多元函数微分学测试题

多元函数微分学测试题
多元函数微分学测试题

1、填空题 1

)00

x x →→=

1

6

-

2)设2

y u x =,则du =

22

212ln y y y x dx yx xdy

-+。

3)已知()()222222

220,00

x y xy x y f x y x y x y ?-?

+≠=+??

+=?

,则()0,x f y =y -。

()()()

()2

2

22

00,0,0,lim lim x x x x y y f x y f y f y y x x y ?→?→?-?-===-??+

4)函数1

x

x u y ??

=

???

在点()1,1处的剃度为{}

1,1-。

5)已知2

2

z x y =+在点()01,2P 沿从点()01,2P

到点(12,2P

方向的方向导数是2+。

6)已知曲面z xy =上的点P 处的法线l 平行于直线16321

:212

x y z l ---==

-,则该法线方程为

122

211

x y z -++==

-。 2、解下列各题 1)已知

x y z z ???

= ???

,其中?为可微函数,求z z x y x y ??+??。 解:方程两边微分得

221x y dx dz dy dz z z z z

??''

-=- z z dz dx dy y x y x

???'

-=

+''-- ,z z z z x y x y y x ???'?-?==''?-?- z z x

y z x y

??+=?? 2)设,y x z xf yg x x y ????

=+ ? ????

?,其中,f g 均为二阶可微函数,求2z x y ???。

解:

121221z y y f xf y g g f f yg g x x y x ?????

''''''=+-++=-++ ? ??????

2112222211

1z y x x f f f g yg g x y x x x x y y ?????????'''''''''=--++-+- ? ? ? ???????????

112222

2y x x f g g g x y y

'''''''=-

+-- 3)设函数(),u x y 有连续的偏导数,试用极坐标与直角坐标的转化公式

cos ,sin x r y r θθ==,将u u

x

y y x

??-??变化为,r θ下的表达式 解: 因为

sin cos u u x u y u u u u

r r y x x y x y x y

θθθθθ?????????=+=-+=-+?????????,所以 u u u x

y y x θ

???-=???。 4)已知()(),,,z f x y x y z ?==,其中,f ?均为可微函数,求dz

dx

。 解:利用全微分的不变形计算,方程两边微分可得

,x y y z dz f dx f dy dx dy dz ??=+=+

消去dy 可得

y y y x z y dz f dx f dx f dz ???-=-

y y x

y z y

f f dz dx f ???+=

+ 5)设n 是曲面2

2

2

y z x =+在点()1,2,3P 处指向外侧的法向量,求函数

u =

P 点处沿方向n 的方向导数。 解:设()2

2

,,2

y F x y z x z =+- 2,,1x y z F x F y F ===- 2,2,1x

P

y

P

z

P

F F F ===-,如图容易看出n 与z 正方向的夹角为钝角,其z

轴坐

标为负,所以

{}2212,2,1,

,,333n n n ??=-=-????

1

2

2

2

2222

2

133332u x y z x y z x x x -???++--= ????,1222

2

13362u x y z y y x x

-

??

?++= ????

1222

2

1332

2u x y z z z x

x

-

???++

= ????

,,

P

P

P

u

u u

x y

z

???

==

=

??

?

221333P

u l

?=+-=?6)设(),z z x y =是由方程()2

2

x y z x y z ?+-=++所确定的函数,其中?可导,求dz 。 解:方程两边微分得

()22xdx ydy dz dx dy dz ?'+-=++

2211x y dz dx dy ????

''

--=

+''++ 7)设z

e xyz =,求22z

x

??。

解:方程两边关于x 求导得

11

z

z z z z yz z z e yz xy x x x x e xy xz x z -???=+?===???--- ()()()

22232222211111111z z z z z z x x z x x z z x z -+?-=-+=-?---- 3、在椭球面()0z 0y 0x 122

2222>>>=++,,c

z b y a x 上找一点,使过该点的切平面与三

坐标平面所围成的四面体的体积最小。

解:设()

000z y x ,,为椭球面上在第一象限的一点,过此点的切平面方程为

()()()0222020

020020=-+-+-z z c

z y y b y x x a x 化成截距式方程

12202202200

20202=++=++c z b y a x z c z

y b y x a x 此切平面与坐标面围成四面体的体积为()0

002

61z y x abc V =。(下面我们去掉下标0)

要求()xyz

abc V 2

61=满足条件()0z 0y 0x 1222222>>>=++,,c z b y a x 的最小值,只需求()xyz z ,y ,x f =满足条件()0z 0y 0x 122

2222>>>=++,,c

z b y a x 的最大值。

由拉格朗日乘数法,只需求以下函数的驻点

()???

