驻波比、反射损耗、传输损耗、反射系数、功率传输、功率反射之间.

驻波比、反射损耗、传输损耗、反射系数、功率传输、功率反射之间.
驻波比、反射损耗、传输损耗、反射系数、功率传输、功率反射之间.

驻波比、反射损耗、传输损耗、反射系数、功率传输、功率反射之间的换算(1

电压

驻波

比VSWR 回波

损耗

Return

Loss

(dB

传输

损耗

Tran.

Loss

(dB

电压反

射系数

Volt.

REFL.

COEFF.

功率

传输

Power

Trans.

%

功率

反射

Power

REFL.

%

电压

驻波

VSWR

回波

损耗

Return

Loss

(dB

传输

损耗

Tran.

Loss

(dB

电压反

射系数

Volt.

REFL.

COEFF.

功率

传输

Power

Trans.

%

功率

反射

Power

REFL.

%

1.0 ∞.000 .00 100.0 .0 1.64 1

2.3 .263 .24 94.1 5.9 1.01 46.1 .000 .00 100.0 .0 1.66 12.1 .276 .25 9

3.8 6.2 1.02 40.1 .000 .01 100.0 .0 1.68 11.9 .289 .25 93.6 6.4 1.03 36.6 .001 .01 100.0 .0 1.70 11.7 .302 .26 93.3 6.7 1.04 3

4.2 .002 .02 100.0 .0 1.72 11.5 .315 .26 93.0 7.0 1.05 32.3 .003 .02 99.9 .1 1.74 11.4 .329 .27 92.7 7.3 1.06 30.7 .004 .03 99.9 .1 1.76 11.2 .342 .28 92.4 7.6 1.07 29.4 .005 .03 99.9 .1 1.78 11.0 .356 .28 92.1 7.9 1.08 28.3 .006 .04 99.9 .1 1.80 10.9 .370 .29 91.8 8.2 1.09 27.3 .008 .04 99.8 .2 1.82 10.7 .384 .29 91.5 8.5

1.10 26.4 .010 .05 99.8 .2 1.84 10.6 .398 .30 91.3 8.7 1.11 25.7 .012 .05 99.7 .3 1.86 10.4 .412 .30 91.0 9.0 1.12 24.9 .014 .06 99.7 .3 1.88 10.3 .426 .31 90.7 9.3 1.13 24.3 .016 .06 99.6 .4 1.90 10.2 .440. .31 90.4 9.6 1.14 23.7 .019 .07 99.6 .4 1.92 10.0 .454 .32 90.1 8.9 1.15 23.1 .021 .07 99.5 .5 1.94 9.9 .468 .32 89.8 10.2 1.16 2

2.6 .024 .07 99.5 .5 1.96 9.8 .483 .32 89.5 10.5 1.17 22.1 .027 .08 99.4 .6 1.98 9.7 .497 .33 89.2 10.8 1.18 21.7 .030 .08 99.3 .7 2.00 9.5 .512 .33 88.9 11.1 1.19 21.2 .033 .09 99.2 .8 2.50 9.4 .881 .43 81.6 18.4 1.20 20.8 .036 .09 99.2 .8

3.00 6.0 1.249 .50 75.0 25.0 1.21 20.4 .039 .10 99.1 .9 3.50 5.1 1.603 .56 69.1 30.9 1.22 20.1 .043 .10 99.0 1.0

4.00 4.4 1.938 .60 64.0 36.0 1.23 19.7 .046 .10 98.9 1.1 4.50 3.9 2.255 .64 59.5 40.5

1.24 19.4 .050 .11 98.9 1.1 5.00 3.5

2.553 .67 55.6 44.4 1.25 19.1 .054 .11 98.8 1.2 5.50

3.2 2.834 .69 52.1 47.9 1.26 18.8 .058 .12 98.7 1.3 6.00 2.9 3.100 .71 49.0 51.0 1.27 18.5 .062 .12 98.6 1.4 6.50 2.7 3.351 .73 46.2 53.8 1.28 18.2 .066 .12 98.5 1.5 7.00 2.5 3.590 .75 43.7 56.2 1.29 17.9 .070 .13 98.4 1.6 7.50 2.3 3.817 .76 41.5 58.5 1.30 17.7 .075 .13 98.3 1.7 8.00 2.2

