杨辉与杨辉三角

数学家杨辉

杨辉,中国南宋末年杰出的数学家和数学教育家。在13世纪中叶活动于苏杭

一带,其著作甚多。

他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。

其中在《详解九章算法》一书中载有二项(a+b)n展开系数的数字三角形,被称为“杨辉三角”,它的发现比国外同类发现至少早3O0年。

杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。

他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。

他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的"习算纲目"是中国数学教育史上的重要文献。

=================================================================

杨辉介绍

杨辉,字谦光,中国南宋(1127~1279)末年钱塘(今杭州市)人。其生卒年月及生平事迹均无从详考。据有关著述中的字句推测,杨辉大约于13世纪中叶至末叶生活在现今浙江杭州一带,曾当过地方官,到过苏州、台州等地。是当时有名的数学家和数学教育家,他每到一处都会有人慕名前来请教数学问题。

杨辉一生编写的数学书很多,但散佚也很严重。据史料记载,他至少有以下书,曾在国内或国外刊行:

《详解九章算法》12卷(1261)

《详解算法》若干卷

《日用算法》(1262)

《乘除通变算宝》3卷(1274)

《续古摘奇算法如卷》(1275)

《田亩比类乘除捷法如卷》(1275)其中《详解九章算法》残缺不全,《详解算法》、《日用算法》迄今未见传本。而后3种共7卷合刊在一起,被称为《杨辉算法》。

杨辉继承中国古代数学传统,他广征博引数学典籍,引用了现已失传的宋代的许多算书,使我们才得知其部分内容。其中,刘益的“正负开方术”,贾宪的“增乘开方法”与“开方作法本源”图(即误传为“杨辉三角”),就是极其宝贵的数学史料。

杨辉继沈括研究“隙积术”之后,研究了“垛积术”,即关于高阶等差数列的研究。他首次将所谓“幻方”问题作为数学问题研究,并创“纵横图”之名。他给出了三阶至十阶幻方的实例,对某些构成原理也有所研究。杨辉之前在中国尚无这方面的研究成果,杨辉之后,明、清两代中国数学家关于纵横图的研究相继不绝,因此杨耀的著述也是研究关于幻方乃至组合数学历史的珍贵资料。杨辉还非常关心日常计算技巧,改进算法程序。

杨辉不仅著述甚丰,而且是一位杰出的数学教育家。他特别注重数学的普及教育,其许多著作都是为此而编写的教科书。杨辉主张在数学教育中贯彻理论联系实际的原则,在《日用算法》中,他说:“以乘除加减为法,称斗尺田为问;用法必载源流,命题须责实用。”他还主张贯彻循序渐进的原则,在《算法通变本末》(即《乘除通变算宝》上卷)中,专门为初学者制了一份“司算纲目”,要求学习者抓住要领,反复练习,这是我国历史上第一部数学教学大纲。他又告诫初学者:“夫学算者,题从法取,法将题验,凡欲明一法,必设一题。”又说:“题繁难见法理,定摆小题验法理,义既通虽用繁题了然可见也。”可见,他十分强调习题应有典型性。杨辉一生治学严谨,教学一丝不苟,他的这此教育思考和方法,至今也有很重要的参考价值。

===============================================================

古代数学家杨辉的故事

宋、元数学四大家之一的杨辉是世界上第一个排出丰富的纵横图和讨论构成规律的数学家.

说起杨辉的这一成就,还得从一件偶然的小事说起.一天台州府的地方官杨辉坐轿出外巡游,半路上被一个在路中间算题的孩童拦住道路不能通过.杨辉一看来了兴趣,连忙下轿,抬步来到前面.

杨辉摸着孩童的头说:“为何不让本官从此经过?”

孩童答道:“不是不让经过,我是怕你们把我的算式踩掉,我又想不起来了.”

“什么算式?”

“就是把1到9九个数字分三行排列,不论直着加、横着加还是斜着加,结果都是等于15.我们先生说下午一定要把这道题做好.我正算到关键之处.”

