器的主要相关参数汇总在表2.根据表中数据并结合调研可以得出:

(1)大部分组串式逆变器是以交流侧额定功率进行标定,并且实际可用交流侧功率是足够的,但也有一家逆变器的实际可用功率偏小,不仅不能配置到满载,更谈不上超配。结合表1和表2分析可知,6路输入的直流侧最大可接入容量远远达不到其产品型号所宣称的40KW功率值,甚至无法达到其标称的额定输出功率36KW,逆变器真实可用容量大大缩水,超配设计就更谈不上了。大大增加了系统的度电成本,严重影响投资者的收益。

(2)大部分组串式逆变器是使用风扇散热的,能保证在超配时,长时间的过载稳定运行,但也有一家逆变器是无外置风扇,即使在正常功率下,逆变器本身寿命受到挑战,超配更是无从谈起。从表2调查结果看,主流厂家均以风扇散热为主流散热解决方案。为了对比风扇散热与自然散热的性能的差异,笔者调查不同厂家的40KW组串式逆变器散热效果,结果表明同样的45℃环境温度下满载运行,自然散热的A厂家40KW逆变器内部IGBT、电容等关键部件的温升至少比智能风扇散热的B厂家40KW逆变器高10℃,根据电子元器件寿命十度法则,即意味着同样的条件下,自然冷却方式的产品寿命会降低一半,而这种对寿命的影响,由于短期内无法显现,往往被用户所忽视。

(3)大部分组串式逆变器的直流端子数量在应对超配设计时是足够多的,只有一家逆变器的直流端子数量不够。这家逆变器厂家的40KW组串式逆变器直流侧设计有三路MPPT,但每路MPPT最大只能接2路组串,即逆变器直流侧端子数量只有6路。根据表1,6路端子最大接入的直流功率只有34320W,最大超配系数只有0.95,不具备超配能力。

表2.国际主流逆变器厂家组串式逆变器可接受的超配比汇总

4、小结

光伏系统超配设计已受到用户的广泛关注,通过适当的超配,可以提高投资者的整体收益。对于国内正大力推广的分布式项目,需要至少1.1倍以上的超配系数。

通过分析比较,不是所有的组串式逆变器都可以进行超配设计的。在当前常见的40KW 逆变器中,只有直流输入端子8路以上的组串式逆变器,才能实现1.1倍以上的超配方案。且逆变器需要有足够的功率余量、良好的散热性能和一定的过载能力。国际上主流厂家在产品设计时均以客户收益最大化为导向,充分考虑到直流侧超配对系统收益的重要性,逆变器产品的实际功率标定、散热、直流输入端子数量及过载能力,均进行了充分的考虑,以满足系统超配设计的需求。

集中式和组串式逆变器方案对比

集中式和组串式逆变器方案对比 1.方案介绍 兆瓦级箱式逆变站解决方案:1MV 单元采用一台兆瓦级箱式逆变站, 2台500kW 併网逆变器(集成直流配电柜)、交流配电箱等设备,该箱式逆变站箱 体防护等级可达IP54,可直接室外安装,无需建造逆变器室土建房 兆瓦级箱式逆变站解决方案 集中式解决方案:1MV 单元需建设逆变器室,内置2台500kW 并网逆变器(集成直 内部集成 1 1 1 1 1 -------------- I 1 1 1 1 1 1 * > 1 1 1 I 1 1亠 79 世纪新能源网 w ww, NG21 ,com Vi am

流配电柜)、1台通讯柜等设备。现场需要建造逆变器土建房 组串式解决方案:1MV 单元采用40台28kW 组串式并网逆变器,组串式逆变器防护 等级IP65,可安装在组件支架背后。 iL 朴 盅出材. " .'I 世纪新能源网 2.方案对比 2.1投资成本对比 组串式解决方案: 单位 数审 曲梢1万元) 0汇1交湍■「斋箱 曽 5 0i 45X5^X25 阴画组串式谨变养 40 1. LL 1. 11. L- 霞鏡组升压变压器 台 1 怡 pvfi^iJE.交瘵践绩 1 15 合计 y&. sb ■ 世? W AT ■ 集中式解决方案: 单奋 价格(万元1 16汇】直流汇盜箝 14 0,3X14=4,2 E03kW A 伏井网逆变器 台 15>:2-30 世纪新能源网 N€21

备注:以上价格来源于各设备厂商及系统集成商,此报价仅供参考。设备数量均 按照1MV单元计算。 2.2可靠性对比 (1)元器件对比 集中式解决方案:1MV配置2台集中式并网逆变器,单台设备采用单级拓扑设计,共用功率模块6个,2台并网逆变器共12个。单兆瓦配置设备少、总器件数少,发电单元更加可靠。另外,集中式逆变器采用金属薄膜电容,MTBF超过10万小时,保证25年无需更换。 组串式解决方案:1MW配置40台组串式并网逆变器,单台设备采用双级拓扑设计,共用功率模块12个,40台并网逆变器共480个。功率器件电气间隙小,不适合高海拔地区。组串式逆变器采用户外安装,风吹日晒很容易导致外壳和散热片老化;且单兆瓦配置设备数量多、总器件数多,可靠性低;采用铝电解电容,MTBF仅为数千个小时,且故障后无法现场更换。 (2)应用业绩对比 集中式解决方案:集中式并网逆变器在大型地面电站中应用广泛,国内目前99%的光伏电站均采用该类型并网逆变器,市场占有率高,认可度高。 组串式解决方案:组串式并网逆变器在大型地面电站中的应用极少,国内目前只