4.033 .78 39.5 60.5

电缆损耗计算公式

电缆损耗计算公式 如果从材料上计算,那需要的数据比较多,那不好算,而且理论与实际差别较大。嗯,是比较正常的。常规电缆是5-8%的损耗。一般常用计算损耗的方法,就是通过几个电表的示数加减计算的。因为理论与实际的误差是比较大的,线路老化,会造成线路电阻变大,损耗增大。7%的损耗,是正常的。还需要你再给出一些数据…如电阻率等… 185的铜线,长度200米,电 缆损耗是多少。 电缆线路损耗计算一条500米长的240铜电缆线路损耗怎么计。 首先要知道电阻: 截面1平方毫米长度1米的铜芯线在20摄氏度时电阻为0.018 欧,R=P*L/S(P电阻系数.L长度米.S截面平方毫米) 240平方毫米铜线、长度500米、电阻:0.0375欧姆假定电流100安培,导线两端的电压:稀有金属3.75伏。耗功率:37.5瓦。 急求电缆线电损耗的计算公式? 线路电能损耗计算方法A1 线路电能损耗计算的基本方法是均方根电流法,其代表日的损耗 电量计算为:ΔA=3 Rt×10-3 (kW·h) (Al-1)Ijf = (A) (Al-2)式中ΔA——代表日损耗电量,kW·h;t——运行时间(对于代表日t=24),h;Ijf——均方根电流,A;R——线路电 阻,n;It——各正点时通过元件的负荷电流,A。当负荷曲线以三相有功功率、无功功率表示时:Ijf= = (A) (Al-3)式中Pt ——t时刻通过元件的三相有功功率,kW;Qt——t时刻通过 元件的三相无功功率,kvar;Ut——t时刻同端电压,kV。A2 当具备平均电流的资料时,可以利用均方根电流与平均电流的等效关系进行电能损耗计算,令均方根电流Ijf与平均电流 Ipj(代表日负荷电流平均值)的等效关系。 3*150+1*70电缆300米线路损耗如何计算 300*0.01=3米也就是说300米的主材消耗量是3米.如果工作量是300米的工程,那么造价时的主材应申请303米.但如果是300米的距离敷设电缆时,需考虑波形弯度,弛度和交叉的附加长度,那么就应该是(水平长度+垂直长度)*1.025+预留长度,算完得数后再乘以1.01就是主材的最后消耗量。 一般电缆的损耗怎样计算 理论上只能取个适当的系数,如金属1.01~1.02,非金属1.04~1.05。要确切的得称重收集数据并总结归纳可得。 电缆线用电损耗如何计算?如现用YJV22-3*150+1*70 电缆线。 电缆电阻的计算: 1、铜导线的电阻率为:0.0175hexun1 Ω·m, 根据公式:R=P*L/S(P电阻系数.L长度米.S截面平方毫米),电缆的电阻为:R=0.0175*260/70=0.065Ω; 2、根据用公式P=I2R计算功率损耗。

变压器行业kVSSS系列变压器损耗参数对照表

变压器行业10kV级S9、S11、S13系列变压器损耗参数对照表 S13-M型全密封电力变压器主要技术参数

负载损耗:即可变损失。与通过的电流的平方成正比。负载损耗是额定电流下与参考温度下的负载损耗。展开些说,所谓额定电流是指一次侧分接位置必须是主分接,不能是其它分接的额定电流。对参考温度而言,要看变压器的绝缘材料的耐热等级。对油浸式变压器而言,不论是自冷、风冷或强油风冷,都有是A级绝缘材料,其参考温度是根据传统概念加以规定的,都是75℃。 1 变压器损耗大致为两项:铁损和线损。其中铁损主要为变压器铁芯在工作时的磁滞损耗所造成的,其大小与电压相关较大,变压器空载还是带负载对于铁损影响不大; 2 负载电流流过变压器线圈,由于线圈本身的电阻,将有一部分功率损耗在线圈中,这部分损耗为“线损”,电流越大,损耗越大,所以负荷越大,线损也越大; 3 空载时,只有励磁电流流过变压器,所以线损很小; 4 上述“铁损”和“线损”之和就是变压器的大部分损耗,负载时的线损与铁损之和就是变压器的负载损耗,而空载损耗意义也是如此。 相关知识:1)推广使用低损耗变压器 (1)铁芯损耗的控制 变压器损耗中的空载损耗,即铁损,主要发生在变压器铁芯叠片内,主要是因交变的磁力线通过铁芯产生磁滞及涡流而带来的损耗。 最早用于变压器铁芯的材料是易于磁化和退磁的软熟铁,为了克服磁回路中由周期性磁化所产生的磁阻损失和铁芯由于受交变磁通切割而产生的涡流,变压器铁芯是由铁线束制成,而不是由整块铁构成。 1900年左右,经研究发现在铁中加入少量的硅或铝可大大降低磁路损耗,增大导磁率,且使电阻率增大,涡流损耗降低。经多次改进,用0.35mm厚的硅钢片来代替铁线制作变压器铁芯。 1903来世界各国都在积极研究生产节能材料,变压器的铁芯材料已发展到现在最新的节能材料——非晶态磁性材料如2605S2,非晶合金铁芯变压器便应运而生。使用2605S2制作的变压器,其铁损仅为硅钢变压器的1/5,铁损大幅度降低。 (2)变压器系列的节能效果 上述非晶合金铁芯变压器,具有低噪音、低损耗等特点,其空载损耗仅为常规产品的1/5,且全密封免维护,运行费用极低。 我国S7系列变压器是1980年后推出的变压器,其效率较SJ、SJL、SL、SL1系列的变压器高,其负载损耗也较高。 80年代中期又设计生产出S9系列变压器,其价格较S7系列平均高出20%,空载损耗较S7系列平均降低8%,负载损耗平均降低24%,并且国家已明令在1998年底前淘汰S7、SL7系列,推广应用S9系列。 S11是推广应用的低损耗变压器。S11型变压器卷铁心改变了传统的叠片式铁心结构。硅钢片连续卷制,铁心无接缝,大大减少了磁阻,空载电流减少了60~80,提高了功率因数,降低了电网线损,改善了电网的供电品质。连续卷绕充分利用了硅钢片的取向性,空载损耗降低20~35。运行时的噪音水平降低到30~45dB,保护了环境。 非晶合金铁心的S11系列配电变压器系列的空载损耗较S9系列降低75%左右,但其价格仅比S9系列平均高出30%,其负载损耗与S9系列变压器相等。