?

??-+++=1222222c z b y a x λxyz λ,z ,y ,x F

()()()()

?????????????

=++=+==+==+=4130

220

210222

222

2222c z b y a x c z

xy F b y

xz F a x

yz F z y x λλλ

()()()z y x ?+?+?321得023xyz =+λ

由此得3

3

32

2

22

22

c z ,b y ,a x ===,所以c z ,b y ,a x 333333=== 当c z ,b y ,a x 333333===

时,有最小体积,最小体积为abc 2

3。 4、设()()22222221sin 0,00

x y x y x y f x y x y ?

++≠?+=??+=?

1)求

,f f x y

????; 2)

,f f

x y

????是否在原点连续?(),f x y 在原点是否可微?说明理由。 解:1)当2

2

0x y +≠时,

()()()2

2222222211

2sin cos

x x y f x y x x y x y x y +?=+-?+++ ()()()

2

22222222112sin cos y x y f x y y x y x y x y +?=+-?+++ 当2

2

0x y +=时, ()()()20

0,00,01

0,0lim

lim sin 0x x x f x f f x x x ?→?→?-==?=?? ()()()20

00,0,01

0,0lim

lim sin 0y y y f y f f y y y

?→?→?-==?=?? 2)考虑()()()222222002200211lim lim 2sin cos x x y y x x y f x y x x y x y x y →→→→??+???=+-???+++??

当x y =时,2000

2

1lim

lim cos 2x x y f x x x →→→???=-?????不存在,所以f x ??在原点不连续;

同理可得

f

y

??在原点不连续。 又因为

2

22

0,00,01

lim

lim

x x y y z f x f y

x y x y ?→?→?→?→?-?-??+?=?+?

2

2001lim sin 0x y x y ?→?→?==?+?(有界量与无穷小的积还是无穷小),所以(),f x y 在原点可微。

5、已知,,x y z 为常数,且2

3x

e y z ++=,求证:2

1x

e y z ≤

证明:设2

,,x

a e

b y

c z ===,此问题变为求函数(),,f a b c abc =满足条件

3a b c ++=的最大值,其中,,a b c 都大于或等于零。考虑函数

()()

,,3F a b c abc a b c λ=+++-

0003

bc ac ab a b c λλλ+=??+=?

?

+=??++=?解此方程组可得1,3,0a b c a b c ====== 所以所求最大值为1

及有23x e y z ++=时,21x e y z ≤。

方法二、求()

223x x e y e y --在2

3x e y +≤内的最大值。 方法三、利用均值不等式。

(注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待你的好评与关注!)

(完整版)多元函数微分法及其应用期末复习题高等数学下册(上海电机学院)

第八章 偏导数与全微分 一、选择题 1.若u=u(x, y)是可微函数,且,1),(2==x y y x u ,2x x u x y =??=则=??=2x y y u [A ] A. 2 1 - B. 21 C. -1 D. 1 2.函数62622++-+=y x y x z [ D ] A. 在点(-1, 3)处取极大值 B. 在点(-1, 3)处取极小值 C. 在点(3, -1)处取极大值 D. 在点(3, -1)处取极小值 3.二元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ B ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 4. 设u=2 x +22y +32 z +xy+3x-2y-6z 在点O(0, 0, 0)指向点A(1, 1, 1)方向的导数 =??l u [ D ] A. 635 B.635- C.335 D. 3 3 5- 5. 函数xy y x z 333-+= [ B ] A. 在点(0, 0)处取极大值 B. 在点(1, 1)处取极小值 C. 在点(0, 0), (1, 1)处都取极大值 D . 在点(0, 0), (1, 1)处都取极小值 6.二元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点连续的[ A ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 7. 已知)10(0sin <<=--εεx y y , 则dx dy = [ B ] A. y cos 1ε+ B. y cos 11ε- C. y cos 1ε- D. y cos 11 ε+ 8. 函数y x xy z 2050++ = (x>0,y>0)[ D ] A. 在点(2, 5)处取极大值 B. 在点(2, 5)处取极小值 C.在点(5, 2)处取极大值 D. 在点(5, 2)处取极小值 9.二元函数(),f x y 在点()00,x y 处连续的是(),f x y 在点()00,x y 处可微的 [A ] A. 必要而非充分条件 B. 充分而非必要条件

(整理)多元函数微分习题

第五部分 多元函数微分学 [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ??+=+=2 2v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31,31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2 ,91,91(2- 答:A

多元函数微分学习题

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线 ?? ?=+--=+++0 31020 123:z y x z y x L 及平面0 224: =-+-z y x π, 则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(2 2y x y x y x xy y x f 在点 ) 0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ? ?+=+=2 2 v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y -

