多元线性回归模型:估计及t检验

多元线性回归模型:估计及t检验
多元线性回归模型:估计及t检验

多元线性回归模型:估计及t检验

————————————————————————————————作者: ————————————————————————————————日期:

多元线性回归:估计方法及

回归系数显著性检验

线性回归模型的基本假设:

i ki k i i i u x x x y +++++=ββββ 22110 i = 1 , 2 , … , n 在普通最小二乘法中,为保证参数估计量具有良好的性质,通常对模型提出若干基本假设:

1.解释变量间不完全相关;

2.随机误差项具有0均值和同方差。即:

0)(=i u E , 2

)(σ=i u Var i = 1 , 2 , … , n

3.不同时点的随机误差项互不相关(序列不相关),即

0),(=-s i i u u Cov s ≠ 0, i = 1 , 2 , … , n 4.随机误差项与解释变量之间互不相关。即

0),(=i ji u x Cov j = 1 , 2 , … , k , i = 1 , 2 , … , n

5.随机误差项服从0均值、同方差的正态分布。即

i u ~ ),0(2

σN i = 1 , 2 , … , n

当模型满足假设1 ~ 4时,将回归模型称为“标准回归模型”,当模型满足假设1 ~ 5时,将回归模型称为“标准正态回归模型”。如果实际模型满足不了这些假设,普通最小二乘法就不再适用,而要发展其他方法来估计模型。

广义(加权)最小二乘估计(g ener alize d lea st squ ares)

当假设2和3不满足时,即随机扰动项存在异方差2

2)(ii i u E σ=,i = 1 , 2 , … , n ,且

随机扰动项序列相关j i u u Cov ij j i ≠=,),(σ, i = 1 , 2 , … , n ,j =1 , 2 , … ,

n ,此时O LS 估计仍然是无偏且一致的,但不是有效估计。

线性回归的矩阵表示:

y

=

X β

(1)

则上述两个条件等价为:

Var(u)== ????

??

? ??nn T T n n σσσσσσσσσ....

..........212222111211 ≠ σ 2 I 对于正定矩阵 Ω 存在矩阵M ,使得 1''-=?=M ΩM I M M Ω。在方程(1)两边同时左乘M ,得到转换后的新模型:=+?=+y X βu My MX βMu ,令***,,= = =y My X MX u Mu ,即

***

=+y X βu

(2)

新的随机误差项的协方差矩阵为*var()E('')'===u Muu M M ΩM I ,显然是同方差、无序列相关的。目标函数,即残差平方和为:u u Mu M u u u Q 1

''''-*

*

Ω===。目标函数是残差向量的加权平方和,而权数矩阵则是u 的协方差矩阵的逆矩阵(因此,广义最小二乘估计法也称为加权最小二乘估计法)。而新模型的OL S估计量则是原模型的GLS 估计量。

**1**1111?(')'('')''(')'GLS

-----===βX X X y X M MX X M My X ΩX X Ωy Var (

G LS )= (X *’X *)-1

=(X ’M ’MX)-1=(X ’ Ω -

1X)-1( Var (

OL S)= (X ’X)-1

X ’ ΩX(X ’X )

-1 )。 由于变换后的模型(2)满足经典OLS 的所有假设,所以根据高斯-马科夫定理可知, G LS

估计量是BL UE (Bes t Linear Un bias ed Es timator )。

虽然从理论上讲,GLS 比OLS 有效,但由于多数情况下残差序列的协方差矩阵未知,当我们用代替G LS 估计式中的Ω以获得估计时,估计量虽然仍旧是一致的,但却不是最好线性无偏估计。而且,也很难推导出估计量的小样本性质。继而用White(1980)的异方差一致协方差估计方法(残差序列有未知形式的异方差,但序列不相关)和Newey-W est(1987) 的异方差--自相关一致协方差估计方法(有未知形式的异方差且自相关存在)得到修正的Var (

OLS )是相对较好的选择。(使用Whi te 或N ewe y-W est 异方差

一致协方差估计不会改变参数的点估计,只改变参数估计的标准差。)

White 协方差矩阵公式为:

1121)()(?-=-'??

? ??''-=∑∑X X x x u X X k n n n

i i i i W

其中n 是观测值数,k是回归变量数,u i 是最小二乘残差。

Newey -West 协方差矩阵公式为:

11)(?)(?--'Ω'=∑X X X X NW

其中??