华测网络RTK操作方法

140860GPRS作业模式的操作 采用GPRS 作业模式作业时要注意提供开通GPRS net 流量的手机卡,可以采用包月的方式,此项各地区不同,可与当地移动服务商联系确认,一般两小时的GPRS 流量为一兆,可根据每月的作业时间计算总流量,包月套餐。 1.1 基准站架设 1.1.1 架设要求 基准站应当选择视野开阔的地方,这样有利于卫星信号的接收,并确定此处有无手机网络信号。基准站架设高度应避免过低,防止人为干扰。基准站应尽量整平(基准站架设在已知点时还要求对中精平)。 1.1.2 架设图示 将开通了GPRS 的SIM 卡插入接收机内,基准站数据可通过网络发送。 1.2 基准站的操作 1.2.1 工作模式的设置 采用GPRS 模式作业建议采用自启动的方式,方便作业。打开测地通,点击【配置】→【手簿端口配置】,连接类型选择‘蓝牙’,点击配置,搜索蓝牙,绑定主机,点击确定,退出测地通。打开HCGpsSet,选中‘用蓝牙’,打开端口,华测的基准站接收机出厂默认设置如图3-2 所示。 手簿上的HCGpsSet,连上后数据设置为:“正常模式、自启动基准站、 Port2+GPRS/CDMA、CMR“,其他默认,点击应用即可。

图3-2 基准站工作模式设置 进行GPRS 设置时,打开手簿上的HCGPRS,也可打开电脑HCGPRS(安装RTK 软件后,【开始】→【HuaceRTK】→【工具】→【GPRS 设置升级软件】原名叫HCGPRS),按下图所示设置完各项参数后,点击更新。 图3-3 用HCGPRS 软件设置基准站内置GPRS 图3-3 是上海华测免费提供用户的服务器IP 地址及端口号,基站启动后数据会自动通过上海服务器转发,移动站与其绑定即可获得基站数据。 注:华测提供双服务器,上海服务器IP 为:222.44.183.12,端口为9902。 华测上广电服务器为:210.14.66.58,端口为9902.此服务器带宽充足,建议使用此服务器。 设置完后,打开测地通,【配置】→【基准站选项】 1.广播格式----标准CMR. 2.测站索引----1. 3.发射间隔-----1秒 4.高度角-------10 5.天线+测量到:根据具体情况设定

IEC61439.1《低压成套开关设备和控制设备》关于铜导线、裸铜母线的工作电流和功率损耗的计算

【摘自IEC61439.1-2011附录H(资料性附录)】 铜导线的工作电流和功率损耗 表H.1提供了理想状态下,成套设备内导体的工作电流和功率损耗的指导性数值。确定这些值的计算方法可被用来计算其他工作环境下的数值。 表1 允许导体温度70℃的单芯铜电缆的工作电流和功率损耗 max301 2 v max20c 式中: k1 外壳内导体周围空气温度的降容系数(IEC60364-5-52-2009 表B.52.14)k1=0.61导体温度70℃周围环境温度55℃。 在其他空气温度时的k1值,见表H.2。 k2 多于一条电路组合的降容系数(IEC60364-5-52-2009 表B.52.17)

α电阻温度系数。α=0.004K-1 T c导体温度 表2电缆在导体允许温度为70℃时的降容系数k1 (引自IEC60364-5-52-2009 表B.52.14) 注:如果表1中的工作电流使用降容系数k1转换成其他的空气温度,则相应的功率损耗也应用上面的公式重新计算。

【摘自IEC61439.1-2011附录N(规范性附录)】 裸铜母排的工作电流和功率损耗 以下表格提供了成套设备内的导体在理想条件下的工作电流和功率消耗值。此附录不适用于试验验证用的导体。 给出用以建立这些值的计算方法,以便在其他条件下进行值得计算。 表N.1矩形截面裸铜排的工作电流和功率损耗,水平走向,最大面垂直排列, P v=I2хk3 [1+α(T c-20℃)] ?хA 式中: P v 每米的功率损耗;I工作电流; k3电流位移系数;

?铜的传导率,?=56m/Ωхmm2 A母线的截面积; α电阻的温度系数,α=0.004K-1 T c 导体温度 成套设备内不同的环境空气温度和/或导体温度为90℃时,工作电流可以通过表N.1中的数值乘以表N.2中的相应系数K4变换。则功率消耗也应用上面给出的公式计算。 表N.2成套设备内不同空气温度和/或不同导体温度的系数K4 可以认为,根据成套设备的设计,可能出现完全不同的环境和导体温度,尤其在较大的工作电流时。 在这些环境条件下,验证实际温升应该通过试验。功率损耗可以使用与用于表N.2相同的方法来计算。 注:在大电流条件下,附加的涡流损耗也许是重要的,但表N.1中的值并未考虑此种情况。

华测RTK使用指南

测量前准备 开始测量之前,首先要对控制软件进行设置,最终得到和当地符合的结果,具体的操作步骤如下: 架设基准站 新建任务?配置坐标系统?保存任务 设置基准站(包括安装、手簿设置) 设置流动站(包括安装、手簿设置) 点校正 测量 下面按照以上顺序依次介绍操作过程及方法: 1.1.1架设基准站 图1.架设基准站 基准站的架设包括电台天线的安装,电台天线、基准站接收机、DL3电台、蓄电池之间的电缆连线。要求: 基准站应当选择视野开阔的地方,这样有利于卫星信号的接收; 基准站应架设在地势较高的地方,以利于UHF无线信号的传送,如移动站距离较 远,还需要增设电台天线加长杆。

图2.电台接口连接 当基准站启动好之后,把电台和基准站主机连接,电台通过无线电天线发射差分数据。一般情况下,电台应设置一秒发射一次,即电台的红灯一秒闪一次,电台的电压一秒变化一次,每次工作时根据以上现象判断一下电台工作是否正常。 1.1.2建立新任务 1.1. 2.1新建任务 运行手簿测地通软件,执行【文件】?【新建任务】,输入任务名称,选择坐标系统,其它为附加信息,可留空。(注:一般坐标系选WGS-84) 图3.新建任务