答:B 4.设),(y x f 是一二元函数,),(0 y x 是其定义域内的 一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(0 y x 连续,则),(y x f 在点),(0 y x 可 导。 (B) 若),(y x f 在点),(0 y x 的两个偏导数都存在,则 ) ,(y x f 在点),(0 y x 连续。 (C) 若),(y x f 在点),(0 y x 的两个偏导数都存在,则 ) ,(y x f 在点),(0 y x 可微。 (D) 若),(y x f 在点),(0 y x 可微,则),(y x f 在点),(0 y x 连续。 答:D 5.函数2 223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是 ( ) (A) )3 2 ,31,31(- (B) )32,31,31(2- (C) )9 2 ,91,91(- (D) )9 2 ,91,91(2- 答:A 6.函数z f x y =(.)在点(,)x y 0 处具有两个偏导数 f x y f x y x y (,),(,) 0000 是函数存在全 微分的( )。 (A).充分条件 (B).充要条件

《多元函数微分学》练习题参考答案

多元微分学 P85-练习1 设)cos(2z y e w x +=,而3x y =,1+=x z ,求 dx dw . 解: dw w w dy w dz dx x y dx z dx ???=+?+???? 2222cos()[sin()(3x x e y z e y z x =++-+? 23232cos((3x e x x x ?? =-+???? P86-练习2 设函数20 sin (,)1xy t F x y dt t = +? ,则22 2 x y F x ==?=? . (2011) 解: 2222222222 sin cos (1)2sin ,1(1)F y xy F y xy x y xy xy y x x y x x y ??+-==??+?+, 故 22 02 4x y F x ==?=? P86-练习3 设)(2 2 y x f z +=,其中f 有二阶导数,求22x z ?? ,22y z ??.(2006) 解:z f x ?'=?; 2223222222).(z x y f f x x y x y ?'''=?+??++ 同理可求 222 222222 () z y x f f y x y x y ?'''=?+??++. P87-练习4 设)(), (x y g y x xy f z +=,其中f 有二阶连续偏导数,g 有二阶导数,求y x z ???2. (2000) 解: 根据复合函数求偏导公式 1221()z y f y f g x y x ?'''=?+?+?-?,

122111122212222211122223323221()111 [()][()]11 z y f y f g y x y y x x x y f y f x f f f z x y x y f xyf f f g g y y x x f g g y y y y x x x ?? ?????'''==????''+?+?- ? ???????? '''''''''''''=''''''' +---++?--++?--?-?-= P87-练习5 设函数(,())z f xy yg x =,其中函数f 具有二阶连续偏导数,函数()g x 可 导且在1x =处取得极值(1)1g =,求 211 x y z x y ==???. (2011) 解:由题意(1)0g '=。因为 12()z yf yg x f x ?'''=+?, 21111222122()()()()z f y xf g x f g x f yg x xf g x f x y ?????''''''''''''=+++++??????, 所以 211 12111 (1,1)(1,1)(1,1)x y z f f f x y ==?'''''=++?? P88-练习6 设),,(xy y x y x f z -+=,其中f 具有二阶连续偏导数,求dz , y x z ???2. (2009) 解: 123123,z z f f yf f f xf x y ??''''''=++=-+?? 123123()()z z dz dx dy f f yf dx f f xf dy x y ??''''''= +=+++-+?? () 1231112132122233313233211132223333(1)(1)(1()())f f yf y z x y f x y f f x y f xyf f f f x f f f x f f f y f f x ?'''=++???'''''''''''''???'''''''''''=+?-+?++?-+'''''' =++-+-+?+++?-+???+

第八章多元函数微分学自测题答案

《高等数学》单元自测题答案 第八章 多元函数微分学 一. 填空题 1.3ln 3xy y ; 2.503-; 3.y x z y ++-; 4.x x e e cos ; 5.dy dx 3 131 +; 二. 选择题 2.D ; 4.D ; 三.解答题 1.解 2 2 222222222211 )221(1y x y x y x x y x x y x x y x x x z +=+++++=++++=??, 22222222221y x x y x y y x y y x x y z +++= +++=??. 2. 解 22222)(11y x y x y x y x z +-=-+=??, 2 22 2111y x x x x y y z +=+=??, 22222222)(2)(2y x xy y x x y x z +=+?--=??, 22222222)(2)(2y x xy y x y x y z +-=+?-=??, 2 22 2 22222222) ()(2)(y x x y y x y y y x x y z y x z +-=+?++-=???=???. 3. 解 设z z y x z y x F 4),,(222-++=,有 2422''-- =--=-=??z x z x F F x z z x . 5. 解 '22'1f x y yf x z -=??, )1(1)1(''22' '212'22''12''11'12f x xf x y f x f x xf y f y x z +--++=???