???????????? ??'+'???? ??+-+'-=Ω

∑∑∑==+=----n i q v n v i i i v i v i v i v i i i i i i x u u x x u u x q x x u k

n n

1112))(11?ν, q是滞后截尾,一个用于评价OL S残差 u i的动态的自相关数目的参数。)])100(4[(9

2n q =。

二阶段最小二乘法 (TSLS ,Two stage least squar es,Sargan(1958))

当假设4不成立时,即随机误差项与某些解释变量相关时,OLS 和广义LS 都是有偏的和不一致的。

有几种情况使右边某些解释变量与误差项相关。如:在方程右边有内生决定变量,或右边变量具有测量误差。为简化起见,我们称与残差相关的变量为内生变量,与残差不相关的变量为外生变量。

解决解释变量与随机误差项相关的方法是使用工具变量回归。就是要找到一组变量满足下面两个条件:

(1)与内生变量相关; (2)与残差不相关;

这些变量称为工具变量。用这些工具变量来消除右边解释变量与扰动项之间的相关性。考虑工具变量时,应注意以下问题:

1)使用TS LS 估计,方程说明必需满足识别的阶条件,即工具变量的个数至少与方程的系数一样多(Dav idson & M ac Ki nn on(1994)和Johnst on & Di Na rd o(1997))。

2)根据经济计量学理论,与扰动项不相关的解释变量可以用作工具变量。 3)常数c 是一个合适的工具变量。

在二阶段最小二乘估计中有两个独立的阶段。在第一个阶段中,找到内生变量和工具变量。这个阶段包括估计模型中每个内生变量关于工具变量的最小二乘回归。第二个阶段是对原始方程的回归,所有内生变量用第一个阶段回归得到的拟合值来代替。这个回归的系数就是TSLS 估计。

令Z 为工具变量矩阵,y 和X 是因变量和解释变量矩阵。则二阶段最小二乘估计的系数由下式计算出来:

y Z Z Z Z X X Z Z Z Z X TSLS

''''''=---111)())((?β 系数估计的协方差矩阵为:

112))(()?(--'''=X Z Z Z Z X s Var β

其中2s 是估计残差的协方差矩阵。

广义矩方法(G MM ,Ge neral ized Metho d o f Mom ent s,Hans en(1982))

由于传统的计量经济模型估计方法,例如普通最小二乘法、工具变量法、极大似然法等,都有它们的局限性,其参数估计量必须在模型满足某些假设时才具有良好的性质,而GMM 估计是一个稳健估计量,因为它不要求扰动项的准确分布信息,允许随机误差项存在异方差和序列相关,所得到的参数估计量比其他参数估计方法更合乎实际;而且可以证明,普通最小二乘法、工具变量法、极大似然法都是GMM 的特例

设模型为:

t t t y u =+x β

其中,12(,,,)t t t Kt x x x =x ,12(,,

,)'K βββ=β,z t为工具变量(1?L )。令(),,t t t t y =w x z ,

则L个矩条件为:

()()()1,''t t t t t t L E u E y ???==-=??m w θz z x β0

对应的样本矩条件为:

()()()1

111

?,''T t t t t L t y T T ?=??=-=-=?

?∑m w θz x βz y x β0

等价于解方程:

21

???(,)'(,)K

l t t l Q m

====∑m w θm w θ0 (3)

当存在L>K 个工具变量时,共有L 个矩方程,而只有K个未知参数。因此,根据MM方法,

共有K L ?? ???个组合,可以得到的矩估计量的个数为K L ??

???

。这时,每个组合得到的MM 估计量

都不能满足(3)式,即(3)式不会恰好为0。但可以考虑将各种不同的估计结果综合起来,使(3)式最小化,即使得L 个矩条件的平方和最小。

因为不同矩的方差不同,因此更科学的方法是使用加权的平方和,

??(,)'(,)t t t Q =m

w θW m w θ

GMM 估计量是求下式的最优解:

()

{}???arg min (,)'(,)GMM t t t t Q

θW m

w θW m w θ 与GLS 相类似,GM M方法中,目标函数为各个矩的加权平方和,权数的选择则要考虑各

个矩的异方差和相关性。最优权数即是各个矩的协方差矩阵的逆矩阵。

如果?(,)t m w θ为一致估计量?GMM θ对应的矩,则S的一致估计量为:

(

)

()()???(,),t t Var T T Var ==S

m

w θm w θ ()11?,T t t TVar T =??= ???

∑m

w θ()()11??,',T

t t t T ==∑m w θm w θ 因此,最优权数矩阵为:

()()1

1

11???,,'T opt

t t T

t T --=??

== ???

∑W S

m w θm w θ

其是W T的一致估计。

回归系数显著性t 检验

H0: βi =0 vs H 1: βi ≠0 检验统计量: t= / s td()

White t 检验:t= / s td(

Whi te )

Newey-We st t检验:t= / std(

N-W )

参考文献:

Newey, W. K.,West, K.D.,A simple,positive semi-dedinite,heteroskedasticity andautocorrelation consistent covariancematrix. Econometrica,55,703-708.

Sargan,T.D.,1958,The estimationofeconomicrelationships using instrumental variables.Econometrica,26,393-415.