1.1. 2.2坐标系管理 【配置】?【坐标系管理】 图4.坐标系管理 根据实际情况,进行坐标系的设置。选择已有坐标系进行编辑(主要是修改中央子午线,如标准的北京54坐标系一定要输入和将要进行点校正的已知点相符的中央子午线),或新建坐标系,输入当地已知点所用的椭球参数及当地坐标的相关参数,而【基准转换】、【水平平差】、【垂直平差】都选“无”;当进行完点校正后,校正参数会自动添加到【水平平差】和【垂直平差】;如果已有转换参数可在【基准转换】中输入七参数或三参数,但不提倡。当设置好后,选择确定,即会替代当前任务里的参数,这样测量的结果就为经过转换的。如果新建一个任务则不需要重新作点校正,它会自动套用上一个任务的参数,到下一个测区新建任务后直接作点校正即可,选择保存会自动替代当前任务参数。 1.1. 2.3保存任务 【文件】?【保存任务】

射频中的回波损耗 反射系数 电压驻波比以及S参数的含义和关系

回波损耗,反射系数,电压驻波比,S11这几个参数在射频微波应用中经常会碰到,他们各自的含义如下: 回波损耗(Return Loss):入射功率/反射功率,为dB数值 反射系数(Г):反射电压/入射电压,为标量 电压驻波比(Voltage Standing Wave Ration):波腹电压/波节电压S参数:S12为反向传输系数,也就是隔离。S21为正向传输系数,也就是增益。S11为输入反射系数,也就是输入回波损耗,S22为输出反射系数,也就是输出回波损耗。 四者的关系: VSWR=(1+Г)/(1-Г)(1) S11=20lg(Г)(2) RL=-S11(3) 以上各参数的定义与测量都有一个前提,就是其它各端口都要匹配。这些参数的共同点:他们都是描述阻抗匹配好坏程度的参数。其中,S11实际上就是反射系数Г,只不过它特指一个网络1号端口的反射系数。反射系数描述的是入射电压和反射电压之间的比值,而回波损耗是从功率的角度来看待问题。而电压驻波的原始定义与传输

线有关,将两个网络连接在一起,虽然我们能计算出连接之后的电压驻波比的值,但实际上如果这里没有传输线,根本不会存在驻波。我们实际上可以认为电压驻波比实际上是反射系数的另一种表达方式,至于用哪一个参数来进行描述,取决于怎样方便,以及习惯如何。回波损耗、反射系数、电压驻波比以及S参数的物理意义:以二端口网络为例,如单根传输线,共有四个S参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。在高速电路设计中用到:以二端口网络为例,如单根传输线,共有四个S 参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。假设Port1为信号输入端口,Port2为信号输出端口,则我们关心的S参数有两个:S11和S21,S11表示回波损耗,也就是有多少能量被反射回源端(Port1)了,这个值越小越好,一般建议S11<0.1,即-20dB,S21

GPS点校正

点校正就是求出WGS-84和当地平面直角坐标系统之间的数学转换关系(转换参数)。在工程应用中使用GPS卫星定位系统采集到的数据是WGS-84坐标系数据,而目前我们测量成果普遍使用的是以1954年北京坐标系或是地方(任意|当地)独立坐标系为基础的坐标数据。因此必须将WGS-84坐标转换到BJ-54坐标系或地方(任意)独立坐标系。 坐标系统之间的转换可以利用现有的七参数或三参数,也可以利用华测测地通软件进行点校正求四参数和高程拟合。 单点校正:利用一个点的 WGS84坐标和当地坐标可以求出3个平移参数,旋转为零,比例因子为1。在不知道当地坐标系统的旋转、比例因子的情况下,单点校正的精度无法保障,控制范围更无法确定。因此建议尽量不要使用这种方式。 两点校正:可求出3个坐标平移参数、旋转和比例因子,各残差都为零。比例因子至少在0.9999***至1.0000****之间,超过此数值,精度容易出问题或者已知点有问题;旋转的角度一般都比较小,都在度以下,如果旋转上百度,就要注意是不是已知点有问题 三点校正:三个点做点校正,有水平残参,无垂直残差。 四点校正:四个点做点校正,既有水平残参,也有垂直残差。 点校正时的注意事项: 1、已知点最好要分布在整个作业区域的边缘,能控制整个区域,并避免短边控制长边。例如,如果用四个点做点校正的话,那么测量作业的区域最好在这四个点连成的四边形内部; 2、一定要避免已知点的线形分布。例如,如果用三个已知点进行点校正,这三个点组成的三角形要尽量接近正三角形,如果是四个点,就要尽量接近正方形,一定要避免所有的已知点的分布接近一条直线,这样会严重的影响测量的精度,特别是高程精度; 3、如果在测量任务里只需要水平的坐标,不需要高程,建议用户至少要用两个点进行校正,但如果要检核已知点的水平残差,那么至少要用三个点;如果既需要水平坐标又需要高程,建议用户至少用三个点进行点校正,但如果要检核已知点的水平残差和垂直残差,那么至少需要四个点进行校正; 4、注意坐标系统,中央子午线,投影面(特别是海拔比较高的地方),控制点与放样点是否是一个投影带;