=''223 ' '11'22'11f x y xyf f x f -+- . 6. 解 令?????=+-==-+=,063, 09632 '2 'y y f x x f y x 得驻点 (1,0), (1,2), (-3,0), (-3,2) 又 66' '+=x f xx , 0''=xy f , 66''+-=y f yy , 在点(1,0)处,0722>=-B AC ,012>=A ,所以5)0,1(-=f 为极小值; 在点(1,2)处,0722<-=-B AC , ,所以)2,1(f 不是极值; 在点(-3,0)处,0722<-=-B AC , 所以)0,3(-f 不是极值; 在点(-3,2)处,0722>=-B AC ,012<-=A ,所以31)2,3(=-f 为极大值. 8. 解 设长,宽,高为 z y x ,,,由题设 xy V z = ,水箱的表面积 )11(2)(2),(y x V xy z y x xy y x S S ++=++==, 问题成为求 ),(y x S 在区域 0,0:>>y x D 的最小值问题.令 ??? ????=-==-=,02,022' 2' y V x S x V y S y x 得D 内唯一驻点3002V y x ==,由问题实际意义知 ),(y x S 在D 内的最小值一定存在,因此可断定),(00y x S 就是最小值,此时 3 33 04 22V V V V z =?=.

多元函数微分学习题

第七章 多元函数微分学 【内容提要】 1.空间解析几何基础知识 三条相互垂直的坐标轴Ox 、Oy 、Oz 组成了一个空间直角坐标系。 空间直角坐标系下两点间的距离公式为: 平面方程:0Ax By Cz D +++= 二次曲面方程: 2220Ax By Cz Dxy Eyz Fzx Gx Hy Iz K +++++++++= 球面方程:()()()2 2 02 02 0R z z y y x x =-+-+- 圆柱面方程:2 22R y x =+ 椭球面方程:()222 2221,,0x y z a b c a b c ++=>, 椭圆抛物面方程:22 22,(,0)x y z a b a b +=> 双曲抛物面方程:22 22,(,0)x y z a b a b -=> 单叶双曲面图方程:122 2222=-+c z b y a x (a ,b ,c >0) 双叶双曲面方程:222 2221,(,,0)x y z a b c a b c +-=-> 椭圆锥面方程:222 2220,(,,0)x y z a b c a b c +-=> 2.多元函数与极限 多元函数的定义:在某一过程中,若对变化范围D 的每一对值(,)x y ,在变域M 中存在z 值,按一定对应法则f 进行对应,有唯一确定的值,则称f 为集合D 上的二元函数, 记为 ,x y 称为自变量,D 称为定义域,z 称为因变量。(,)x y 的对应值记为(,)f x y ,称为函数 值,函数值的集合称为值域。 多元函数的极限:设函数(,)f x y 在开区间(或闭区间)D 内有定义,000(,)P x y 是D 的内点或边界点。如果对于任意给定的正数e ,总存在正数d ,使得对于适合不等式

多元函数微分学练习题

多元函数微分学练习题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第五章(多元函数微分学) 练习题 一、填空题 1. (,)(0,0)sin()lim x y xy y →= . 2. 22 (,)(0,0)1lim ()sin x y x y x y →+=+ . 3. 1 (,)(0,0)lim [1sin()]xy x y xy →+= . 4. 设21sin(), 0,(,)0, 0x y xy xy f x y xy ?≠?=??=? 则(0,1)x f = . 5. 设+1(0,1)y z x x x =>≠,则d z = . 6. 设22ln(1)z x y =++,则(1,2)d z = . 7. 设u =d u = . 8. 若(,)f a a x ?=? ,则x a →= . 9. 设函数u =0(1,1,1)M -处的方向导数的最大值为 . 10. 设函数23u x y z =++,则它在点0(1,1,1)M 处沿方向(2,2,1)l =-的方向导数为 . 11. 设2z xy =,3l i j =+,则21x y z l ==?=? . 12. 曲线cos ,sin ,tan 2 t x t y t z ===在点(0,1,1)处的切线方程是 . 13. 函数z xy =在闭域{(,)0,0,1}D x y x y x y =≥≥+≤上的最大值是 . 14. 曲面23z z e xy -+=在点(1,2,0)处的切平面方程为 . 15. 曲面2:0x z y e -∑-=上点(1,1,2)处的法线方程是 . 16. 曲面22z x y =+与平面240x y z +-=平行的切平面方程是 .

