苯-氯苯板式精馏塔工艺设计说明书

苯-氯苯板式精馏塔工艺设计说明书
苯-氯苯板式精馏塔工艺设计说明书

苯-氯苯板式精(留塔工艺

设计设计说明书

苯- 氯苯分离过程板式精馏塔设计

一、设计题目

试设计一座苯—氯苯连续精馏塔,要求年产纯度为99.8%的氯苯60000 吨,塔顶馏出液

中含氯苯不高于2%。原料液中含氯苯为38%(以上均为质量%)。

二、操作条件

1.塔顶压强4kPa(表压);

2.进料热状况,泡点进料;

3.回流比,2R min;

4.塔釜加热蒸汽压力0.5MPa(表压);

5.单板压降不大于0.7kPa ;

6.年工作日300天,每天24 小时连续运行。

三、设计内容

1.设计方案的确定及工艺流程的说明;

2.塔的工艺计算;

3.塔和塔板主要工艺结构的设计计算;

4.塔内流体力学性能的设计计算;

5.塔板负荷性能图的绘制;

6.塔的工艺计算结果汇总一览表;

7.生产工艺流程图及精馏塔工艺条件图的绘制;

8.对本设计的评述或对有关问题的分析与讨论。

四、基础数据

1. 组分的饱和蒸汽压p i(mmH)g

2. 组分的液相密度ρ(kg/m3)

苯ρA 912 1.187t 推荐:ρA 912.13 1.1886t 氯苯ρB 1127 1.111t 推荐:ρB 1124.4 1.0657t

式中的 t 为温度,℃。

3. 组分的表面张力 σ( mN/m )

温度,(℃)

80 85 110 115 120 131 σ

21.2 20.6 17.3 16.8 16.3 15.3 氯苯

26.1

25.7

22.7

22.2

21.6

20.4

双组分混合液体的表面张力 σm 可按下式计算:

4. 氯苯的汽化潜热

常压沸点下的汽化潜热为 35.3 × 103

kJ/kmol 。纯组分的汽化潜热与温度的关系可用下 式表示:

5. 其他物性数据可查化工原理附录。

σA σB

m

σx σx

x A 、 x B 为 A 、B 组分的摩尔分率)

0.38

t

c

t

2

0.38

t

c

t

1

氯苯的临界温度:

t c 359.2 C )

目录

一、前言 (1)

二、产品与设计方案简介 (2)

(一)产品性质、质量指标 (2)

(二)设计方案简介 (3)

(三)工艺流程及说明 (3)

三、工艺计算及主体设备设计 (4)

(一)全塔的物料衡算 (4)

1)料液及塔顶底产品含苯的摩尔分率 (4)

2)平均摩尔质量 (5)

3)料液及塔顶底产品的摩尔流率 (5)

(二)塔板数的确定 (5)

1)理论塔板数的求取 (5)

2)实际塔板数 (7)

(三)塔的精馏段操作工艺条件及相关物性数据的计算 (8)

1)平均压强 (8)

2)平均温度 (8)

3)平均分子量 (8)

4)平均密度 (8)

5)液体的平均表面张力 (9)

6)液体的平均粘度 (9)

(四)精馏段的汽液负荷计算 (9)

(五)塔和塔板主要工艺结构尺寸的计算 (10)

1)塔径 (10)

2)塔板工艺结构尺寸的设计与计算 (10)

(六)塔板上的流体力学验算 (12)

1)气体通过筛板压降和的验算 (12)

2)雾沫夹带量的验算 (14)

3)漏液的验算 (14)

4)液泛的验算 (14)

(七)塔板负荷性能图 (15)

1)雾沫夹带线(1) (15)

2)液泛线(2) (16)

3)液相负荷上限线(3) (16)

4)漏液线(气相负荷下限线)(4) (16)

5)液相负荷下限线(5) (17)

(八)精馏塔的设计计算结果汇总一览表 (19)