驻波比、反射损耗、传输损耗、反射系数、功率传输、功率反射之间的换算

驻波比、反射损耗、传输损耗、反射系数、功率传输、功率反射之间的换算(1) 电压驻波比VSW R 回波 损耗 Retur n Loss (dB) 传输 损耗 Tran. Loss (dB) 电压 反射 系数 V olt. REF L. COE FF. 功率 传输 Powe r Trans . % 功率 反射 Powe r REF L. % 电压 驻波 比 VSW R 回波 损耗 Retur n Loss (dB) 传输 损耗 Tran. Loss (dB) 电压 反射 系数 V olt. REF L. COE FF. 功率 传输 Powe r Trans . % 功率 反射 Powe r REF L. % 1.0 ∞.000 .00 100.0 .0 1.64 1 2.3 .263 .24 94.1 5.9 1.01 46.1 .000 .00 100.0 .0 1.66 12.1 .276 .25 9 3.8 6.2 1.02 40.1 .000 .01 100.0 .0 1.68 11.9 .289 .25 93.6 6.4 1.03 36.6 .001 .01 100.0 .0 1.70 11.7 .302 .26 93.3 6.7 1.04 3 4.2 .002 .02 100.0 .0 1.72 11.5 .315 .26 93.0 7.0 1.05 3 2.3 .003 .02 99.9 .1 1.74 11.4 .329 .27 92.7 7.3 1.06 30.7 .004 .03 99.9 .1 1.76 11.2 .342 .28 92.4 7.6 1.07 29.4 .005 .03 99.9 .1 1.78 11.0 .356 .28 92.1 7.9 1.08 28.3 .006 .04 99.9 .1 1.80 10.9 .370 .29 91.8 8.2 1.09 27.3 .008 .04 99.8 .2 1.82 10.7 .384 .29 91.5 8.5 1.10 26.4 .010 .05 99.8 .2 1.84 10.6 .398 .30 91.3 8.7 1.11 25.7 .012 .05 99.7 .3 1.86 10.4 .412 .30 91.0 9.0 1.12 24.9 .014 .06 99.7 .3 1.88 10.3 .426 .31 90.7 9.3 1.13 24.3 .016 .06 99.6 .4 1.90 10.2 .440. .31 90.4 9.6 1.14 23.7 .019 .07 99.6 .4 1.92 10.0 .454 .32 90.1 8.9 1.15 23.1 .021 .07 99.5 .5 1.94 9.9 .468 .32 89.8 10.2 1.16 2 2.6 .024 .07 99.5 .5 1.96 9.8 .483 .32 89.5 10.5 1.17 22.1 .027 .08 99.4 .6 1.98 9.7 .497 .33 89.2 10.8 1.18 21.7 .030 .08 99.3 .7 2.00 9.5 .512 .33 88.9 11.1 1.19 21.2 .033 .09 99.2 .8 2.50 9.4 .881 .43 81.6 18.4 1.20 20.8 .036 .09 99.2 .8 3.00 6.0 1.249 .50 75.0 25.0 1.21 20.4 .039 .10 99.1 .9 3.50 5.1 1.603 .56 69.1 30.9 1.22 20.1 .043 .10 99.0 1.0 4.00 4.4 1.938 .60 64.0 36.0 1.23 19.7 .046 .10 98.9 1.1 4.50 3.9 2.255 .64 59.5 40.5 1.24 19.4 .050 .11 98.9 1.1 5.00 3.5 2.553 .67 55.6 4 4.4 1.25 19.1 .054 .11 98.8 1.2 5.50 3.2 2.834 .69 52.1 47.9 1.26 18.8 .058 .12 98.7 1.3 6.00 2.9 3.100 .71 49.0 51.0 1.27 18.5 .062 .12 98.6 1.4 6.50 2.7 3.351 .73 46.2 53.8 1.28 18.2 .066 .12 98.5 1.5 7.00 2.5 3.590 .75 43.7 56.2 1.29 17.9 .070 .13 98.4 1.6 7.50 2.3 3.817 .76 41.5 58.5 1.30 17.7 .075 .13 98.3 1.7 8.00 2.2 4.033 .78 39.5 60.5

10KV电缆的线路损耗及电阻计算公式

10KV电缆的线路损耗及电阻计算公式 线损理论计算是降损节能,加强线损管理的一项重要的技术管理手段。通过理论计算可发现电能损失在电网中分布规律,通过计算分析能够暴露出管理和技术上的问题,对降损工作提供理论和技术依据,能够使降损工作抓住重点,提高节能降损的效益,使线损管理更加科学。所以在电网的建设改造过程以及正常管理中要经常进行线损理论计算。 线损理论计算是项繁琐复杂的工作,特别是配电线路和低压线路由于分支线多、负荷量大、数据多、情况复杂,这项工作难度更大。线损理论计算的方法很多,各有特点,精度也不同。这里介绍计算比较简单、精度比较高的方法。 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=0.004。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑:1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为 Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ 2.配电变压器损耗(简称变损)功率△PB 配电变压器分为铁损(空载损耗)和铜损(负载损耗)两部分。铁损对某一型号变压器来说是固定的,与负载电流无关。铜损与变压器负载率的平方成正比。 配电网电能损失理论计算方法 配电网的电能损失,包括配电线路和配电变压器损失。由于配电网点多面广,结构复杂,客户用电性质不

华测 参数求取

华测各种测地通软件点校正方法 一,测地通5.04版本。 首先这里着重介绍5.04版本校正方法,其他版本除了界面不一样都方法完全相同。1,点校正之前一定要先确定控制点的坐标系统以及中央子午线的数值,确定好后,在配置—坐标系参数里面修改好。 2,修改完成后,修改好天线类型以及天线高,去实地采点,如采集控制点K4,K5,K7上的点分别为K4-1,K5-1,K7-1。 3,采集完成后在键入—键入点里面分别键入控制点K4,K5,K7的坐标(如图)

4,点测量—点校正—增加,在网格点选中控制点,GPS点选中该控制点对应测量点。以此增加三组点。完成后点计算(注意:一般水平残差不超过1.5cm,高程残差不超过2cm,三点出水平残差,四点出高程残差)

5,校正结束后点确定会弹出是否替换当前坐标系以及坐标系参数里参数,一般全部点是。这里当前坐标系参数是控制当前任务的参数,而坐标系管理的参数这是一个模版控制所有任务下的参数,一旦坐标系管理参数被修改后,以后新建任务直接调用的坐标系名称即调用了坐标系管理里面该坐标系名称下面所有的参数。