集中式与组串式逆变器的优缺点比较

集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。 组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。 主要优缺点和适应场合 1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。 主要优势 (1)便于维护管理; (2)逆变器集成度高,功率密度大,成本低; (3)逆变器各种保护功能齐全,电站安全性高; (4)有功率因素调节功能和低电压穿越功能,电网调节性好。 主要缺点 (1)直流汇流箱故障率较高,影响整个系统。 (2)集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。在阴雨天,雾气多的部区,发电时间短。 (3)逆变器机房安装部署困难、需要专用的机房和设备。 (4)逆变器自身耗电以及机房通风散热耗电,系统维护相对复杂。

(5)集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。 (6)集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发电。 2、组串式逆变器适用于中小型屋顶光伏发电系统,中型地面光伏电站。 主要优势 (1)组串式逆变器采用模块化设计,每个光伏串对应一个逆变器,直流端具有最大功率跟踪功能,交流端并联并网,其优点是不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量。 (2)组串式逆变器MPPT电压范围宽,一般为250-800V,组件配置更为灵活。在阴雨天,雾气多的部区,发电时间长。 (3)组串式并网逆变器的体积小、重量轻,搬运和安装都非常方便,不需要专业工具和设备,也不需要专门的配电室,在各种应用中都能够简化施工、减少占地,直流线路连接也不需要直流汇流箱和直流配电柜等。组串式还具有自耗电低、故障影响小、更换维护方便等优势。 主要缺点 (1)电子元器件较多,功率器件和信号电路在同一块板上,设计和制造的难度大。(2)功率器件电气间隙小,不适合高海拔地区。户外型安装,风吹日晒很容易导致外壳和散热片老化。

逆变器常见故障及处理方法

逆变器常见故障及处理方法在采用DC600V供电系统的旅客列车上每节车厢都设置一台三相逆变器将机车供给的DC600V的直流电逆变为380V/50HZ三相交流电给客车空调以及其它一些三相用电设备供电。 逆变器设两台互为独立的热备逆变器单元(硬卧车、行李车为一台无热备),逆变器容量:2*35KV A逆变器+隔离变压器(高寒车及餐车为15KV A、非高寒车为5KV A),当某一台逆变器发生故障造成停止输出时,另一台逆变器可通过转换向两路负载供电,以确保客车用电设备的正常工作。 一、逆变器的操作要求: 为了确保逆变器的可靠工作,必须按照逆变器的操作规程进行操作。上电的时候,先给110V控制电然后再给600V 的大电;断电的时候先断600V的大电,再断110V控制电,即遵行先弱电、后强电,先轻载,再重载的操作原则。为了确保检修人员和设备的安全,逆变器的检修必须在断电五分钟后进行。 一、逆变器常见故障的处理 1.正常工作时,逆变器报代码为“OO”,输入欠压时报 “O2”,除此之外,出现其它代码均为故障状态。 2.如果逆变器报“O5”,断开负载,看能否正常工作,如 正常,检查负载是否有问题,如仍有“O5”故障,则

更换驱动板或控制板,如仍有问题,更换输出电流传感器LT208。如减载后两路都报“O5”故障,是负载有问题,检查负载。 3.如果逆变器报“O7”,空载情况下,如果复位后能重启, 检查负载是否有问题(短路、断路、绝缘不良)。如果不能进行重启,车上四合一电气柜显示屏直接报“O7”,打开相关逆变单元的散热器,检查IGBT是否完好,如IGBT完好,则驱动板故障,更换驱动板。 4.如果逆变器报“OC”,用万用表测量熔断器,如果坏, 更换熔断器,然后,打开对应单元的散热器,测量IGBT 是否有损坏,有损坏则进行更换,同时检查驱动板是否正常,有问题更换。 5.如果逆变器报“OE”,检查相应单元的接触器触头和触 点是否异常,检查散热器箱内左侧的电源板插头是否有松动,如果接触器触头有粘连现象,要检查散热器上的IGBT是否有问题,同时检查驱动板。如都正常,测量相应单元的固态继电器,有问题则更换相应单元箱的固态继电器。 6.如果逆变器报“FE”,打开相应散热器,检查控制板是 否工作,不工作,更换控制板。 7.另外,还有三种故障现象,表现为逆变器上传的代码为 “OO”,但仍为故障的状态:第一种为逆Ⅰ或逆Ⅱ无输

组串式逆变器与集中式逆变器优缺点PK

组串式逆变器与集中式逆变器优缺点PK 方案对比 集中式逆变器:设备功率在50KW到630KW之间,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。体积较大,室内立式安装。 组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。体积较小,可室外臂挂式安装。 系统主要器件对比 集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。 组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。 主要优缺点和适应场合 1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。 主要优势

(1)便于维护管理; (2)逆变器集成度高,功率密度大,成本低; (3)逆变器各种保护功能齐全,电站安全性高; (4)有功率因素调节功能和低电压穿越功能,电网调节性好。 主要缺点 (1)直流汇流箱故障率较高,影响整个系统。 (2)集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。在阴雨天,雾气多的部区,发电时间短。 (3)逆变器机房安装部署困难、需要专用的机房和设备。 (4)逆变器自身耗电以及机房通风散热耗电,系统维护相对复杂。 (5)集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。 (6)集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发电。