White, H., 1980, Heteroskedasticity-consistentcovaricnce matrixe stimator and adirect testfor heteroskedasticity.Econometrica,48,817-838.

White, H., 1980,Instrumental variables regressionon cross-section dat a. San Diego: University ofCaliforniaPress.

Hansen,L. P., Hodric, R. J., 1980, Forward exchange rates asoptional pr edictorsof future spot rate: an econometric analysis. The Journal of P olitical Economy, 5(88), 829-853.

Hodric,R.J.,1982, Dividendyields andexpected stock returns:alternati veprocedures forinference and measurement. The Review of FinancialStudies, 3(5),357-386.

用于k步向前预测中,残差协方差矩阵的一致估计。

计算金融网址:

错误!未定义书签。

错误!未定义书签。

excel一元及多元线性回归实例

野外实习资料的数理统计分析 一元线性回归分析 一元回归处理的是两个变量之间的关系,即两个变量X和Y之间如果存在一定的关系,则通过观测所得数据,找出两者之间的关系式。如果两个变量的关系大致是线性的,那就是一元线性回归问题。 对两个现象X和Y进行观察或实验,得到两组数值:X1,X2,…,Xn和Y1,Y2,…,Yn,假如要找出一个函数Y=f(X),使它在 X=X1,X2, …,Xn时的数值f(X1),f(X2), …,f(Xn)与观察值Y1,Y2,…,Yn趋于接近。 在一个平面直角坐标XOY中找出(X1,Y1),(X2,Y2),…,(Xn,Yn)各点,将其各点分布状况进行察看,即可以清楚地看出其各点分布状况接近一条直线。对于这种线性关系,可以用数学公式表示: Y = a + bX 这条直线所表示的关系,叫做变量Y对X的回归直线,也叫Y对X 的回归方程。其中a为常数,b为Y对于X的回归系数。 对于任何具有线性关系的两组变量Y与X,只要求解出a与b的值,即可以写出回归方程。计算a与b值的公式为:

式中:为变量X的均值,Xi为第i个自变量的样本值,为因变量的均值,Yi为第i个因变量Y的样本值。n为样本数。 当前一般计算机的Microsoft Excel中都有现成的回归程序,只要将所获得的数据录入就可自动得到回归方程。 得到的回归方程是否有意义,其相关的程度有多大,可以根据相关系数的大小来决定。通常用r来表示两个变量X和Y之间的直线相关程度,r为X和Y的相关系数。r值的绝对值越大,两个变量之间的相关程度就越高。当r为正值时,叫做正相关,r为负值时叫做负相关。r 的计算公式如下: 式中各符号的意义同上。 在求得了回归方程与两个变量之间的相关系数后,可以利用F检验法、t检验法或r检验法来检验两个变量是否显著相关。具体的检验方法在后面介绍。

案例分析(一元线性回归模型)

案例分析报告(2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号:2204120202 学生姓名:陈维维 2014 年11月

案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,最低的青海省仅为人均8192.56元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模型。因此建立的是2008年截面数据模型。影响各地区城镇居民人均消费支

基于多元线性回归模型的影响居民消费水平相关因素分析

计量分析软件课程论文 论文题目:基于多元线性回归模型的影响居民消费 水平相关因素分析 姓名:学号: 学院:专业: 联系电话: 年月日 基于多元线性回归模型的影响居民消费 水平相关因素分析 一、研究背景 中国GDP总量超越日本,成为仅次于美国的第二大经济体,但我国人均GDP 依然很低,全球排名87位,这很大程度上制约了居民消费水平的提高。到2020年实现全面建成小康社会的目标,十八大明确提出提高居民人均收入和人均消费水平,共享改革开放成果。我国居民消费水平在改革开放后有了很大提高,但消费水平依然很低,消费量占GDP比重依然很小。为此,本文旨在根据全国经济宏观政策、国内生产总值、职工平均工资指数、城镇居民消费价格指数、普通中学及高等学校在校生数、卫生机构数和基本设施铁路公路货运量等因素的变化情况,来分析如何提高居民消费水平,以判断是否能使居民消费水平有很大的提高。本文通过对1978-2010年影响居民消费水平因素数据的分析,找到影响居民消费水平的主要原因,通过计量经济分析方法来建立合理的模型,探讨影响居民消费增长的长期趋势规律,并给政府提出合理的建议,以提高居民消费水平。 二、影响居民消费水平的因素 宏观经济模型) + GDP- + + =,经济发展应该紧紧抓住消费这一 I (M C X G 驾马车,而居民消费水平的高低受制于多种因素。凯恩斯消费理论认为居民消费主要受收入影响,我国居民消费一直很低,消费意愿不强,本文通过计量分析找