二,ls6.1测地通 1,点工程—坐标系参数修改坐标系以及中央子午线 2,输入控制点并采集完控制点口,在测量—点校正界面如图,选中TGO方法以此增加点,点中下面计算后会出现残差值,打勾会替换坐标系参数。 注意:6.1软件只有一个坐标系管理,如果新建工程想调用该坐 标系可以直接在新建工程时直接套用该工程任务。生成的参数有加锁 功能,默认解锁帐号为admin 密码123456

三,ls7测地通 前面操作过程一样,需要注意的是: 1.当应用点校正参数提示“平面校正中比例异常“、或“残差值过大”时,是根据华测多年经验判断出的校正参数可能不对,这时候建议检查参与点校正的控制点是否输入错、控制点匹配时是否对应错,如果确认没有错误,请继续正常作业。 2. 当点校正添加点对的过程中找不到刚才键入的已知点时,这是因为键入的点坐标系统选择了“本地XYZ”,应该将坐标系统改为“本地NEH” 点校正就是求出WGS-84和当地平面直角坐标系统之间的数学转换关系(转换参数)。 1、测量已知点,找到已知点的实地位置进行测量,如K1、K 2、K 3、K4。 2、测出的四个点坐标分别命名为:1、2、 3、4,四个点必须在同一个BASE下,测量后开始进行点校正。 点击【测量】-【点校正】进入点校正界面,如下图: :添加;:删除;:查询;:计算;:应用 高程拟合方法包括:固定差、平面拟合、曲面拟合、TGO方法:

电机功率算电缆的例子电压损失百分数计算公式

电机功率算电缆的例子电压损失百分数计算公式 185千瓦的电动机,距电源200米,请问需要多大的铜芯电缆?具体的公式计算?用什么样的启动方式为好? 1--------简化公式:每个kw两个电流 185*2大约等于370A的电流 2---------查电工手册中的电缆载流量表选择240平方毫米的铜芯电缆3---------也可用以下选线口诀选择电缆截面。 铝芯绝缘线载流量与截面的倍数关系 10下五100上二, 25、35,四、三界, 70、95,两倍半, 穿管、温度,八、九折。 裸线加一半, 铜线升级算。 4----------启动方式看要求定,要求高的话就采用变频启动,要求低的话可采用星三角启动。 5---------- 低压供电范围是400m以内,应该不用考虑压降问题,压降范围400v以下+5% ,-7%。 6-----------如果电压低可以考虑电压补偿

电压损失百分数计算公式 己知P=185KW L=200m △U=5 求S=? △U=PL/CS S=PL/C△U=185X200/77X5=37000/385=96.1mm2 分析,如果供应这台电动机的变压器容量足够大,800KVA及以上,高低压配电系统线路的质量好,任何时候电压都不低于额定电压,可以用95mm2铜芯电缆。 如果供应这台电动机的变压器容量不大,800KVA以下,高低压配电系统线路的质量不怎么好,电压有可能低于额定电压,应该选用120mm2铜芯电缆。 功率185kw的额定电流 I=P/1.732UcosΦ=185/1.732/0.38/0.8=185/0.53=350安 电压损失百分数△U=5 的意思,就是100V电压通过导线下降5V,380V电压通过导线下降19V. 国家标准规定:380V动力用户电压损失不能超过额定电压的±7%,考虑其它电压损失,电动机的电缆取△U=5 较为合适。 电压损失百分数计算公式 △U=PL/CS △U——电压损失百分数 P——输送的有功功率(Kw) L——输送的距离(m)

驻波比与回波损耗的换算关系

驻波比 欧阳学文 驻波比全称为电压驻波比,又名VSWR和SWR,为英文Voltage Standing Wave Ratio的简写。在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。其它各点的振幅值则介于波腹与波节之间。这种合成波称为行驻波。驻波比是驻波波腹处的声压幅值Vmax与波节处的声压Vmin幅值之比。在驻波管法中,测得驻波比,就可以求出吸声材料的声反射系数和吸声系数。在无线电通信中,天线与馈线的阻抗不匹配或天线与发信机的阻抗不匹配,高频能量就会产生反射折回,并与前进的部分干扰汇合发生驻波。为了表征和测量天线系统中的驻波特性,也就是天线中正向波与反射波的情况,人们建立了“驻波比”这一概念,SWR=R/r=(1+K)/(1K) 反射系数K=(Rr)/(R+r) (K为负值时表明相位相反) 式中R和r分别是输出阻抗和输入阻抗。当两个阻抗数值一样时,即达到完全匹配,反射

系数K等于0,驻波比为1。这是一种理想的状况,实际上总存在反射,所以驻波比总是大于1的。射频系统阻抗匹配。特别要注意使电压驻波比达到一定要求,因为在宽带运用时频率范围很广,驻波比会随着频率而变,应使阻抗在宽范围内尽量匹配。 驻波比与回波损耗的换算关系 驻波比(VSWR): Voltage Standing Wave Ratio 回波损耗(RL) :Return Loss 换算公式:RL=20*log10[(VSWR+1)/(VSWR1)] 换算表格: 驻波比回波损耗(dB)驻波比回波损耗(dB) 1.0146.064 1.2618.783 1.0240.086 1.2718.493 1.0336.607 1.2818.216 1.0434.151 1.2917.949 1.053 2.256 1.3017.692 1.0630.714 1.3117.445 1.0729.417 1.3217.207 1.0828.299 1.3316.977 1.0927.318 1.3416.755 1.1026.444 1.3516.540