(九)精馏塔的附属设备与接管尺寸的计算 (20)

(十)主要符号说明 (21)

四、对设计过程的评述和感受 (22)

苯- 氯苯分离过程板式精馏塔设计计算书一、前言

课程设计是本课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是使学生体察工程实际问题复杂性、学习化工设计基本知识的初次尝试。通过课程设计,要求学生能综合利用本课程和前修课程的基本知识,进行融会贯通的独立思考,在规定的时间内完成指定的化工设计任务,从而得到化工工程设计的初步训练。通过课程设计,要求学生了解工程设计的基本内容,掌握化工设计的程序和方法,培养学生分析和解决工程实际问题的能力。同时,通过课程设计,还可以使学生树立正确的设计思想,培养实事求是、严肃认真、高度责任感的工作作风。课程设计是增强工程观念,培养提高学生独立工作能力的有益实践。

本设计采用连续精馏分离苯- 氯苯二元混合物的方法。连续精馏塔在常压下操作,被分离的苯- 氯苯二元混合物由连续精馏塔中部进入塔内,以一定得回流比由连续精馏塔的塔顶采出含量合格的苯,由塔底采出氯苯。氯苯纯度不低于99.8%,塔顶产品苯纯度不低于98%(质量分数)。

高径比很大的设备称为塔器。塔设备是化工、炼油生产中最重要的设备之一。它可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及传热的目的。常见的、可在塔设备中完成的单元操作有:精馏、吸收、解吸和萃取等。此外,工业气体的冷却与回收,气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿、减湿等。

在化工或炼油厂中,塔设备的性能对于整个装置的产品产量质量生产能力和消耗定额,以及三废处理和环境保护等各个方面都有重大的影响。据有关资料报道,塔设备的投资费用占整个工艺设备投资费用的较大比例。因此,塔设备的设计和研究,受到化工炼油等行业的极大重视。

作为主要用于传质过程的塔设备,首先必须使气(汽)液两相充分接触,以获得较高的传质效率。此外,为了满足工业生产的需要,塔设备还得考虑下列各项传质效率。此外,为了满足工业生产的需要,塔设备还得考虑下列各项要求:

(1)生产能力大.在较大的气(汽)液流速下,仍不致发生大量的雾沫夹带、拦液或液泛等破坏正常操作的现象。

(2)操作稳定、弹性大。当塔设备的气(汽)液负荷量有较大的波动时,仍能在较高的传质效率下进行稳定的操作。并且塔设备应保证能长期连续操作。

(3)流体流动的阻力小。即流体通过塔设备的压力降小。这将大大节省生产中的动力消耗,以及降低经常操作费用。对于减压蒸馏操作,较大的压力降还使系统无法维持必要的真空度。

(4)结构简单、材料耗用量小、制造和安装容易。这可以减少基建过程中的投资费用。

(5)耐腐蚀和不易堵塞,方便操作、调节和检修。事实上,对于现有的任何一种塔型,都不可能完全满足上述所有要求,仅是在某些方面具有独到之处.

根据设计任务书,此设计的塔型为筛板塔。筛板塔是很早出现的一种板式塔。五十年代起对筛板塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。与泡罩塔相比,筛板塔具有下列优点:生产能力大20-40%,塔板效率高10-15%,压力降低30-50%,而且结构简单,塔盘造价减少40%左右,安装、维修都较容易。从而一反长期的冷落状况,获得了广泛应用。近年来对筛板塔盘的研究还在发展,出现了大孔径筛板(孔径可达20-25mm),导向筛板等多种形式。

筛板塔盘上分为筛孔区、无孔区、溢流堰及降液管等几部分.工业塔常用的筛孔孔径为3-8mm,按正三角形排列.空间距与孔径的比为2.5 -5.近年来有大孔径(10-25mm)筛板的,它具有制造容易,不易堵塞等优点,只是漏夜点低,操作弹性小。

筛板塔的特点如下:

(1)结构简单、制造维修方便。

(2)生产能力大,比浮阀塔还高。

(3)塔板压力降较低,适宜于真空蒸馏。

(4)塔板效率较高,但比浮阀塔稍低。

(5)合理设计的筛板塔可是具有较高的操作弹性,仅稍低与泡罩塔。

(6)小孔径筛板易堵塞,故不宜处理脏的、粘性大的和带有固体粒子的料液。

二、产品与设计方案简介

(一)产品性质、质量指标

产品性质:有杏仁味的无色透明、易挥发液体。密度1.105g/cm3。沸点

131.6℃。凝固点-45 ℃。折射率1.5216(25℃)。闪点29.4℃。燃点

637.8℃,折射率1.5246,粘度(20 ℃)0 .799mPa·s,表面张力33.28×10-3N/m.溶解度参数δ=9.5。溶于乙醇、乙醚、氯仿、苯等大多数有机溶剂,不溶于水。易燃,蒸气与空气形成爆炸性混合物,爆炸极限1. 3 %-7 .1%(vol)。溶于大多数有机溶剂,不溶于水。常温下不受空气、潮气及光的影响,长时间沸腾则脱氯。蒸气经过红热管子脱去氢和氯化氢,生成二苯基化合物。有毒.在体内有积累性,逐渐损害肝、肾和其他器官。对皮肤和粘膜有刺激性.对神经系统有麻醉性,LD502910mg/kg,空气中最高容许浓度50mg/m3。遇高温、明火、氧化剂有

燃烧爆炸的危险

质量指标:氯苯纯度不低于99.8%,塔顶产品苯纯度不低于98%,原料液中苯38%。(以上均为质量分数)

(二)设计方案简介

1.精馏方式:本设计采用连续精馏方式。原料液连续加入精馏塔中,

并连续收集产物和排出残液。其优点是集成度高,可控性好,产品质量稳定。由于所涉浓度范围内乙醇和水的挥发度相差较大,因而无须采用特殊精馏。

2.操作压力:本设计选择常压,常压操作对设备要求低,操作费用低,适用于苯和氯苯这类非热敏沸点在常温(工业低温段)物系分离。

3.塔板形式:根据生产要求,选择结构简单,易于加工,造价低廉的筛板塔,筛板塔处理能力大,塔板效率高,压降教低,在苯和氯苯这种黏度不大的分离工艺中有很好表现。

4.加料方式和加料热状态:设计采用泡点进料,将原料通过预热器加热至泡点后送入精馏塔内。

5.由于蒸汽质量不易保证,采用间接蒸汽加热。

6.再沸器,冷凝器等附属设备的安排:塔底设置再沸器,塔顶蒸汽完全冷凝后再冷却至泡点下一部分回流入塔,其余部分经产品冷却器冷却后送至储灌。塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。

(三)工艺流程及说明

首先,苯和氯苯的原料混合物进入原料罐,在里面停留一定的时间之后,

通过泵进入原料预热器, 在原料预热器中加热到泡点温度, 然后, 原料从进料口 进入到精馏塔中。 因为被加热到泡点, 混合物中既有气相混合物, 又有液相混合 物,这时候原料混合物就分开了, 气相混合物在精馏塔中上升, 而液相混合物在 精馏塔中下降。 气相混合物上升到塔顶上方的冷凝器中, 这些气相混合物被降温 到泡点,其中的液态部分进入到塔顶产品冷却器中, 停留一定的时间然后进入苯 的储罐,而其中的气态部分重新回到精馏塔中, 这个过程就叫做回流。 液相混合 物就从塔底一部分进入到塔底产品冷却器中, 一部分进入再沸器, 在再沸器中被 加热到泡点温度重新回到精馏塔。 塔里的混合物不断重复前面所说的过程, 而进 料口不断有新鲜原料的加入。最终,完成苯与氯苯的分离。