到影响我国居民消费水平的主要因素,从根本上改善消费不足,促进我国经济的持续稳定健康发展。 消费分为居民消费和,居民消费包括农村居民消费和城镇居民消费。本文结合居民消费水平的影响因素,列出了国内生产总值、职工平均工资指数、城镇居民消费价格指数、普通中学及高等学校在校生数、卫生机构数和基本设施铁路公路货运量等相关因素,进行计量分析,得到回归模型。 三、居民消费水平模型的总体分析框架 (1)多元线性回归法OLS 概述[1] 回归分析是计量经济分析中使用最多的方法,在现实问题研究中,因变量往往受制于多个经济变量的影响,通过统计资料,根据多个解释变量的最优组合来建立回归方程预测被解释变量的回归分析称为多元线性回归法。其模型基本形式为: 其中0β、1β、2β、3β…k β是1+k 个未知参数,称为多元回归系数。Y 称为被解释变量,t X 1、t X 2、t X 3…kt X 是k 个可以精确测量和可控的一般解释变量, t μ是随机误差项。当2≥k 时,上式为多元线性回归模型。 (2)多元回归模型的建立 定义被解释变量和解释变量,被解释变量为居民消费水平(Y 元),解释变量为国内生产总值(1X 亿元)、职工平均工资指数(2X )、城镇居民消费价格指数(3X )、普通中学及高等学校在校生数(4X 万人)、卫生机构数(5X 个)和基本设施铁路公路货运量(6X 万吨)。 (3)统计数据选取 本文所有数据均来自中国统计局和中国统计局外网中国统计年鉴。[2] 1978 184 21261 169732 195301 1979 208 175142 382929 1980 238 180553 493327 1981 264 190126 471336 1982 288 193438 492737 1983 316 196017 520197

eviews多元线性回归案例分析

中国税收增长的分析 一、研究的目的要求 改革开放以来,随着经济体制的改革深化和经济的快速增长,中国的财政收支状况发生了很大的变化,中央和地方的税收收入1978年为519.28亿元到2002年已增长到17636.45亿元25年间增长了33倍。为了研究中国税收收入增长的主要原因,分析中央和地方税收收入的增长规律,预测中国税收未来的增长趋势,需要建立计量经济学模型。 影响中国税收收入增长的因素很多,但据分析主要的因素可能有:(1)从宏观经济看,经济整体增长是税收增长的基本源泉。(2)公共财政的需求,税收收入是财政的主体,社会经济的发展和社会保障的完善等都对公共财政提出要求,因此对预算指出所表现的公共财政的需求对当年的税收收入可能有一定的影响。(3)物价水平。我国的税制结构以流转税为主,以现行价格计算的DGP等指标和和经营者收入水平都与物价水平有关。(4)税收政策因素。我国自1978年以来经历了两次大的税制改革,一次是1984—1985年的国有企业利改税,另一次是1994年的全国范围内的新税制改革。税制改革对税收会产生影响,特别是1985年税收陡增215.42%。但是第二次税制改革对税收的增长速度的影响不是非常大。因此可以从以上几个方面,分析各种因素对中国税收增长的具体影响。 二、模型设定 为了反映中国税收增长的全貌,选择包括中央和地方税收的‘国家财政收入’中的“各项税收”(简称“税收收入”)作为被解释变量,以放映国家税收的增长;选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。所以解释变量设定为可观测“国内生产总值(GDP)”、“财政支出”、“商品零售物价指数” 从《中国统计年鉴》收集到以下数据 财政收入(亿元) Y 国内生产总值(亿 元) X2 财政支出(亿 元) X3 商品零售价格指 数(%) X4 1978519.283624.11122.09100.7 1979537.824038.21281.79102 1980571.74517.81228.83106

一元线性回归模型习题和答案解析

一元线性回归模型 一、单项选择题 1、变量之间的关系可以分为两大类__________。A A 函数关系与相关关系 B 线性相关关系和非线性相关关系 C 正相关关系和负相关关系 D 简单相关关系和复杂相关关系 2、相关关系是指__________。D A 变量间的非独立关系 B 变量间的因果关系 C 变量间的函数关系 D 变量间不确定性的依存关系 3、进行相关分析时的两个变量__________。A A 都是随机变量 B 都不是随机变量 C 一个是随机变量,一个不是随机变量 D 随机的或非随机都可以 4、表示x 和y 之间真实线性关系的是__________。C A 01???t t Y X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+ 5、参数β的估计量?β 具备有效性是指__________。B A ?var ()=0β B ?var ()β为最小 C ?()0β β-= D ?()ββ-为最小 6、对于01??i i i Y X e ββ=++,以σ?表示估计标准误差,Y ?表示回归值,则__________。B A i i ??0Y Y 0σ∑ =时,(-)= B 2 i i ??0Y Y σ∑=时,(-)=0 C i i ??0Y Y σ∑=时,(-)为最小 D 2 i i ??0Y Y σ∑=时,(-)为最小 7、设样本回归模型为i 01i i ??Y =X +e ββ+,则普通最小二乘法确定的i ?β的公式中,错误的是__________。D A ()()()i i 1 2 i X X Y -Y ?X X β--∑∑= B ()i i i i 1 2 2 i i n X Y -X Y ?n X -X β∑∑∑∑∑= C i i 1 2 2 i X Y -nXY ?X -nX β∑∑ = D i i i i 1 2 x n X Y -X Y ?βσ ∑∑∑= 8、对于i 01i i ??Y =X +e ββ+,以?σ表示估计标准误差,r 表示相关系数,则有__________。D A ?0r=1σ =时, B ?0r=-1σ =时, C ?0r=0σ =时, D ?0r=1r=-1σ =时,或 9、产量(X ,台)与单位产品成本(Y ,元/台)之间的回归方程为?Y 356 1.5X -=,这说明__________。D