多元函数微分学测试题及答案

第8章 测试题 1、),(y x f z =在点),(00y x 具有偏导数且在),(00y x 处有极值就是 0),(00=y x f x 及0),(00=y x f y 的( )条件. A .充分 B .充分必要 C .必要 D .非充分非必要 2、函数(,)z f x y =的偏导数z x ??及z y ??在点(,)x y 存在且连续就是 (,)f x y 在该点可微分的( )条件. A.充分条件 B.必要条件 C.充分必要条件 D.既非充分也非必要条件 3、 设(,)z f x y =的全微分dz xdx ydy =+,则点(0,0) 就是( ) A 不就是(,)f x y 连续点 B 不就是(,)f x y 的极值点 C 就是(,)f x y 的极大值点 D 就是(,)f x y 的极小值点 4、 函数2 2 2 24422,0 (,)0,0 x y x y x y f x y x y ?+≠?+=??+=?在(0,0)处( C ) A 连续但不可微 B 连续且偏导数存在 C 偏导数存在但不可微 D 既不连续,偏导数又不存在 5 、二元函数22((,) (0,0),(,)0,(,)(0,0) ? +≠?=??=?x y x y f x y x y 在点(0,0)处( A )、 A.可微,偏导数存在 B.可微,偏导数不存在 C.不可微,偏导数存在 D.不可微,偏导数不存在 6、设),(),,(y x v v v x f z ==其中v f ,具有二阶连续偏导数、 则=??2 2y z ( )、 (A)222y v v f y v y v f ?????+??????; (B)22 y v v f ?????; (C)22222)(y v v f y v v f ?????+????; (D)22 22y v v f y v v f ?????+?????、

最新多元函数微分法及其应用习题及答案

第八章 多元函数微分法及其应用 (A) 1.填空题 (1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ???2,x y z ???2 ,则在D 上, x y z y x z ???=???22。 (2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。 (3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。 2.求下列函数的定义域 (1)y x z -=;(2)2 2 arccos y x z u += 3.求下列各极限 (1)x xy y x sin lim 00→→; (2)11lim 0 0-+→→xy xy y x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→ 4.设()xy x z ln =,求y x z ???23及2 3y x z ???。 5.求下列函数的偏导数 (1)x y arctg z =;(2)()xy z ln =;(3)32z xy e u =。 6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数 dt dz 。 7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dt du 。 8.曲线?? ???=+= 4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少? 9.求方程122 2222=++c z b y a x 所确定的函数z 的偏导数。 10.设y x ye z x 2sin 2+=,求所有二阶偏导数。

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ??+=+=2 2v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31,31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2 ,91,91(2- 答:A

多元函数微分学自测题

第九章多元函数微分学自测题 一、 填空题 1.已知22),(y x x y y x f -=+ ,则f(x ,y)= ( )。 2.) sin(11lim 00xy xy y x -+→→=( ). 3.设xy y x z -+=1arctan ,则y x z ???2=( ). 4. 设函数x y z arctan =,则dz =( ). 5.由方程2222=+++z y x xyz 确定的函数z =z (x ,y ),在点(1,0,-1)处的全微分dz =( ). 6.y xe z 2=在点)0,1(1M 处沿从点)0,1(1M 到点)1,2(2-M 的方向的方向导数( ). 7.设z =),(y x f 具有一阶连续偏导数,则梯度grad ),(y x f =( ).; z =),(y x f 沿梯度方向的方向导数为( ). 。 8. 设函数),(y x z z =由函数y z z x ln =确定,则x z ??=( ). 9. 求球面62 22=++z y x 在点(1,2,1)处的切平面方程( ). 10 函数f(x,y)=(6x-x 2)(4y-y 2)的极值点有( ). 二、 单项选择题 1. 设2y z x e u -=,则z u ??=( ) A. 2y z x e --; B.2y z x xe --; C. 22y z x e y x --; D. 22y z x e y x - 2.二元函数),(),(00y x y x f z 在点=可导(偏导数存在)与可微的关系是( ). A. 可导必可微; B. 可导一定不可微 ; C.可微不一定可导; D.可微必可导. 3.函数其它)0,0(),(0),(22≠???=+y x y x f y x xy 在(0,0)处 ( )