三、工艺计算及主体设备设计

一)全塔的物料衡算

1)料液及塔顶底产品含苯的摩尔分率

苯和氯苯的相对摩尔质量分别为 78.11 和 112.61kg/kmol

62/ 78.11

62/ 78.11 38 /

99.8%

氯苯 储存

98%苯储存

x

F

0.702

冷却

98/ 78.11

x D

98/ 78.11 2 /112. 61

0.986

112.61

2)平均摩尔质量

M F 78.11 0.702 1 0.702 112.61 88.39 kg/kmol M D 78.11 0.986 1 0.986 112.61 78.59 kg/kmol M W 78.11 0.00288 1 0.00288 112.61 112.5kg/kmol 3)料液及塔顶底产品的摩尔流率

依题给条件:一年以 300天,一天以 24小时计,有: W 60000t/a 8333.3kg/h , 全塔物料衡算:

F D W

0.38F 0.02D 0.998W

F 22638.88 /88.39 256.12kmol/h D 1430.55 / 78.59 182.03kmol/h W 8333.33/11 2.5 74.07kmol/ h

苯-氯苯物系属于理想物系,可采用梯级图解法( M ·T 法)求取 N T ,步骤如下:

1.

根据苯-氯苯的相平衡数

据,利用泡点方程和露点方程求取

x~ y

依据 x p t p B / p A p B , y p A x/ p t ,将所得计算结果列表如下:

因为操作压力偏离常压很小,所以其对 x ~ y 平衡关系的影响完全可以忽略。

2. 确定操作的回流比 R

将 1.表中数据作图得 x~y 曲线及 t x ~ y 曲线。在 x~ y 图上,因 q 1,查得

y e 0.935 ,而 x e x F 0.702 , x D 0.986 。故有:

x

W

0.2 / 78.11

0.2 /78.11 99.8/112.61

0.00288

F 22638.88kg/h D 14305.55kg/h W 8333.33kg/h

(二)塔板数的确定

1)理论塔板数 N T 的求

R m

x D y e 0.986 0.935 0.219

y e x e 0.935 0.702

考虑到精馏段操作线离平衡线较近,故取实际操作的回流比为最小回流比的2 倍,即:R 2R m 2 0.219 0.438

3.求理论塔板数

精馏段操作线:y R x x D0.30x 0.69 R 1 R 1

提馏段操作线为过0.00288,0.00288 和0.702,0.901 两点的直线。

苯- 氯苯物系精馏分离理论塔板数的图解

70

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

苯-氯苯物系的温度组成图

图解得N T 12.5 1 11.5块(不含釜)。其中,精馏段N T1 4块,提馏段N T2 7.5块,

第5 块为加料板位置。

2)实际塔板数N p

1. 全塔效率E T

选用E T 0.17 0. 616 log μm公式计算。该式适用于液相粘度为0.07~1.4mPa · s 的

烃类物系,式中的μm 为全塔平均温度下以进料组成表示的平均粘度。

塔的平均温度为0.5(80+131.8)=106 ℃(取塔顶底的算术平均值),在此平均温度

下查

化工原理附录11 得:μA 0.24mPa s,μB 0.34mPa s 。

m A x F B 1 x F 0.24 0.702 0.34 1 0.702 0.270

E T 0.17 0.616 log m 0.17 0.616 log 0.270 0.52

2.实际塔板数N p (近似取两段效率相同)

精馏段:N p1 4/0.52 7.7块,取N p1 8 块

提馏段:N p2 7/0.52 13.5 块,取N p2 14块

总塔板数N p N p1 N p2 22 块。

(三)塔的精馏段操作工艺条件及相关物性数据的计算

1)平均压强 p m

取每层塔板压降为 0.7kPa 计算。 塔顶: p D 101.3 4 105.3kPa 加料板:

p F 105.3 0.7 8 110.9kPa

平均压强 p m 105.3 110.9 / 2 108.1kPa

2)平均温度 t m 查温度组成图得:塔顶为 80℃,加料板为 89℃。

t m 80 89 / 2 84.5 ℃

3)平均分子量 M m

塔顶:

y 1 x D 0.986 , x 1 0.940 (查相平衡图)