多元线性回归分析预测法

多元线性回归分析预测法 (重定向自多元线性回归预测法) 多元线性回归分析预测法(Multi factor line regression method,多元线性回归分析法) [编辑] 多元线性回归分析预测法概述 在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。例如,某一商品的销售量既与人口的增长变化有关,也与商品价格变化有关。这时采用一元回归分析预测法进行预测是难以奏效的,需要采用多元回归分析预测法。 多元回归分析预测法,是指通过对两上或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。 [编辑] 多元线性回归的计算模型[1] 一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释

因变量的变化,这就是多元回归亦称多重回归。当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。 设y为因变量,为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为: 其中,b0为常数项,为回归系数,b1为固定时,x1每增加一 个单位对y的效应,即x1对y的偏回归系数;同理b2为固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: 其中,b0为常数项,为回归系数,b1为固定时,x2每增加一 个单位对y的效应,即x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: y = b0 + b1x1 + b2x2 + e 建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是: (1)自变量对因变量必须有显著的影响,并呈密切的线性相关; (2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的; (3)自变量之彰应具有一定的互斥性,即自变量之彰的相关程度不应高于自变量与因变量之因的相关程度; (4)自变量应具有完整的统计数据,其预测值容易确定。 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和()为最小的前提下,用最小二乘法求解参数。以二线性回归模型为例,求解回归参数的标准方程组为 解此方程可求得b0,b1,b2的数值。亦可用下列矩阵法求得

多元线性回归模型原理

研究在线性关系相关性条件下,两个或者两个以上自变量对一个因变量,为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型类似,只是在计算上为复杂需借助计算机来完成。 计算公式如下: 设随机y与一般变量X1,X2,L X k的线性回归模型为: 其中°, 1,L k是k 1个未知参数,°称为回归常数,「L k称为回归系数;y称为被解释变量;x1, X2,L x k是k个可以精确可控制的一般变量,称为解释变量。 当P 1时,上式即为一元线性回归模型,k 2时,上式就叫做多元形多元回归模型。是随机误差,与一元线性回归一样,通常假设 同样,多元线性总体回归方程为y °1x1 2x2 L k x k 系数1表示在其他自变量不变的情况下,自变量乂[变动到一个单位时引起的因变量y 的平均单位。其他回归系数的含义相似,从集合意义上来说,多元回归是多维空间上的一个平面。 多元线性样本回归方程为:? ?° ?1x1 ?2x2 L ?k x k 多元线性回归方程中回归系数的估计同样可以采用最小二乘法。由残差平方和:SSE (y ?) 0 根据微积分中求极小值得原理,可知残差平方和SSE存在极小值。欲使SSE达到 最小,SSE对 °, 1丄k的偏导数必须为零。 将SSE对 ° ,1丄k求偏导数,并令其等于零,加以整理后可得到k 1各方程 SSE 式:—— 2 (y ?) ° i 通过求解这一方程组便可分别得到°, 1,L k的估计值,彳,?…?k回归 系数的估计值,当自变量个数较多时,计算十分复杂,必须依靠计算机独立完成。现在,利用SPSS,只要将数据输入,并指定因变量和相应的自变量,立刻就能得到结果。 对多元线性回归,也需要测定方程的拟合程度、检验回归方程和回归系数的显着性。

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

一元线性回归模型案例分析

一元线性回归模型案例分析 一、研究的目的要求 居民消费在社会经济的持续发展中有着重要的作用。居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我们研究的对象是各地区居民消费的差异。居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。 因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。因此建立的是2002年截面数据模型。 影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 从2002年《中国统计年鉴》中得到表2.5的数据: 表2.52002年中国各地区城市居民人均年消费支出和可支配收入