(完整版)高等数学(同济版)多元函数微分学练习题册

第八章 多元函数微分法及其应用 第 一 节 作 业 一、填空题: . sin lim .4. )](),([,sin )(,cos )(,),(.3arccos ),,(.21)1ln(.102 2 2 2 322= ===-=+=+++-+-=→→x xy x x f x x x x y x y x f y x z z y x f y x x y x z a y x ψ?ψ?则设的定义域为 函数的定义域为函数 二、选择题(单选): 1. 函数 y x sin sin 1 的所有间断点是: (A) x=y=2n π(n=1,2,3,…); (B) x=y=n π(n=1,2,3,…); (C) x=y=m π(m=0,±1,±2,…); (D) x=n π,y=m π(n=0,±1,±2,…,m=0,±1,±2,…)。 答:( ) 2. 函数?? ???=+≠+++=0,20,(2sin ),(22222 22 2y x y x y x y x y x f 在点(0,0)处: (A )无定义; (B )无极限; (C )有极限但不连续; (D )连续。 答:( ) 三、求.4 2lim 0xy xy a y x +-→→ 四、证明极限2222 20 0)(lim y x y x y x y x -+→→不存在。

第 二 节 作 业 一、填空题: . )1,(,arcsin )1(),(.2. )1,0(,0,0 ),sin(1),(.122 =-+== ?????=≠=x f y x y x y x f f xy x xy y x xy y x f x x 则设则设 二、选择题(单选): . 4 2)(;)(2)(;4ln 2)()(;4ln 2 )(:,22 2 2 2 2 2y x y x y x y y x y D e y x y C y y x B y A z z ++++?+?+??=等于则设 答:( ) 三、试解下列各题: .,arctan .2. ,,tan ln .12y x z x y z y z x z y x z ???=????=求设求设 四、验证.2 2222222 2 2 r z r y r x r z y x r =??+??+??++=满足 第 三 节 作 业 一、填空题: . ,.2. 2.0,1.0,1,2.1= == =?-=?=?===dz e z dz z y x y x x y z x y 则设全微分值 时的全增量当函数 二、选择题(单选): 1. 函数z=f(x,y)在点P 0(x 0,y 0)两偏导数存在是函数在该点全微分存在的: (A )充分条件; (B )充要条件; (C )必要条件; (D )无关条件。 答:( )

多元函数微分学习题课

多元函数微分学习题课 1.已知)(),(22y x y x y x y x f ++-=-+?,且x x f =)0,(,求出),(y x f 的表达式。 2.(1)讨论极限y x xy y x +→→00lim 时,下列算法是否正确?解法1:0111lim 00=+=→→x y y x 原式;解法2:令kx y =,01lim 0=+=→k k x x 原式;解法3:令θcos r x =,θsin r y =,0sin cos cos sin lim 0=+=→θθθθr r 原式。 (2)证明极限 y x xy y x +→→0 0lim 不存在。 3.证明 ?????=≠+=00 )1ln(),(x y x x xy y x f 在其定义域上处处连续。 4. 试确定 α 的范围,使 0|)||(|lim 22)0,0(),(=++→y x y x y x α 。 5. 设 ?? ???=+≠+++=000)sin(||),(22222222y x y x y x y x xy y x f ,讨论 (1)),(y x f 在)0,0(处是否连续? (2)),(y x f 在)0,0(处是否可微? 6. 设F ( x , y )具有连续偏导数, 已知方程0),(=z y z x F ,求dz 。 7. 设),,(z y x f u =有二阶连续偏导数, 且t x z sin 2=,)ln(y x t +=,求x u ??,y x u ???2。 8. 设)(u f z =,方程?+ =x y t d t p u u )()(?确定u 是y x ,的函数,其中)(),(u u f ?可微,)(),(u t p ?'连续,且 1)(≠'u ?,求 y z x p x z y p ??+??)()(。 9. 设22v u x +=,uv y 2=,v u z ln 2=,求y z x z ????,。 10.设),,(z y x f u =有连续的一阶偏导数 , 又函数)(x y y =及)(x z z =分别由下两式确定: 2=-xy e xy ,dt t t e z x x ?-=0sin ,求dx du 。 11. 若可微函数 ),(y x f z = 满足方程 y z x z y x '=',证明:),(y x f 在极坐标系里只是ρ的函数。

多元函数微分学练习题完整版

多元函数微分学练习题 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

第五章(多元函数微分学) 练习题 一、填空题 1. (,)(0,0)sin()lim x y xy y →= . 2. 22 (,)(0,0)1lim ()sin x y x y x y →+=+ . 3. 1(,)(0,0)lim [1sin()]xy x y xy →+= . 4. 设21sin(), 0,(,)0, 0x y xy xy f x y xy ?≠?=??=? 则(0,1)x f = . 5. 设+1(0,1)y z x x x =>≠,则d z = . 6. 设22ln(1)z x y =++,则(1,2)d z = . 7. 设u =d u = . 8. 若(,)f a a x ?=? ,则x a →= . 9. 设函数u =0(1,1,1)M -处的方向导数的最大值为 . 10. 设函数23u x y z =++,则它在点0(1,1,1)M 处沿方向(2,2,1)l =-的方向导数为 . 11. 设2z xy =,3l i j =+,则21x y z l ==?=? .