杨辉连忙蹲下身,仔细地看孩童的算式,觉得这个算式在哪儿见过,仔细一想,原来是西汉学者戴德编纂的《大戴礼》中所写的文章中提及的.

杨辉和孩童两人连忙一起运算起来,直到天过午,两人才舒了一口气,结果出来了,他们又验算了一下,结果全是15,这才站了起来.结果如图1所示:

?/P>

杨辉回到家中反复琢磨,一有空闲就在桌上摆弄这些数字,终于发现了其中的规律,按照类似的规律,杨辉又得到了“花16图”——把从1到16的数字排列在四行四列的方格中,使每一横行、纵行、斜行四数之和均为34.

后来,杨辉又将散见于前人著作和流传于民间的有关这类问题加以整理,得到了“五五图”“六六图”“衍数图”“易数图”“九九图”“百子图”等许多类似的图.杨辉把这些图总称为纵横图,于1275年写进自己的数学著作《续古摘奇算法》一书中,并流传后世.

但长期以来,人们习惯于把它当做纯粹的数学游戏,并没有给予应有的重视.随着近代组合数学的发展,纵横图显示了越来越强大的生命力,在图论、组合分析、对策论、计算机科学领域中都找到了用武之地.

-----------------------------------------------------------

杨辉和孩童将算题解答出来后的故事外传:

后来,杨辉随孩童来到老先生家里,与老先生谈论起数学问题来。老先生说:“北周的甄弯注《数术记遗》一书中写过‘九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央。”’杨辉听了,这与自己与孩童摆出来的完全一样。便问老先生:“你可知这个九宫图是如何造出来的?”老先生说不知道。

杨辉回到家中,反复琢磨。一天,他终于发现一条规律,并总结成四句话:“九子斜排,上下对易,左右相更,四维挺出”。就是说:先把l~9九个数依

次斜排,再把上l下9两数对调,左7右3两数对调,最后把四面的2、4、6、8向外面挺出,这样三阶幻方就填好了。

杨辉研究出三阶幻方(也叫络书或九宫图)的构造方法后,又系统的研究了四阶幻方至十阶幻方。在这几种幻方中,杨辉只给出了三阶、四阶幻方构造方法的说明,四阶以上幻方,杨辉只画出图形而未留下作法。但他所画的五阶、六阶乃至十阶幻方全都准确无误,可见他已经掌握了高阶幻方的构成规律。

-------------------------------------------------------------

幻方,在我国也称纵横图,它的神奇特点吸引了无数人对它的痴迷。从我国古代的“河出图,洛出书,圣人则之”的传说起,系统研究幻方的第一人,当数我国古代数学家——杨辉。

其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。

杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。

=============================================================

杨辉三角

简单的说一下就是两个未知数和的幂次方运算后的系数问题,比如(X+Y)2等于X2 +2XY+Y2,这样系数就是1 2 1这就是杨辉三角的其中一行,立方,四次方,运算的结果看看各项的系数,你就明白其中的道理了

这就是杨辉三角,也叫贾宪三角。他于我们现在的学习联系最紧密的是2项式乘方展开式的系数规律。如图,在贾宪三角中,第3行的第三个数恰好对应着两数和的平方公式(在此就不做说明了)依次下去杨辉三角是一个由数字排列成的三角形数表,一般形式如下:

杨辉三角最本质的特征是,它的两条斜边都是

由数字1组成的,而其余的数则是等于它肩上的两

个数之和。

同时这也是多项式(a+b)^n 打开括号后的各个项的二次项系数的规律,即为

0 (a+b)^0 (0 nCr 0)

1 (a+b)^1 (1 nCr 0) (1 nCr 1)

2 (a+b)^2 (2 nCr 0) (2 nCr 1) (2 nCr 2)

3 (a+b)^3 (3 nCr 0) (3 nCr 1) (3 nCr 2) (3 nCr 3)

. ... ... ... ... ...