多元线性回归预测模型论文

多元线性回归统计预测模型 摘要:本文以多元统计分析为理论基础,在对数据进行统计分析的基础上建立多元线性回归模型并对未知量作出预测,为相关决策提供依据和参考。重点介绍了模型中参数的估计和自变量的优化选择及简单应用举例。 关键词:统计学;线性回归;预测模型 一.引言 多元线性回归统计预测模型是以统计学为理论基础建立数学模型,研究一个随机变量Y与两个或两个以上一般变量X 1,X 2,…,Xp 之间相依关系,利用现有数据,统计并分析,研究问题的变化规律,建立多元线性回归的统计预测模型,来预测未来的变化情况。它不仅能解决一些随机的数学问题,而且还可以通过建立适当的随机模型进而解决一些确定的数学问题,为相关决策提供依据和参考。 目前统计学与其他学科的相互渗透为统计学的应用开辟新的领域。并被广泛的应用在各门学科上,从物理和社会科学到人文科学,甚至被用来工业、农业、商业及政府部门。而多元线性回归是多元统计分析中的一个重要方法,被应用于众多自然科学领域的研究中。多元线性回归分析作为一种较为科学的方法,可以在获得影响因素的前提下,将定性问题定量化,确定各因素对主体问题的具体影响程度。 二.多元线性回归的基本理论 多元线性回归是多元统计分析中的一个重要方法,被广泛应用于众多自然科学领域的研究中。多元线性回归分析的基本任务包括:根据因变量与多个自变量的实际观测值建立因变量对多个自变量的多元线性回归方程;检验、分析各个自变量对因自变量的综合线性影响的显著性;检验、分析各个自变量对因变量的单纯线性影响的显著性,选择仅对因变量有显著线性影响的自变量,建立最优多元线性回归方程;评定各个自变量对因变量影响的相对重要性以及测定最优多元线性回归方程的偏离度等。由于多数的多元非线性回归问题都可以化为多元线性回归问题,所以这里仅讨论多元线性回归。许多非线性回归和多项式回归都可以化为多元线性回归来解决,因而多元线性回归分析有着广泛的应用。 2.1 多元线性回归模型的一般形式 设随机变量y 与一般变量12,, ,p x x x 线性回归模型为 01122...p p y x x x ββββε=+++++ (2.1) 模型中Y为被解释变量(因变量),而12,,,p x x x 是p 个可以精确测量并可控制的一般变 量,称为解释变量(自变量)。p =1时,(2.1)式即为一元线性回归模型,p 大于2时,(2.1)

回归大作业-基于多元线性回归的期权价格预测模型

基于多元线性回归的期权价格预测模型 王某某 (北京航空航天大学计算机学院北京100191)1 摘要:期权是国际市场成熟、普遍的金融衍生品,是金融市场极为重要的金融工具。2015年2月9日,上海证券交易所正式推出了我国首支场内交易期权——上证50ETF期权,翻开了境内场内期权市场的新篇章。50ETF期权上市以来,市场规模逐步扩大,其发展情况境外期权产品相同时期。本文以此为研究背景,以“50ETF购12月1.95”这支期权为研究对象,以今日开盘价、收盘价、最高价、最低价、结算价、成交量、成交额、持仓量、涨停价和跌停价为解释变量,通过多元线性回归模型,预测该期权的明日收盘价。本次研究以多元线性回归的全模型(模型1)为出发点,通过异方差检验、残差的独立性检验、误差的正太分布检验以及多重共线性检验,说明该模型不违反回归的基本假设条件。进而通过主成分回归(模型4)和逐步回归(模型5)进行降维,结果表明因变量与解释变量之间存在强烈的线性相关关系,且主成分回归和逐步回归相比全模型有更好的预测能力。 关键词:期权价格多元线性回归50ETF 多重共线性因子分析 一、引言 期权(option)是依据合约形态划分的一种衍生品,指赋予其购买方在规定期限内按买卖双方约定的价格(即协议价格或行权价格)购买或者出售一定数量某种金融资产(即标的资产)的权利的合约。期权购买方为了获得这个权利,必须支付给期权出售方一定的费用,称为权利金或期权价格[1]。 2015年2月9日,上海证券交易所正式推出了我国首支场内交易期权——上证50ETF,翻开了境内场内期权市场的新篇章。期权是与期货并列的基础衍生产品,是金融市场极为重要的金融工具之一。 自50ETF上市以来,市场规模逐步扩大。2015年2月日均合约成交面值为5.45亿元,12月就达到了47.69亿元,增长了7.75倍;2月日均合约成交量为2.33万张,12月就达到了19.81万张,增长了7.5倍;2月权利金总成交额为2.48亿元,12月就达到了35.98亿元,增长了13.51倍[1]。 我国股票市场有上亿的个人投资者,是一个较为典型的散户市场[1]。相较于专业投资机构讲,散户缺乏时间,精力以及专业分析,投资具有很大的投机行为。对于这些投资者来说,期权价格的变动则是他们最为关注的问题,其变化直接影响到自身的收益。在实际情况中,影响股票价格的因素很多,涉及到金融政策、利率政策以及国际市场等因素,其作用机制也相当复杂[2]。因此,对于期权价格预测的研究,则可以降低投资者的投资风险,及时调整投资结构,从而保障自身的收益。 1作者简介:王某某,北京航空航天大学研究生邮箱:bnuwjx@https://www.360docs.net/doc/be9405319.html,。