逆变器屏幕没有显示

1、逆变器屏幕没有显示 故障分析:没有直流输入,逆变器LCD是由直流供电的。 可能原因: (1)组件电压不够。逆变器工作电压是100V到500V,低于100V时,逆变器不工作。组件电压和太阳能辐照度有关。 (2)PV输入端子接反,PV端子有正负两极,要互相对应,不能和别的组串接反。 (3)直流开关没有合上。 (4)组件串联时,某一个接头没有接好。 (5)有一组件短路,造成其它组串也不能工作。 解决办法: 用万用表电压档测量逆变器直流输入电压。电压正常时,总电压是各组件电压之和。如果没有电压,依次检测直流开关,接线端子,电缆接头,组件等是否正常。如果有多路组件,要分开单独接入测试。 如果逆变器是使用一段时间,没有发现原因,则是逆变器硬件电路发生故障,需要联系售后。 2、逆变器不并网 故障分析:逆变器和电网没有连接。 可能原因: (1)交流开关没有合上。 (2)逆变器交流输出端子没有接上。 (3)接线时,把逆变器输出接线端子上排松动了。 解决办法:用万用表电压档测量逆变器交流输出电压,在正常情况下,输出端子应该有220V或者380V电压,如果没有,依次检测接线端子是否有松动,交流开关是否闭合,漏电保护开关是否断开。 3、PV过压 故障分析:直流电压过高报警。 可能原因:组件串联数量过多,造成电压超过逆变器的电压。 解决办法:因为组件的温度特性,温度越低,电压越高。单相组串式逆变器输入电压范围是100-500V,建议组串后电压在350-400V之间,三相组串式逆变器输入电压范围是250-800V,建议组串后电压在600-650V之间。在这个电压区间,逆变器效率较高,早晚辐照度低时也可发电,但又不至于电压超出逆变器电压上限,引起报警而停机。 4、隔离故障 故障分析:光伏系统对地绝缘电阻小于2兆欧。 可能原因:太阳能组件,接线盒,直流电缆,逆变器,交流电缆,接线端子等地方有电线对地短路或者绝缘层破坏。PV接线端子和交流接线外壳松动,导致进水。 解决办法:断开电网,逆变器,依次检查各部件电线对地的电阻,找出问题点,并更换。 5、漏电流故障 故障分析:漏电流太大。 解决办法:取下PV阵列输入端,然后检查外围的AC电网。直流端和交流端全部断开,让逆变器停电30分钟以上,如果自己能恢复就继续使用,如果不能恢复,联系售后技术工程师。 6、电网错误

集中式、组串和散式逆变器比较专题

集中式、组串式和集散式逆变器比 较 技术专题

目前适用于大型光伏电站的逆变器主流产品包括集中式、组串式和集散式逆变器,各有利弊和优缺点。为更好的为本项目选择合适的逆变器,做此逆变器比较专题报告。集中式、组串式和集散式逆变器的主要优缺点、适应场合和比选结论详述如下: 1集中式、组串式和集散式逆变器概述 集中式逆变器:国内主流设备功率一般不超过630kW,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般不低于IP20。体积较大,室内立式安装。系统方案为采用直流汇流箱进行一级汇流,采用集中式逆变器(带MPPT跟踪功能)进行二级汇流及逆变,最后输入升压箱变。 组串式逆变器:功率一般不大于60kW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。体积较小,可室外壁挂式安装。系统方案为采用组串式逆变器(带多路MPPT跟踪功能)进行一级汇流及逆变,采用交流汇流箱进行二次汇流,最后输入升压箱变。 集散式逆变器:分布式多MPPT,独立跟踪,精度高,发电效率高;分布式DC/DC升压,直流传输电压800V左右、交流并网电压500V左右,传输损耗降低;传输及并网电压高、电流小,逆变器、电缆和箱变的投资都有所下降。系统方案为采用直流汇流箱进行一级汇流(直流汇流箱带多路MPPT跟踪功能),再采用大容量逆变器(不带MPPT跟踪功能)进行二级汇流及逆变,最后输入升压箱变。 光伏场区使用主要器件对比: 集中式逆变方案:光伏组件,直流电缆,直流汇流箱,直流电缆,直流配电柜,直流电缆,集中式逆变器,交流电缆,双分裂箱变。 组串式逆变方案:光伏组件,直流电缆,组串式逆变器,交流电缆,交流汇流箱,交流电缆,双绕组箱变。 集散式逆变方案:光伏组件,直流电缆,智能型带MPPT直流汇流箱,直流电缆,直流配电柜,直流电缆,集散式逆变器,交流电缆,双绕组箱变。

华为光伏逆变器常见故障及处理

华为光伏逆变器常见故障及处理 1、绝缘阻抗低:使用排除法。把逆变器输入侧的组串全部拔下,然后逐一接上,利用逆变器开机检测绝缘阻抗的功能,检测问题组串,找到问题组串后重点检查直流接头是否有水浸短接支架或者烧熔短接支架,另外还可以检查组件本身是否在边缘地方有黑斑烧毁导致组件通过边框漏电到地网。 2、母线电压低:如果出现在早/晚时段,则为正常问题,因为逆变器在尝试极限发电条件。如果出现在正常白天,检测方法依然为排除法,检测方法与1项相同。 3、漏电流故障:这类问题根本原因就是安装质量问题,选择错误的安装地点与低质量的设备引起。故障点有很多:低质量的直流接头,低质量的组件,组件安装高度不合格,并网设备质量低或进水漏电,一但出现类似问题,可以通过在洒粉找出**点并做好绝缘工作解决问题,如果是材料本省问题则只能更换材料。 4、直流过压保护:随着组件追求高效率工艺改进,功率等级不断更新上升,同时组件开路电压与工作电压也在上涨,设计阶段必须考虑温度系数问题,避免低温情况出现过压导致设备硬损坏。 5、逆变器开机无响应:请确保直流输入线路没有接反,一般直流接头有防呆效果,但是压线端子没有防呆效果,仔细阅读逆变器说明书确保正负极后再压接是很重要的。逆变器内置反接短路保护,在恢复正常接线后正常启动。 6、电网故障: 电网过压:前期勘察电网重载(用电量大工作时间)/轻载(用电量少休息时间)的工作就在这里体现出来,提前勘察并网点电压的健康情况,与逆变器厂商沟通电网情况做技术结合能保证项目设计在合理范围内,切勿“想当然”,特别是农村电网,逆变器对并网电压,并网波形,并网距离都是有严格要求的。出现电网过压问题多数原因在于原电网轻载电压超过或接近安规保护值,如果并网线路过长或压接不好导致线路阻抗/感抗过大,电站是无法正常稳定运行的。解决办法是找供电局协调电压或者正确选择并网并严抓电站建设质量。 电网欠压:该问题与电网过压的处理方法一致,但是如果出现独立的一相电压过低,除了原电网负载分配不完全之外,该相电网掉电或断路也会导致该问题,出现虚电压。 电网过/欠频:如果正常电网出现这类问题,证明电网健康非常堪忧。 电网没电压:检查并网线路即可。 电网缺相:检查缺相电路,即无电压线路。 三相不平衡,并网线路外加特殊设备导致并网异常震荡,超长距离并网,电网削顶过压相移。 7、最后一点——监控搭接:正确阅读各设备说明书机型线路压接,设备连接,并设置好设备的通讯地址,时间,是保证通讯稳定有效的保证! 8、发电量保证:有空擦擦板子,发电量“凸”一下就起来了。