变压器损耗计算公式

变压器损耗 分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗,1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC/P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是:

驻波比、插入损耗和回波损耗对照表

驻波比、插入损耗和回波损耗对照表 ρ=VSWR-1 VSWR+1RL=-20lg?ρVSWR=1+ρ 1-ρ 反射系数ρ回波损耗RL 驻波比VSWR 1.00 0.00 ∞ 0.90 0.92 19.00 0.80 0.94 9.00 0.70 3.10 5.67 0.60 4.44 4.00 0.50 6.02 3.00 0.40 7.96 2.33 0.30 10.46 1.86 0.20 13.98 1.50 0.10 20.00 1.22 0.09 20.92 1.20 0.08 21.94 1.17 0.07 23.10 1.15 0.06 24.44 1.13 0.05 26.02 1.11 0.04 27.96 1.08 0.03 30.46 1.06 0.02 33.98 1.04 0.01 40.00 1.02 0.00 ∞ 1.00

复反射系数:Γ=Z L-Z0 Z L+Z0 =ρsinθ+j cosθ 其中:幅度在0~1之间(为标量反射系数) 反射波相对于入射波的相角在+180°~-180°之间 定向耦合器: 耦合度C(dB)= -10lg P3 P1 隔离度I(dB)= -10lg P4 P1 方向性D(dB)= -10lg P3 P4 C-I=D 其中:P1为输入端口功率,P3为耦合端口输出功率,P4为隔离端口输出功率 网络基本参数: (一)反射参数 正向反向 反射系 数ΓΓ=S11Γ=S22 回波损 耗RL RL=-20lg?S11 RL=-20lg?S22 驻波比VSWR VSWR =(1+?S11 )(1-?S11 ) VSWR= (1+?S22 )(1-?S22 ) 阻抗Z Z=R+jX =Z0(1+?S11 )(1-?S11 ) Z=R+jX= Z0(1+?S22 )(1-?S22 ) (二)传输参数 正向反向

电缆电路功率损耗计算

电缆电路功率损耗计算 公式: 电流等于电压除以电阻:I=U/R 功率等于电压与电流的乘积:P=U×I=U×U×I Db危化简大数字的计算,采用对数的方式进行缩小计算:db=10log p 电缆电阻等于电阻率与电缆长度的积再比上电缆的截面积 电阻率的计算公式为:ρ=RS/L ρ为电阻率----常用单位是Ω.m S 为横截面积----单位是㎡ R 为电阻值----单位是Ω L 是导线长度----单位是 M 电缆选择的计算顺序 例:允许损耗为 Xdb x=10log p 计算所损耗的功率 p (1)p=U×U/R 根据额定功率与额定电压计算负荷的等效电阻 (2)计算整个电路的电流 I=(p额—p负)/R负

(3)根据电流与损耗功率决定电缆电阻P=I×I×R (5) 根据电阻率与长度决定电缆截面积 ρ=RS/L 电阻率请询问电缆厂家 几种金属导体在20℃时的电阻率

已知电缆长度,功率,电压,需要多粗电缆 电压380V,电压降7%,则每相电压降=380×2= 功率30kw,电流约60A,线路每相电阻R=60=Ω 长度1000M,电阻 铝的电阻率是,则电缆截面S=1000×=131㎜2 铜的电阻率是,则电缆截面S=1000×=77㎜2 由于电机启动电流会很大,应选用150㎜2以上的铝缆或95㎜2以上的铜缆 电压降7%意味着线路损耗7%这个损耗实际上是很大的。如果每天使用8小时一月就会耗电500度, (农电规程中电一年就是6000度。 压380V的供电半径不得超过500米) 电缆选型表

基本含义:H—电话通信电缆 Y—实心聚氯乙烯或聚乙烯绝缘 YF—泡沫聚烯轻绝缘 YP—泡沫/实心皮聚烯轻绝缘 V—聚乙烯 A—涂塑铝带粘接屏蔽聚乙烯护套 C—自承式 T—石油膏填充 23—双层防腐钢带线包铠装聚乙烯外被层 33—单层细钢丝铠装聚乙烯外被层 43—单层粗钢丝铠装聚乙烯外被层 53—单层钢丝带皱纹纵包铠装聚乙烯外被层 553—双层钢带皱纹纵包铠装聚乙烯外被层