M VD,m 0.986 78.11 1 0.986 112.61 78.59kg/kmol M LD ,m 0.940 78.11 1 0.940 112.61 80.18kg/kmol

加料板:

y F 0.935, x F 0.702 (查相平衡图)

M VF ,m 0.935 78.11 1 0.935 112.61 80.35kg/kmol M LD ,m 0.702 78.11 1 0.702 112.61 88.39kg/kmol

精馏段:

M V,m 78.59 80.35 79.47 kg/kmol M L,m 80.18 88.39 / 2 84.29kg/kmol

4)平均密度 ρm

1. 液相平均密度 ρL,m

塔顶: 3 ρLD ,A

912.13 1.1886t912.13 1.1886

80 817.0kg/m 3

3

ρLD ,B 1124.4 1.0657t 1124.4 1.0657 80 1039.1kg/m 3

1 a A a B

0.98 0.02 3

A B

ρLD ,m 820.5kg/m 3

ρLD,m ρLD ,A ρLD ,B 817.0 1039.1 LD ,m

进料板:

LF ,A 912.13 1.1886t 912.13 1.1886 89 806.34kg/m

3

LF ,B

1124.4 1.0657t 1124.4 1.0657 89 1029.55kg/m 3

1

a A a B 0.62 0.38 3

LF ,m

878.7kg/m

806.34 1029.55 精馏段:

L,m 820.5 878.7 / 2 849.6kg/m 3

2. 汽相平均密度 ρV,m

5)液体的平均表面张力 σm

塔顶: σD ,A 21.08mN/m ; σD ,B 26.02mN/m ( 80℃)

进料板: F ,A 20.21mN/m ; F,B 25.26mN/m ( 89℃)

精馏段: m 21.14 21.49 / 2 21.32mN/m

塔顶:查化工原理附录 11,在 80℃下有:

μLD,m μA x A D μB x B D 0.315 0.986 0.445 0.014 0.317 mPa s

加料板: LF ,m 0.28 0.702 0.41 0.298 0.390mPa s 精馏段: L,m 0.317 0.319 / 2 0.318mPa s

四)精馏段的汽液负荷计算

汽相摩尔流率 V R 1 D 1.438 182.03 261.76kmol/h

汽相体积流量

V

VM V ,m 261.76 79.47 3

s

1.999m

/s

汽相体积流量 V

h 1.999m 3

/s 7196.4m 3

/h

液相回流摩尔流率 L RD 0.438 182.03 79.73kmol/h

p

m M V,m

108.1 79.47 8.314 273 84.5 2.890kg/m 3

D ,m σA σ

B

σA x

B σ

B x

A D

21.08 26.02

21.08 0.014 26.02 0.986

21.14mN/m

F ,m

A x

B

20.21 25.26 20.21 0.298 25.26

21.49mN/m

6)液体的平均粘度

B x

A F

LM

L ,m

79.73 84.29 3

液相体积流量 L s 0.00220m 3 /s s

3600 L,m 3600 849.6

液相体积流量 L h 0.00220 m /s 7.920m /h

冷凝器的热负荷 Q Vr 261.76 78.59 310 / 3600 1771.45kW

(五)塔和塔板主要工艺结构尺寸的计算

1)塔径

1. 初选塔板间距 H T 550mm 及板上液层高度 h L 70mm ,则:

H T h L 0.55 0.07 0.48m

2.按 Smith 法求取允许的空塔气速 u max (即泛点气速 u F )