逆变器操作说明和故障处理

一逆变器原理介绍 1.1逆变(invertion):把直流电转变成交流电的过程。 逆变电路是把直流电逆变成交流电的电路。当交流侧和电网连结时,为有源逆变电路。变流电路的交流侧不与电网联接,而直接接到负载,即把直流电逆变为某一频率或可调频率的交流电供给负载,称为无源逆变。 逆变桥式回路把直流电压等价地转换成常用频率的交流电压。逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关(ON-OFF),使直流输入变成交流输出。当然,这样单纯地由开和关回路产生的逆变器输出波形并不实用。一般需要采用高频脉宽调制(SPWM),使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列(拟正弦波)。然后让脉冲波通过简单的滤波器形成正弦波。 1.2 IGBT的结构和工作原理 1.2.1 IGBT的结构 IGBT是三端器件,具有栅极G、集电极C和发射极E。IGBT由N沟道VDMOSFET 与双极型晶体管组合而成的,VDMOSFET多一层P+注入区,实现对漂移区电导率进行调制,使得IGBT具有很强的通流能力。图1-1为IGBT等效原理图及符号表示 图1-1 IGBT等效原理图及符号表示 1.2.2IGBT的工作原理 IGBT的驱动原理与电力MOSFET基本相同,是一种场控器件。 其开通和关断是由栅极和发射极间的电压U GE决定的。

当U GE为正且大于开启电压U GE(th)时,MOSFET内形成沟道,并为晶体管提供基极电流进而使IGBT导通。 当栅极与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,使得IGBT关断。 电导调制效应使得电阻R N减小,这样高耐压的IGBT也具有很小的通态压降。 1.3逆变电路介绍 1.3.1逆变产生的条件为 1,要有直流电动势,其极性须和晶闸管的导通方向一致,其值应大于变流器直流侧的平均电压。 2要求晶闸管的控制角α>π/2,使U d为负值。 两者必须同时具备才能实现有源逆变。 逆变运行时,一旦发生换相失败,外接的直流电源就会通过晶闸管电路形成短路,或者使变流器的输出平均电压和直流电动势变成顺向串联,由于逆变电路的内阻很小,形成很大的短路电流,这种情况称为逆变失败,或称为逆变颠覆。 逆变失败的原因 1触发电路工作不可靠,不能适时、准确地给各晶闸管分配脉冲,如脉冲丢失、脉冲延时等,致使晶闸管不能正常换相。 2晶闸管发生故障,该断时不断,或该通时不通。 3交流电源缺相或突然消失。 4换相的裕量角不足,引起换相失败 为了防止逆变失败,不仅逆变角β不能等于零,而且不能太小,必须限制在某一允许的最小角度内。 1.3.2逆变电路基本的工作原理 图1-2单相逆变电路原理图

华为组串式逆变器

华为组串式逆变器 智能 ●最多8路高精度智能组串检测,减少故障定位时间80%; ●多机并联智能电网自适应,电能优质,更好地满足电网接入要求; ●华为专用无线通信技术,无需专用通讯线缆。高效 ●最高效率99%,中国效率98.49%; ●无N线,可节省20%交流线缆投资; ●最多4路MPPT,适应复杂的屋顶环境,发电量提升5%以上。 安全 ●安全的规避PID效应,主动防止触电并隔离; ●无熔丝设计,避免直流侧故障引起的火灾隐患; ●零电压穿越,满足电网接入要求。可靠 ●25年设计使用寿命; ●自然散热,IP65防护等级; ●内置交直流防雷模块,全方位雷击保护。

1、做工精细 华为SUN2000组串式光伏逆变器采用最优质的材料和最先进的工艺制造,通讯只需连接普通网线(RS485线)即可实现;操作简单,容易上手,三相接线简单,接上铜鼻子即可。 2、顶级配置 华为逆变器最多4路MPPT ,比很多其他品牌逆变器多1~2路,更好地解决了电池板的朝向及遮挡问题,提升发电量5%以上;最多配有2个直流开关,在检测或维修时保证绝对安全;最高效率99%,显著提升发电量。 3、屏显简洁 =[表示直流,]~表示交流,第三个图标表示485通讯,第四个图标表示工作状态;第一、二个指示灯绿时,表示逆变器工作正常,可以并网发电;第三个指示灯绿时,表示通讯正常。 4、自然散热 采用全密闭自然散热设计,利用热隔离、热屏蔽技术,将发热器件和热敏感器件分腔合理布局,确保整机无局部热点,提升散热可靠性,解决了因风扇失效散热能力降低导致的功率降低,发电量减少的问题。