12. 曲线cos ,sin ,tan 2 t x t y t z ===在点(0,1,1)处的切线方程是 . 13. 函数z xy =在闭域{(,)0,0,1}D x y x y x y =≥≥+≤上的最大值是 . 14. 曲面23z z e xy -+=在点(1,2,0)处的切平面方程为 . 15. 曲面2:0x z y e -∑-=上点(1,1,2)处的法线方程是 . 16. 曲面22z x y =+与平面240x y z +-=平行的切平面方程是 . 17. 曲线2226,2 x y z x y z ?++=?++=?在点(1,2,1)-处切线的方向向量s = . 18. 设2),,(yz e z y x f x =,其中),(y x z z =是由方程z y x e z y x --+=+确定的隐函数,则=)1,1,0(x f . 二、选择题 1. 设0x 是n R ?E 的孤立点,则0x 是E 的 ( ) (A)聚点; (B)内点; (C)外点; (D)边界点. 2. 设0x 是n R ?E 的内点,则0x 是E 的 ( ) (A)孤立点; (B)边界点; (C)聚点; (D)外点. 3. 设22 2, (,)(0,0)(,)0, (,)(0,0)x y x y f x y x y x y ?+≠?=+??=? ,则(0,0)y f =( ) (A) 0 (B) 1 (C) 2 (D) 1-

多元函数微分学测试题及答案

第8章 测试题 1.),(y x f z =在点),(00y x 具有偏导数且在),(00y x 处有极值是 0),(00=y x f x 及0),(00=y x f y 的( )条件. A .充分 B .充分必要 C .必要 D .非充分非必要 2.函数(,)z f x y =的偏导数z x ??及z y ??在点(,)x y 存在且连续是 (,)f x y 在该点可微分的( )条件. A .充分条件 B .必要条件 C .充分必要条件 D .既非充分也非必要条件 3. 设(,)z f x y =的全微分dz xdx ydy =+,则点(0,0) 是( ) A 不是(,)f x y 连续点 B 不是(,)f x y 的极值点 C 是(,)f x y 的极大值点 D 是(,)f x y 的极小值点 4. 函数22 224422,0 (,)0,0 x y x y x y f x y x y ?+≠?+=??+=?在(0,0)处( C ) A 连续但不可 连续且偏导数存在 C 偏导数存在但不可 既不连续,偏导数又不存在 5. 二元函数22((,)(0,0),(,)0,(,)(0,0) ? +≠?=??=?x y x y f x y x y 在点(0,0)处( A ). A .可微,偏导数存在 B .可微,偏导数不存在 C .不可微,偏导数存在 D .不可微,偏导数不存在 6.设),(),,(y x v v v x f z ==其中v f ,具有二阶连续偏导数.

则=??2 2y z ( ). (A)22 2y v v f y v y v f ?????+??????; (B)22y v v f ?????; (C)22222)(y v v f y v v f ?????+????; (D)2222y v v f y v v f ?????+?????. 7.二元函数33)(3y x y x z --+=的极值点是( ). (A) (1,2); (B) ; (C) (-1,2); (D) (-1,-1). 8.已知函数(,)f x y 在点(0,0)的某个邻域内连续,且223(,)(0,0) (,)lim 1()x y f x y xy x y →-=+,则下述四个选项中正确的是( ). A .点(0,0)是(,)f x y 的极大值点 B .点(0,0)是(,)f x y 的极小值点 C .点(0,0)不是(,)f x y 的极值点 D .根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点 10.设函数(,)z z x y =由方程z y z x e -+=所确定,求2z y x ??? 11.设(,)f u v 是二元可微函数,,y x z f x y ??= ??? ,求 z z x y x y ??-?? 12.设222x y z u e ++=,而2sin z x y =,求u x ?? 11.设(,,)z f x y x y xy =+-,其中f 具有二阶连续偏导数,求 2,z dz x y ???.