查 Smith 通用关联图得 C 20 0.0925

0 .2

21.32

0.2

负荷因子 C C 20

0.0925 0.0937

20

20 20

泛点气速:

u max C L V / V 0.0937 849.6 2.890 / 2.890 1.604m/s

3. 操作气速

取 u 0.7u max 1.12m/s

4. 精馏段的塔径

D 4V s / u 4 1.999/ 3.14 1.12 1.508m

圆整取 D 1600mm ,此时的操作气速 u 0.995m/s 。

2)塔板工艺结构尺寸的设计与计算

1. 溢流装置

采用单溢流型的平顶弓形溢流堰、弓形降液管、平形受液盘,且不设进口内堰。

○1 溢流堰长(出口堰长) l w

取 l w 0.7D 0.7 1.6 1.12m

堰上溢流强度 L h /l w 7.920 /1.12 7.701m 3

/ m h 100 ~ 130m 3

/ m h ,满足 筛板塔的堰上溢流强度要求。

V s V

0 .5

0.00220 849.6 0.5

1.999

2.890 0.01887

○2 出口堰高 h w

h w h L h ow

2/3

对平直堰 h ow 0.00284E L h / l w 2/3

由 l w /D 0.7 及 L h /l w

2.5

7.920/1.122.5

5.966 ,查化工原理 P 111 图 5-5 得 E 1.

01 ,于是:

2/3

h ow 0.00284 1.01 7.920/1.12 2/3

0.0106m 0.006m (满足要求)

h w h L h ow 0.07 0. 0106 0. 0594m

○3 降液管的宽度 W d 和降液管的面积 A f

由l w /D 0.7 ,查化原下 P 112图5-7 得W d /D 0.14,A f /A T 0.09 ,即:

2 2 2

W d 0.224m , A T 0.785D 2

2.01m 2

, A f 0.181m 2

液体在降液管内的停留时间

A f H T /L s 0.181 0.55/0.00220 45.25s 5s (满足要求)

○4 降液管的底隙高度 h o

液体通过降液管底隙的流速一般为 0.07~0.25m/s ,取液体通过降液管底隙的流速

u o 0.08m/s ,则有:

L s

0.00220

h o s

0.0246m ( h o 不宜小于 0.02~0.025m ,本结果满足要

求)

l w u o 1.12 0.08

2. 塔板布置

○1 边缘区宽度 W c 与安定区宽度 W s

边缘区宽度 W c :一般为 50~75mm ,D >2m 时, W c 可达 100mm 。 安定区宽度 W s :规定 D 1.5m 时W s 75mm ; D 1.5 m 时W s 100 mm ;

本设计取W c 60mm,W s 100 mm。

○2 开孔区面积 A a

A a 2 x R 2

x 2

π

R 2

sin

1 x

a

180 R

2 2

π 2

1

0.476

2 0.476 0.742

0.4762

0.742

sin 1

180 0.740

2

1. 304m 2

式中: x D / 2 W d W s 0.8 0.224 0.100 0.476m

R D / 2 W c 0.8 0.060 0.740m

3. 开孔数 n 和开孔率 φ

式中孔流系数 C o 由d o /δ 5/3 1.67查 P115图5-10 得出,

取筛孔的孔径 d o 5mm ,正三角形排列,筛板采用碳钢,其厚度

δ 3mm , 且取

t/ d o 3.0 。故孔心距 t 3 5 15mm 。

每层塔板的开孔数

1158 103

Aa

t 2

3

1158 10

3

152

1.304 6711(孔)

每层塔板的开孔率

φ 0.907

2 0.9207

0.101( φ应在 5~15%, t/ d o 2

32

故满足要求)

每层塔板的开孔面积 A o φA a 0.101 1.304 0.132m 2

气体通过筛孔的孔速 u o V s / A o 1.999/ 0.132 15.14m/s

4. 精馏段的塔高 Z 1

Z 1 N p1 1 H T 8 1 0.55 3.85m

(六)塔板上的流体力学验算

1)气体通过筛板压降 h p 和 Δp p 的

验算

h p h c h l h σ 1. 气体通过干板的压降 h

c

h c 0.051

u

o C

o

0.051

2

15.14 2

2.890 0.0621m

0.8 。

C o

相关主题
相关文档
最新文档