5、安装方便 华为逆变器体积小、重量轻,每台逆变器尺寸约550*700*250mm ,重量<60kg ,两个人10分钟就可完成安装;且支持整机更换,故障设备返厂维修,现场无需专家;单台逆变器故障对光伏系统发电影响小。 6、蓝牙监控 华为独有的蓝牙模块可通过逆变器下端的USB 接口与移动设备连接,实现近端的发电数据采集与分析,以及逆变器操作系统的更新升级。移动端监控软件APP 可在华为应用商店下载: 恒通源公司作为华为智能光伏电站解决方案授权经销商,可为您提供华为智能光 伏逆变器等配套产品。咨询热线:400-609-6233 华为逆变器适用于小型屋顶项目(<100kw )、大中型屋顶项目(>100kW )、 地面电站项目(>1MW )。 1、小型屋顶项目(<100kW ) SUN2000组串式逆变器在小型屋顶项目场景中,应用如下图所示:

集中式、组串式、集散式逆变器的区别

集中式、组串式、集散式逆变器的区别 一、集中式逆变器 集中式逆变器顾名思义是将光伏组件产生的直流电汇总转变为交流电后进行升压、并网。因此,逆变器的功率都相对较大。光伏电站中一般采用500kW 以上的集中式逆变器。 (一)集中式逆变器的优点如下: 1.功率大,数量少,便于管理;元器件少,稳定性好,便于维护; 2.谐波含量少,电能质量高;保护功能齐全,安全性高; 3.有功率因素调节功能和低电压穿越功能,电网调节性好。 (二)集中式逆变器存在如下问题: 1.集中式逆变器MPPT电压范围较窄,不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,组件配置不灵活; 2.集中式逆变器占地面积大,需要专用的机房,安装不灵活; 3.自身耗电以及机房通风散热耗电量大。 二、组串式逆变器 组串式逆变器顾名思义是将光伏组件产生的直流电直接转变为交流电汇总后升压、并网。因此,逆变器的功率都相对较小。光伏电站中一般采用50kW以下的组串式逆变器。 (一)组串式逆变器优点: 1.不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量; 2.MPPT电压范围宽,组件配置更加灵活;在阴雨天,雾气多的部区,发电时间长; 3.体积较小,占地面积小,无需专用机房,安装灵活; 4.自耗电低、故障影响小。 (二)组串式逆变器存在问题: 1.功率器件电气间隙小,不适合高海拔地区;元器件较多,集成在一起,稳

定性稍差; 2.户外型安装,风吹日晒很容易导致外壳和散热片老化; 3.逆变器数量多,总故障率会升高,系统监控难度大; 4.不带隔离变压器设计,电气安全性稍差,不适合薄膜组件负极接地系统。 三、集散式逆变器 集散式逆变器是近两年来新提出的一种逆变器形式,其主要特点是“集中逆变”和“分散MPPT跟踪”。集散式逆变器是聚集了集中式逆变器和组串式逆变器两种逆变器优点的产物,达到了“集中式逆变器的低成本,组串式逆变器的高发电量”。 (一)集散式逆变器优点: 1.与集中式对比,“分散MPPT跟踪”减小了失配的几率,提升了发电量; 2.与集中式及组串式对比,集散式逆变器具有升压功能,降低了线损; 3.与组串式对比,“集中逆变”在建设成本方面更具优势。 (二)集散式逆变器问题; 1.工程经验少。较前两类而言,尚属新形式,在工程项目方面的应用相对较少; 2.安全性、稳定性以及高发电量等特性还需要经历工程项目的检验; 3.因为采用“集中逆变”,因此,占地面积大,需专用机房的缺点也存在于集散式逆变器中。

逆变器常见故障及处理方法

逆变器常见故障及处理方法在采用DC600V供电系统得旅客列车上每节车厢都设置一台三相逆变器将机车供给得DC600V得直流电逆变为380V/50HZ三相交流电给客车空调以及其它一些三相用电设备供电、 逆变器设两台互为独立得热备逆变器单元(硬卧车、行李车为一台无热备),逆变器容量:2*35KV A逆变器+隔离变压器(高寒车及餐车为15KV A、非高寒车为5KVA),当某一台逆变器发生故障造成停止输出时,另一台逆变器可通过转换向两路负载供电,以确保客车用电设备得正常工作。一、逆变器得操作要求: 为了确保逆变器得可靠工作,必须按照逆变器得操作规程进行操作。上电得时候,先给110V控制电然后再给600V 得大电;断电得时候先断600V得大电,再断110V控制电,即遵行先弱电、后强电,先轻载,再重载得操作原则。为了确保检修人员与设备得安全,逆变器得检修必须在断电五分钟后进行、 一、逆变器常见故障得处理 1.正常工作时,逆变器报代码为“OO",输入欠压时报“O 2”,除此之外,出现其它代码均为故障状态、 2.如果逆变器报“O5”,断开负载,瞧能否正常工作,如正 常,检查负载就是否有问题,如仍有“O5”故障,则更换驱

动板或控制板,如仍有问题,更换输出电流传感器LT208。如减载后两路都报“O5”故障,就是负载有问题,检查负载。 3.如果逆变器报“O7”,空载情况下,如果复位后能重启, 检查负载就是否有问题(短路、断路、绝缘不良)。如果不能进行重启,车上四合一电气柜显示屏直接报“O7",打开相关逆变单元得散热器,检查IGBT就是否完好,如IGBT完好,则驱动板故障,更换驱动板。 4.如果逆变器报“OC”,用万用表测量熔断器,如果坏,更 换熔断器,然后,打开对应单元得散热器,测量IGBT就是否有损坏,有损坏则进行更换,同时检查驱动板就是否正常,有问题更换。 5.如果逆变器报“OE",检查相应单元得接触器触头与触 点就是否异常,检查散热器箱内左侧得电源板插头就是否有松动,如果接触器触头有粘连现象,要检查散热器上得IGBT就是否有问题,同时检查驱动板。如都正常,测量相应单元得固态继电器,有问题则更换相应单元箱得固态继电器。 6.如果逆变器报“FE”,打开相应散热器,检查控制板就是 否工作,不工作,更换控制板。 7.另外,还有三种故障现象,表现为逆变器上传得代码为 “OO”,但仍为故障得状态:第一种为逆Ⅰ或逆Ⅱ无输