多元线性回归模型案例

我国农民收入影响因素的回归分析 本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。?农民收入水平的度量常采用人均纯收入指标。影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。但可以归纳为以下几个方面:一是农产品收购价格水平。二是农业剩余劳动力转移水平。三是城市化、工业化水平。四是农业产业结构状况。五是农业投入水平。考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。 一、计量经济模型分析 (一)、数据搜集 根据以上分析,我们在影响农民收入因素中引入7个解释变量。即:2x -财政用于农业的支出的比重,3x -第二、三产业从业人数占全社会从业人数的比重,4x -非农村人口比重,5x -乡村从业人员占农村人口的比重,6x -农业总产值占农林牧总产值的比重,7x -农作物播种面积,8x —农村用电量。

资料来源《中国统计年鉴2006》。 (二)、计量经济学模型建立 我们设定模型为下面所示的形式: 利用Eviews 软件进行最小二乘估计,估计结果如下表所示: DependentVariable:Y Method:LeastSquares Sample: Includedobservations:19 Variable Coefficient t-Statistic Prob. C X1 X3 X4 X5 X6 X7 X8 R-squared Meandependentvar AdjustedR-squared 表1最小二乘估计结果 回归分析报告为: () ()()()()()()()()()()()()()()() 2345678 2? -1102.373-6.6354X +18.2294X +2.4300X -16.2374X -2.1552X +0.0100X +0.0634X 375.83 3.7813 2.066618.37034 5.8941 2.77080.002330.02128 -2.933 1.7558.820900.20316 2.7550.778 4.27881 2.97930.99582i Y SE t R ===---=230.99316519 1.99327374.66 R Df DW F ====二、计量经济学检验 (一)、多重共线性的检验及修正 ①、检验多重共线性 (a)、直观法 从“表1最小二乘估计结果”中可以看出,虽然模型的整体拟合的很好,但是x4x6

一元线性回归分析的结果解释

一元线性回归分析的结果解释 1.基本描述性统计量 分析:上表是描述性统计量的结果,显示了变量y和x的均数(Mean)、标准差(Std. Deviation)和例数(N)。 2.相关系数 分析:上表是相关系数的结果。从表中可以看出,Pearson相关系数为0.749,单尾显著性检验的概率p值为0.003,小于0.05,所以体重和肺活量之间具有较强的相关性。 3.引入或剔除变量表

分析:上表显示回归分析的方法以及变量被剔除或引入的信息。表中显示回归方法是用强迫引入法引入变量x的。对于一元线性回归问题,由于只有一个自变量,所以此表意义不大。 4.模型摘要 分析:上表是模型摘要。表中显示两变量的相关系数(R)为0.749,判定系数(R Square)为0.562,调整判定系数(Adjusted R Square)为0.518,估计值的标准误差(Std. Error of the Estimate)为0.28775。 5.方差分析表 分析:上表是回归分析的方差分析表(ANOVA)。从表中可以看出,回归的均方(Regression Mean Square)为1.061,剩余的均方(Residual Mean Square)为0.083,F检验统计量的观察值为12.817,相应的概率p 值为0.005,小于0.05,可以认为变量x和y之间存在线性关系。

6.回归系数 分析:上表给出线性回归方程中的参数(Coefficients)和常数项(Constant)的估计值,其中常数项系数为0(注:若精确到小数点后6位,那么应该是0.000413),回归系数为0.059,线性回归参数的标准误差(Std. Error)为0.016,标准化回归系数(Beta)为0.749,回归系数T检验的t统计量观察值为3.580,T检验的概率p值为0.005,小于0.05,所以可以认为回归系数有显著意义。由此可得线性回归方程为: y=0.000413+0.059x 7.回归诊断 分析:上表是对全部观察单位进行回归诊断(Casewise Diagnostics-all cases)的结果显示。从表中可以看出每一例的标准

案例分析 一元线性回归模型

案例分析报告 (2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号: 2204120202 学生姓名:陈维维 2014 年 11月 案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,?最低的青海省仅为人均8192.56元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定?