一元多元函数微分学习题

第八章 多元函数微分法及其应用 一、选择题 1. 极限lim x y x y x y →→+00 242= (提示:令22y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于 12 (D) 存在且不等于0或1 2 2、设函数f x y x y y x xy xy (,)sin sin =+≠=? ????1100 ,则极限lim (,)x y f x y →→0 = ( C ) (提示:有界函数与无穷小的乘积仍为无穷小) (A) 不存在 (B) 等于1 (C) 等于0 (D) 等于2 3、设函数f x y xy x y x y x y (,)=++≠+=??? ? ?22 2222000 ,则(,)f x y ( A ) (提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx = , 20 0(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以, (,)f x y 在整个定义域内处处连续.) (A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续 4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件 (B)充分而非必要条件 (C)充分必要条件 (D)既非充分又非必要条件 5、设u y x =arctan ,则??u x = ( B ) (A) x x y 22 + (B) - +y x y 22 (C) y x y 22 + (D) -+x x y 22 6、设f x y y x (,)arcsin =,则f x '(,)21= ( A ) (A )-1 4 (B ) 14 (C )-12 (D )12 7、设y x z arctan =,v u x +=,v u y -=,则=+v u z z ( C )

多元函数微分学复习题及答案

第5章 多元函数微分法及其应用 复习题及解答 一、选择题 1. 极限lim x y x y x y →→+00 242= (提示:令22y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于 12 (D) 存在且不等于0或 12 2、设函数f x y x y y x xy xy (,)sin sin =+≠=? ????1100 ,则极限lim (,)x y f x y →→0 = ( C ) (提示:有界函数与无穷小的乘积仍为无穷小) (A) 不存在 (B) 等于1 (C) 等于0 (D) 等于2 3、设函数f x y xy x y x y x y (,)=++≠+=??? ? ?22 2222000 ,则(,)f x y ( A ) (提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx = , 20 0(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以, (,)f x y 在整个定义域处处连续.) (A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续 4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件 (B)充分而非必要条件 (C)充分必要条件 (D)既非充分又非必要条件 5、设u y x =arctan ,则??u x = ( B ) (A) x x y 22 + (B) - +y x y 22 (C) y x y 22 + (D) -+x x y 22

多元函数微分学题目+简析

暑期培训(多元函数微分学) 一、多元函数的偏导数 1. f(x,y)可微,f(0,0)=0, m f x =)0,0(/ ,n f y = )0,0(/,)),(,()(t t f t f t =?,求 )0(/?。 知识点:抽象的复合函数求偏导 关键:理清函数结构 答案:2 m mn n ++ 难度:易 2. z=z(x,y)由f(y-x, yz)=0所确定,f 对各变量的二阶偏导函数连续,求x z ??,2 2x z ??。 知识点:抽象的复合函数、隐函数求偏导 关键:理清函数结构 答案://///11122/2 ,(,),(,);f z f f y x yz f f y x yz x yf ?==-=-? ()() () 22//////////2 1 22 2 111212 32/2 2.f f f f f f f z x y f --+?=? 难度:易 3. (,)z f x y z xyz =++,求 ,,.z x y x y z ?????? 知识点:抽象的复合函数求偏导 关键:3个变量,1个方程在一定条件下可确定一个2元函数,该2元函数的因变量可 以是z ,也可以是x 或者.y 答案://////121212////// 121212 1;;.1f yzf f xzf f xyf z x y x f xyf y f yzf z f xzf ++--???==-=?--?+?+ 难度:易 4. z=f(x,y)在(0,1)的某邻域内可微,且 22),(321)1,(y x O y x y x f += +++=+ρρ,一元函数y(x)由f(x,y)=1 所确定,求)0(/ y 知识点:多元函数全微分的定义 关键:找到两个已知条件:“z=f(x,y)在(0,1)的某邻域内可微”与

高等数学:第八章多元函数微分学自测题答案

《高等数学》单元自测题答案 第八章 多元函数微分学 一.填空题 1.3ln 3xy y ; 2.50 3-; 3.y x z y ++-; 4.x x e e cos ; 5.dy dx 3 131 +; 6. 3 ; 7.22; 8.k j i 345++. 二.选择题 1.B ; 2.D ; 3. C ; 4.D ; 5.A ; 6.B ; 7. B ; 8.A . 三.解答题 1. 解 22222222222211)221(1y x y x y x x y x x y x x y x x x z +=+++++=++++=??, 2 2222222221y x x y x y y x y y x x y z +++=+++=??. 2. 解 22222)(11y x y x y x y x z +-=-+=??, 2222111y x x x x y y z +=+=??, 22222222)(2)(2y x xy y x x y x z +=+?--=??, 22222222)(2)(2y x xy y x y x y z +-=+?-=??, 2222 22222222) ()(2)(y x x y y x y y y x x y z y x z +-=+?++-=???=???. 3. 解 设z z y x z y x F 4),,(2 22-++=,有 2422''--=--=-=??z x z x F F x z z x . 4. 证明 r x z y x x x r =++=??22222, 3222211r x r x r r x r x r -=??-=??, 同理 32 2 21r y r y r -==??, 32221r z r z r -=??, 所以 r r r r r z y x r z r y r x r 233323222222222=-=++-=??+??+??.

相关文档
最新文档