组串式逆变器解决方案

组串式逆变器解决方案:针对屋顶光伏电站 在2014年全国能源工作会上,国家能源局敲定2014年国内光伏新增装机14GW,其中分布式电站8GW、地面电站6GW。分布式电站有80%主要建于东部沿海经济发达地区,同时因受限于东部土地资源的稀缺,其中又有80%的电站只能建在屋顶。 近年,国家政策从初始投资补贴转向度电补贴,如何降低电站运维成本、提高发电量、提升电站整体收益率,成为我们面临的新课题,需要我们在电站建设形式上深入探索。 一、传统集中式方案弊端 经过实际项目的调研,并与EPC,设计院以及光伏专家的研讨,在屋顶电站设计、建设及运维过程中,我们对集中式逆变器组网方案所遇到的问题进行了分析总结。比较突出的是以下6类问题: 1、电站建设中最重要的是安全问题。集中式方案中采用直流汇流箱,由于内置直流支路熔丝,存在融不断起火的风险,因为只要有光照太阳能板就会处于工作状态。对于分布式屋顶厂房来说,带来严重的安全隐患。不仅电站本身经济收益受影响,更关键会影响到厂房的其他设备。给业主带来非常大的损失。 2、不规则屋顶,采用单个500KW逆变器无法充分利用屋顶面积。逆变器经常处于过载或轻载或者超配、欠配的情况。 3、多个朝向的屋顶,电池板有部分阴影遮挡导致组串的不一致性,单路MPPT 导致发电量相对较低;同时,各路组串的失配损失也将导致发电量的损失。 4、逆变器需要专业工程师维护,单个逆变器故障对发电量影响较大,对维护人员的安全也带来巨大挑战,同时,备件种类较多,故障定位及修复3天以上,严重影响客户发电收益。直流汇流箱故障率高,无法监控到每路组串,增加故障定位时间,由于熔丝挥发,故障率、维护成本高,需要定期更换维护;线路复杂,现场加工的接头多,故障率高;部份项目运行1~2年后,有效发电率低于90%;下图就是某电站直流汇流箱烧毁。 5、集中式方案需要逆变器房和相应土建工程,同时需配套相应的风机,风道,烟感,温感等设备,增加施工复杂度,初始投资和运维成本。 6、集中式逆变器需强制风冷,机房消耗电力大,平均至少300W以上,需要定期扫灰,风扇维护和防尘网更换。 二、组串式解决方案优势 结合欧美等光伏电站建设发达地区屋顶电站的成功经验,组串式已经成为屋顶电站的首选解决方案。

……关于集中式光伏逆变器和组串式逆变器选型之比较

集中式光伏逆变器和组串式逆变器选型之比较国家能源局下放通知,2014年国内光伏新装总容量达14G,其中分布式8G,地面电站6G。分布式光伏电站将迎来一个前所未有的发 展机会。国家电网对分布式光伏电站要求如下:单个并网点小于6MW,年自发自用电量大于50%;8KW以下可接入220V;8KW-400KW可接入 380V;400KW-6MW可接入10KV。根据逆变器的特点,光伏电站逆变器 选型方法:220V项目选用单相组串式逆变器,8KW-30KW选用三相组 串式逆变器,50KW以上的项目,可以根据实际情况选用组串式逆变 器和集中式逆变器。 逆变器方案对比: 集中式逆变器:设备功率在50KW到630KW之间,功率器件采用 大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥 逆变,工频隔离变压器的方式,防护等级一般为IP20。体积较大, 室内立式安装。 组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。体积较小,可室外臂挂式安装。 系统主要器件对比:

集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。 组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。 主要优缺点和适应场合: 1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。 主要优势有: 1.逆变器数量少,便于管理; 2.逆变器元器件数量少,可靠性高; 3.谐波含量少,直流分量少电能质量高; 4.逆变器集成度高,功率密度大,成本低; 5.逆变器各种保护功能齐全,电站安全性高; 6.有功率因素调节功能和低电压穿越功能,电网调节性好。 主要缺点有:1.直流汇流箱故障率较高,影响整个系统。 2.集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。在阴雨天,雾气多的部区,发电时间短。

集中式逆变器和组串式逆变器之比较

集中式逆变器和组串式逆变器之比较 ——深圳恒通源 1、逆变器方案对比 (1)集中式逆变器:设备功率在50KW到630KW之间,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。体积较大,室内立式安装。 (2)组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。体积较小,可室外臂挂式安装。 2、系统主要器件对比 (1)集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。 (2)组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。 3、主要优缺点和适应场合 (1)集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。 主要优势有: ●逆变器数量少,便于管理; ●逆变器元器件数量少,可靠性高; ●谐波含量少,直流分量少电能质量高; ●逆变器集成度高,功率密度大,成本低; ●逆变器各种保护功能齐全,电站安全性高; ●有功率因素调节功能和低电压穿越功能,电网调节性好。 主要缺点有:

●直流汇流箱故障率较高,影响整个系统。 ●集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。在阴 雨天,雾气多的部区,发电时间短。 ●逆变器机房安装部署困难、需要专用的机房和设备。 ●逆变器自身耗电以及机房通风散热耗电,系统维护相对复杂。 ●集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功 率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。 ●集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发 电。 (2)组串式逆变器适用于中小型屋顶光伏发电系统,小型地面电站。 主要优势有: ●组串式逆变器采用模块化设计,每个光伏串对应一个逆变器,直流端具有最 大功率跟踪功能,交流端并联并网,其优点是不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量。 ●组串式逆变器MPPT电压范围宽,一般为250-800V,组件配置更为灵活。在 阴雨天,雾气多的部区,发电时间长。 ●组串式并网逆变器的体积小、重量轻,搬运和安装都非常方便,不需要专业 工具和设备,也不需要专门的配电室,在各种应用中都能够简化施工、减少占地,直流线路连接也不需要直流汇流箱和直流配电柜等。组串式还具有自耗电低、故障影响小、更换维护方便等优势。 主要缺点有: ●电子元器件较多,功率器件和信号电路在同一块板上,设计和制造的难度大, 可靠性稍差。 ●功率器件电气间隙小,不适合高海拔地区。户外型安装,风吹日晒很容易导 致外壳和散热片老化。

组串式逆变器优势

“调查显示,过去一年大型商业光伏系统对组串式逆变器的接受度不断增加,验证了IHS对于组串式逆变器在几个主要光伏市场份额将会增加的预期。”IHS高级光伏分析师Gilligan表示,“大型商业光伏系统更多地选用组串式逆变器,因为组串式逆变器的系统设计更灵活、故障发生时的损失较低且生命周期维护成本更低。” 针对这项调研报告,固德威总结出以下两点原因,这应该是目前选择组串式逆变器最常见的原因,希望可以给那些正在踌躇到底是选择集中型还是组串型逆变器的潜在用户一些建议。 原因一:组串式逆变器采用模块化设计,每个光伏串对应一个逆变器,直流端具有最大功率跟踪功能,交流端并联并网,其优点是不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量。 第一,避免了集中型逆变器电站的木桶效应(如下图)。集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。所以当电池组件受到遮挡时,集中型电站会受到较大的影响,组串型电站只有被遮挡的一串对应的一路MPPT受到影响。而正常情况下,各个组件之间的安装间距,安装角度各异,一天中一定时间内不可避免会产生局部遮挡,特别是早晚时刻太阳高度角较低的时候,或者出现一些植被遮挡一些电池片。若一个500KW方阵的电池板使用一路MPPT来跟踪,会损失一定的发电量。该情况同样适用于当电池组件发生脏污、阴影、老化、升温、热斑的情况下。

第二,使用组串式逆变器的电站可以在同一个项目中使用不同朝向的组件。像在山地项目中,由于地区地形复杂,平地很少,无法做土地平整,朝向正南的地形也有限,因此为保证容量必须充分利用东南、西南坡以及东向、西向坡。此时电池板的安装朝向无法完全朝南布置。若一个500KW方阵的电池板使用一路MPPT来跟踪,会损失一定的发电量。 第三,使用组串式逆变器的电站可以在同一个项目中使用不同类型的组件,这是在传统集中型逆变器电站中无法实现的。 原因二:组串式逆变器还具有自耗电低、故障影响小、更换维护方便的优势。集中型逆变器自身耗电以及机房通风散热耗电大,系统维护相对复杂,出现故障时,整个电站会瘫痪,组串型逆变器出现故障时,只有一串组件会停止发电,整个电站可以照常运作,从而很大程度上降低了损失。另外,组串式并网逆变器的体积小、重量轻,搬运和安装都非常方便,不需要专业工具和设备,也不需要专门的配电室,在各种应用中都能够简化施工、减少占地,直流线路连接也不需要直流汇流箱和直流配电柜等。这就意味着组串型逆变器的修复时间周期要比集中式逆变器的修复周期短,下图为集中型和组串型逆变器的修复时间周期对比。

组串式逆变器的发展趋势和挑战-无风扇设计

随着全球煤炭、石油资源的衰竭和世界各国对环境污染的重视,太阳能等可再生能源并网发电技术及应用成为热点。其中光伏逆变器作为太阳能发电系统的核心设备,其可靠性决定着光伏系统的安全运行,而影响光伏逆变器可靠性的重要因素之一就是逆变器的散热性能。逆变器的核心器件功率开关对温度比较敏感,温度的变化会影响其开通和关断过程,当温度过高时会导致功率开关性能衰减甚至损坏,因此逆变器的散热方案优劣决定着产品的性能和质量。 近年来,组串式地面电站在全球得到广泛应用。相比集中式电站,组串式电站有明显优势,具体体现在以下几点:发电量高,占地面积小,无需机房,运行可靠,维护方便简单。特别是针对分布式屋顶、山地丘陵项目,组串式方案有着无可比拟的优势。 光伏电站一般选在沙漠、高原等阳光充足的地方,这些区域冬季温度极低,夏季温度非常高,风沙大,海拔高,光照强,有些站点甚至位于海边,腐蚀性强。在这些应用场景中,组串式逆变器通过挂墙、挂光伏板支架或者挂独立安装架等方式直接暴露在室外,外部部件被雨水、沙尘腐蚀和老化风险严重。如何做到既能适应恶劣环境,又能满足逆变器的散热,成为了大家最关心的问题。 一.组串式逆变器业界常用散热方式及问题逆变器散热主要 有自然散热和风冷散热两种方式,影响散热能力的关键因素是对流换热系数。一般情况下,风冷散热的换热系数比自然对流高一个数量级,因此在组串式逆变器外部增加风扇可以大大提升散热能力,行业厂商