我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模型。因此建立的是2008年截面数据模型。影响各地区城镇居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。 为了与“城镇居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 以下是2008年各地区城镇居民人均年消费支出和可支配收入表

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显着性检验及预测问题 例子; x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; 增加一个常数项Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型y=+ 成立. 这个是一元的,如果是多元就增加X的行数! function [beta_hat,Y_hat,stats]=regress(X,Y,alpha) % 多元线性回归(Y=Xβ+ε)MATLAB代码 %? % 参数说明 % X:自变量矩阵,列为自变量,行为观测值 % Y:应变量矩阵,同X % alpha:置信度,[0 1]之间的任意数据 % beta_hat:回归系数 % Y_beata:回归目标值,使用Y-Y_hat来观测回归效果 % stats:结构体,具有如下字段 % =[fV,fH],F检验相关参数,检验线性回归方程是否显着 % fV:F分布值,越大越好,线性回归方程越显着 % fH:0或1,0不显着;1显着(好) % =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显着线性关系 % tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显着的线性作用% tH:0或1,0不显着;1显着 % tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显着的线性作用 % =[T,U,Q,R],回归中使用的重要参数 % T:总离差平方和,且满足T=Q+U % U:回归离差平方和 % Q:残差平方和 % R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明 % 比如要拟合y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10; % x2=rand(10,1)*10; % Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据 % X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了

多元线性回归模型基于spss分析

多元线性回归模型 SPSS分 析 学院:数信学院 姓名:唐姣

学号:20124668 班级:统计3班 1.数据生成 根据给定回归模型Y=β0+β1*x1+β2*x2+err 生成100个生成数组(见附表格),其中=105、=0.5,、 =-0.3、err~N(50,6). 建立散点图

由图得知y与x1的线性关系为

由图得知y与x2的线性关系为 综合以上各个变量与y的关系可以综合得知各个x与y的关系为:Y=β0+β1*x1+β2*x2+err 其中:y~被解释变量(因变量)、x1, x2、x3~解释变量(回 归变量, 自变量)b、~回归系数e~随机误差(均值为零的正态分布随机变量) 2.模型拟合概述 列出模型的R、R2、调整的R2和估计标准差,R2

越大反应了两变量的共变量比率越高,模型与数据的拟合程度越好。 Model Summary b Model R R Square Adjusted R Square Std. Error of the Estimate 1 1.000a 1.000 1.000 .000000179752611 a. Predictors: (Constant), err, x1, x2 本例所用数据拟合结果显示:所考察的自变量和因变量之间的相关系数为1.000,拟合线性回归的确定性系数为 1.000,经调整后的确定性系数为 1.000,估计标准差0.000000179752611。 3.方差分析表 列出了变异源、自由度、均方、F值及对F的显著性检验

ANOVA b Model Sum of Squares df Mean Square F Sig. 1 Regressio n 4705.011 3 1568.337 . .000a Residual .000 97 .000 Total 4705.011 100 a. Predictors: (Constant), err, x1, x2 b. Dependent Variable: y 本例中回归方程显著性检验结果表明:回归平方和为4705.011,残差平方和0.000,总平方和为4705.011,对应的F统计量的值为0.000,显著性水平小于0.05,可以认为所建立的回归方程有效。 4.回归系数表 Coefficients a Model Unstandardized Coefficients Standardized Coefficients t Sig. 95% Confidence Interval for B B Std. Error Beta Lower Bound Upper Bound 1 (Constant) 105.000 .000 1.559E8 .000 105.000 105.000 x1 .500 .000 .303 1.118E8 .000 .500 .500 x 2 -.300 .000 -.13 3 -4.885E7 .000 -.300 -.300

(完整word版)多元线性回归模型案例分析

多元线性回归模型案例分析 ——中国人口自然增长分析一·研究目的要求 中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。 影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。 二·模型设定 为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。暂不考虑文化程度及人口分布的影响。 从《中国统计年鉴》收集到以下数据(见表1): 表1 中国人口增长率及相关数据

设定的线性回归模型为: 1222334t t t t t Y X X X u ββββ=++++ 三、估计参数 利用EViews 估计模型的参数,方法是: 1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对 话框“Workfile Range ”。在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。其中已有变量:“c ”—截距项 “resid ”—剩余项。在“Objects ”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并在“Name for Objects”上定义文件名,点击“OK ”出现数据编辑窗口。 年份 人口自然增长率 (%。) 国民总收入(亿元) 居民消费价格指数增长 率(CPI )% 人均GDP (元) 1988 15.73 15037 18.8 1366 1989 15.04 17001 18 1519 1990 14.39 18718 3.1 1644 1991 12.98 21826 3.4 1893 1992 11.6 26937 6.4 2311 1993 11.45 35260 14.7 2998 1994 11.21 48108 24.1 4044 1995 10.55 59811 17.1 5046 1996 10.42 70142 8.3 5846 1997 10.06 78061 2.8 6420 1998 9.14 83024 -0.8 6796 1999 8.18 88479 -1.4 7159 2000 7.58 98000 0.4 7858 2001 6.95 108068 0.7 8622 2002 6.45 119096 -0.8 9398 2003 6.01 135174 1.2 10542 2004 5.87 159587 3.9 12336 2005 5.89 184089 1.8 14040 2006 5.38 213132 1.5 16024

相关文档
最新文档