坐标系转换及点校正

坐标系转换及点校正 一、坐标系转换的意义及通用方法: 在绝大部分测量工作中,都使用国家坐标系统(北京54坐标、西安80坐标)或地方坐标系统,而GPS 测量结果是基于WGS84 (World Geodetic System 1984)的坐标系统,所以在进行一项新的任务之前,必须要做点校正,以求出两种坐标系统的转换参数。 坐标系统之间的转换可以利用现有的七参数或三参数,也可以利用华测测地通软件进行点校正求四参数和高程拟合。 二、点校正的几类典型: 单点校正:利用一个点的WGS84坐标和当地坐标可以求出3个平移参数,旋转为零,比例因子为1。在不知道当地坐标系统的旋转、比例因子的情况下,单点校正的精度无法保障,控制范围更无法确定。因此建议尽量不要使用这种方式。 两点校正:可求出3个坐标平移参数、旋转和比例因子,各残差都为零。比例因子至少在0.9999***至1.0000****之间,超过此数值,精度容易出问题或者已知点有问题;旋转的角度一般都比较小,都在度以下,如果旋转上百度,就要注意是不是已知点有问题 三点校正:三个点做点校正,有水平残参,无垂直残差。 四点校正:四个点做点校正,既有水平残参,也有垂直残差。 三、点校正的具体操作:(计算转换参数) a) 先在“键入”→“点”里输入已知点的当地平面坐标;如果有已知点的WGS84 经纬度坐标也要一起输入,并且可以跳过下一个步骤,直接转到步骤c); b) 如果没有已知点的WGS84 经纬度坐标,就需要把流动站放在已知点上,对中整平,进行“测量点”的操作。在“测量点”里,“点名称” 不能和键入的已知点的名称一样,否则会把已知 点覆盖,测量时采用,地形点进行观测即可; c) 进行点校正:点击“测量”→“点校正” →“添加”,在“网格点名”里选择一个已知点的 当地平面坐标,点击“确定”,然后在“GNSS 点 名”里选择同一个已知点的经纬度坐标,点击“确 定”,可以在“使用”里根据需要选择只有水平的 校正或者水平和垂直的校正都应用,再点击“接 受”即完成一个点的点校正,如果需要继续校正, 重复这个步骤即可; d) 所有的校正点都增加完毕以后,点击“应 用”,这样整个点校正的操作就完成了。 四、点校正时的注意事项: 1、已知点最好要分布在整个作业区域的边 缘,能控制整个区域,并避免短边控制长边。例 如,如果用四个点做点校正的话,那么测量作业 的区域最好在这四个点连成的四边形内部; 2、一定要避免已知点的线形分布。例如,如 果用三个已知点进行点校正,这三个点组成的三 角形要尽量接近正三角形,如果是四个点,就要 尽量接近正方形,一定要避免所有的已知点的分 布接近一条直线,这样会严重的影响测量的精度, 特别是高程精度; 3、如果在测量任务里只需要水平的坐标,不 需要高程,建议用户至少要用两个点进行校正, 但如果要检核已知点的水平残差,那么至少要用 三个点;如果既需要水平坐标又需要高程,建议 用户至少用三个点进行点校正,但如果要检核已 知点的水平残差和垂直残差,那么至少需要四个 点进行校正; 4、注意坐标系统,中央子午线,投影面(特 别是海拔比较高的地方),控制点与放样点是否是 一个投影带; 5、已知点之间的匹配程度也很重要,比如 GPS 观测的已知点和国家的三角已知点,如同时 使用的话,检核的时候水平残差有可能会很大的; 6、如果有3 个以上的点作点校正,检查一下 水平残差和垂直残差的数值,看其是否满足用户 的测量精度要求,如果残差太大,残差不要超过2 厘米,如果太大先检查已知点输入是否有误,如 果无误的话,就是已知点的匹配有问题,要更换 已知点了; 7、对于高程要特别注意控制点的线性分布 (几个控制点分布在一条线上),特别是做线路工 程,参与校正的高程点建议不要超过2个点(即 在校正时,校正方法里不要超过两个点选垂直平 差的)。 8、如果一个区域比较大,控制点比较多,要 分区做校正,不要一个区域十几个点或更多的点 全部参与校正。 9、注意一个区域只做一次点校正即可,后面 的再测量只需要重设当地坐标即可。 附加阅读 1954北京坐标系:将我国大地控制网与苏联 1942普尔科沃大地坐标系相联结后建立的我国过 渡性大地坐标系。它是是采用苏联克拉索夫斯基 椭圆体,在1954年完成测定工作的。它实质上是 由原苏联普尔科沃为原点的1942年坐标系的延 伸。因其为平面坐标系统(高程采用黄海高程), 无法准确定位空间位置。北京54坐标系,属参心 坐标系,长轴6378245m,短轴6356863,扁率 1/298.3; 1980西安坐标系:采用1975国际椭球,以JYD 1968.0系统为椭球定向基准,大地原点设在陕西 省泾阳县永乐镇,采用多点定位所建立的大地坐 标系。基准面采用青岛大港验潮站1952-1979年 确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属参心坐标系,长半轴 6378140±5m,短半轴6356755.2882m,扁率 1/298.25722101。 WGS84 :World Geodetic System 1984,称 为1984年世界大地坐标系统。其是为GPS全球定 位系统使用而建立的坐标系统。其几何意义是: 坐标系的原点位于地球质心,z轴指向(国际时间 局)BIH1984.0定义的协议地球极(CTP)方向,x 轴指向BIH1984.0的零度子午面和CTP赤道的交 点,y轴通过右手规则确定(Y轴与Z轴、X轴垂 直构成右手坐标系)。 坐标系转换:WGS-84地心坐标系可以与1954 北京坐标系或1980西安坐标系等参心坐标系相互 转换,其方法之一是:在测区内,利用至少3个 以上公共点的两套坐标列出坐标转换方程,采用 最小二乘原理解算出7个转换参数就可以得到转 换方程。其中7个转换参数是指3个平移参数、3 个旋转参数和1个尺度参数。 右手(直角)坐标系(左手坐标系):坐标系 中,右手拇指、食指、中指(与掌心成90度)互 成90度伸展出,让右手拇指指向x轴的正方向, 食指指向y轴的正方向,如果中指能指向z轴的正 方向,则称这个坐标系为右手直角坐标系.同理 左手直角坐标系。 大地坐标系:以参考椭球中心为原点、起始 子午面和赤道面为基准面的地球坐标系。简言之, 就是大地测量中以参考椭球面为基准面建立起来 的坐标系。地面点的位置用大地经度、大地纬度 和大地高度表示。大地坐标系的确立包括选择一 个椭球、对椭球进行定位和确定大地起算数据。 一个形状、大小和定位、定向都已确定的地球椭 球叫参考椭球。参考椭球一旦确定,则标志着大 地坐标系已经建立。大地坐标系亦称为地理坐标 系。它是大地测量的基本坐标系,其大地经度L、 大地纬度B和大地高H为此坐标系的3个坐标分 量。它包括地心大地坐标系和参心大地坐标系。

相关文档
最新文档