普遍采用这种方式散热。但组串式逆变器应用环境较差,其对外部风扇的防护性能要求较高。当前室外型风扇防护等级一般只能达到 IP54/IP55,外部有风扇设计导致整体系统防护等级无法达到IP65。同时为了避免雨水直接冲刷风扇,设计散热方案时,风道会变得很复杂,风道形式受限,一旦风扇失效,散热能力衰减严重,这样会使得逆变器输出功率降额,发电量减少,严重影响客户利益。更为关键的是,因风扇常年暴露在雨水和沙尘中,腐蚀严重,寿命急剧下降,逆变器生命周期内需要多次更换风扇,维护成本极高。 下图为某户外环境电站,逆变器运行一年后,风扇积灰和腐蚀的剖析图片,从图片可以看出,腐蚀情况非常严重。 图1 某户外电站逆变器风扇积尘腐蚀示意图 二.组串式逆变器散热问题的应对解决方案 无外部风扇设计方案虽然散热能力不如强迫风冷方案,但由于逆变器外部无需安装风扇,防护等级可以达到IP65,而且噪声低,可靠性高,消除因风扇失效散热能力衰减导致的功率降额,易维护,成本低。

CRH2牵引变流器故障处理

CRH2牵引变流器故障处理 1主电路构成 主电路系统一般以2辆M1车·M2车为1个单元。 电源为电车线提供的单相交流25kV、50Hz,受电弓引下的电经VCB送到牵引变压器原边侧绕组。主电路开闭由VCB控制。牵引变压器的2个牵引侧绕组受原边侧绕组励磁感应出1500V(原边侧25kV时)电压,并将其输入牵引变流器脉冲整流器部。 牵引变流器在M1车、M2车各搭载1台,除实施牵引时向牵引电机供电和制动时电力再生控制外,还具有保护功能。此外,还可依据车辆信息控制装置提供的信息实现脉冲整流器间载波相位差运行,以减少架线电流的高次谐波。 牵引电机为3相鼠笼型感应电机,轴端部安装速度传感器,用以向牵引变流器、制动控制装置提供转数(转子频率)数据。 主电路的构成

牵引变流器由单相交流电变直流电的脉冲整流器部,直流电流变3相交流电流的逆变器部,和吸收电压波动、输出直流定电压的直流平滑电路(滤波电容器)部构成。 利用PWM脉冲整流器可实现输入基波功率因数1运行,从而减小设备体积、降低电力消耗。此外,由于脉冲整流器·逆变器部采用3级结构实现了微细电压控制,主电路半导体元件采用高速切换的IPM减小了交流电压波形失真,可有效降低牵引电机和牵引变压器的电磁噪音、扭矩波动。 脉冲整流器部介绍 脉冲整流器部由单相3级PWM脉冲整流器和交流接触器K构成,以牵引变压器牵引侧输出AC1500V、50Hz为输入。

通过无触点控制装置的IPM选通控制,实现输出直流电压2600~3000V定电压控制、牵引变压器原边侧电压电流功率因数1控制。此外,还可通过无触点控制装置实现保护功能。再生制动时功能为逆变换,以滤波电容器输出DC3000V为输入,向牵引变压器侧输出AC1500V、50Hz。 交流接触器K控制输入侧主电路接通、断开。 脉冲整流器3级PWM控制概要 3级脉冲整流器将滤波电容器分压直流电压得到的3阶(正:+Ed/2,零,负:-Ed/2)电压输出到交流(牵引变压器)侧。 3级脉冲整流器调制方式参照图。依据U相调制波ymU(U相电压指令)、正侧载波和负侧载波(三角波)的大小关系,生成3级PWM信号Gsw的+1、0、-1信号。(V相调制波ymV(与U相逆相位)和V相载波ycV之间的关系与上述关系相同。ycV是为减少高次谐波而偏离ycU180?相位的调制波。) 为减少架线电流高次谐波,将同一单元内M1车、M2车的2台脉冲整流器间载波相位差设定为-90°,单元间相位差设定为-60°。 逆变器部工作原理介绍 逆变器部以滤波电容器电压为输入,依据无触点控制装置IPM选通控

组串式逆变器和集中式逆变器优缺点

前言:国家能源局下放通知,2014年国内光伏新装总容量达14G,其中分布式8G,地面电站6G。分布式光伏电站将迎来一个前所未有的发展机会。国家电网对分布式光伏电站要求如下:单个并网点小于6MW,年自发自用电量大于50%;8KW以下可接入220V;8KW-400KW可接入380V;400KW-6MW可接入10KV。根据逆变器的特点,光伏电站逆变器选型方法:220V项目选用单相组串式逆变器,8KW-30KW选用三相组串式逆变器,50KW 以上的项目,可以根据实际情况选用组串式逆变器和集中式逆变器。 逆变器方案对比: 集中式逆变器:设备功率在50KW到630KW之间,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。体积较大,室内立式安装。 组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。 体积较小,可室外臂挂式安装。 系统主要器件对比: 集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。 组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。 主要优缺点和适应场合: 1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统 中,系统总功率大,一般是兆瓦级以上。 主要优势有: (1)逆变器数量少,便于管理; (2)逆变器元器件数量少,可靠性高;

(3)谐波含量少,直流分量少电能质量高; (4)逆变器集成度高,功率密度大,成本低; (5)逆变器各种保护功能齐全,电站安全性高; (6)有功率因素调节功能和低电压穿越功能,电网调节性好。 主要缺点有: (1)直流汇流箱故障率较高,影响整个系统。 (2)集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。在阴雨 天,雾气多的部区,发电时间短。 (3)逆变器机房安装部署困难、需要专用的机房和设备。 (4)逆变器自身耗电以及机房通风散热耗电,系统维护相对复杂。 (5)集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。 (6)集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发电。 2、组串式逆变器适用于中小型屋顶光伏发电系统,小型地面电站。 主要优势有: (1)组串式逆变器采用模块化设计,每个光伏串对应一个逆变器,直流端具有最大功 率跟踪功能,交流端并联并网,其优点是不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量。 (2)组串式逆变器MPPT电压范围宽,一般为250-800V,组件配置更为灵活。在阴雨天,雾气多的部区,发电时间长。

相关文档
最新文档