因此杨辉三角第x层第y项直接就是(y nCr x)

我们也不难得到第x层的所有项的总和为 2^x (即(a+b)^x中a,b都为1的时候)

[ 上述y^x 指 y的 x次方;(a nCr b) 指组合数]

这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。在国外,这也叫做“帕斯卡三角形”。

S1:这些数排列的形状像等腰三角形,两腰上的数都是1

S2:从右往左斜着看,第一列是1,1,1,1,1,1,1;第二列是,1,2,3,4,5,6;第三列是1,3,6,10,15;第四列是1,4,10,20;第五列是1,5,15;第六列是1,6……。

从左往右斜着看,第一列是1,1,1,1,1,1,1;第二列是1,2,3,4,5,6……和前面的看法一样。我发现这个数列是左右对称的。

S3:上面两个数之和就是下面的一行的数。

S4:这行数是第几行,就是第二个数加一。……

-----------------------------------------------------------

杨辉三角的简史:北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算,南宋数学家杨辉在《详解九章算法》(1261年)记载并保存了“贾宪三角”,故称杨辉三角。元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了“贾宪三角”成“古法七乘方图”。

时间上:杨辉(1261)朱世杰(1303)也明显就可以知道是杨辉发现的朱世杰只是扩充了其中的内容

附贾宪资料:

贾宪,北宋人,约公元1050年完成一部叫《黄帝九章算术细草》的著作,原书丢失,但其主要内容被南宋数学家杨辉著《详解九章算法》(1261)摘录,因能传世。根据杨辉的摘录,贾宪的高次开方法是以一张称为“开方作法本源”的图为基础。开方作法本源图现称“贾宪三角”或“杨辉三角”,它实际上是一张二项系数表。贾宪增乘开方法,是一个非常有效的和高度机械化的算法,可适用于开任意高次方。这种随乘随加、能反复迭代计算减根变换方程各项系数的方

法,与现代通用的“霍纳算法”(1819)已基本一致。而与此方法相联系的“贾宪三角”,在西方文献中则称“帕斯卡三角”(1654)。

杨辉三角的规律以及推导公式

杨辉三角的规律以及定理 李博洋 摘要杨辉三角中的一些规律 关键词杨辉三角幂二项式 引言 杨辉是我国南宋末年的一位杰出的数学家。在他所着的《详解九章算法》一书 中,画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现 在简称为“杨辉三角”,它是世界的一大重要研究成果。我们则来对“杨辉三角”的 规律进行探讨和研究。 内容 1二项式定理与杨辉三角 与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即。 杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。 由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为:121 则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数 为:1331但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。 展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为: 14641似乎发现了一些规律,就可以发现以下呈三角形的数列: 1(110) 11(111) 121(112) 1331(113)

14641(114) 15101051(115) 1615201561(116) 因此可得出二项式定理的公式为: (a+b)n=C(n,0)a^n*b^0+C(n,1)a^(n-1)*b^1+...+C(n,r)a^(n-r)*b^r...+C(n,n)a^0*b^n 因此,二项式定理与杨辉三角形是一对天然的数形趣遇,它把带进了。求二项式展开式系数的问题,实际上是一种组合数的计算问题。用系数来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。 2杨辉三角的幂的关系 首先我们把杨辉三角的每一行分别相加,如下: 1(1) 11(1+1=2) 121(1+2+1=4) 1331(1+3+3+1=8) 14641(1+4+6+4+1=16) 15101051(1+5+10+10+5+1=32) 1615201561(1+6+15+20+15+6+1=64) …… 相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…次幂,即杨辉三角第n行中n个数之和等于2的n-1次幂 3杨辉三角中斜行和水平行之间的关系 (1) 1(2)n=1 11(3)n=2 121(4)n=3 1331(5)n=4

浅谈数学史在初中数学教育的体现

浅谈数学史在初中数学教育的体现 长期以来,数学学科在教学过程中的“缺人”现象一直存在.所谓的“缺人”现象就是对人文素养的缺失与忽视.而实际上,教学过程中适当的融入数学史的做法便是很好的人文渗透.以人文渗透的方式丰富数学学习的内容与形式,可以让学生喜欢数学、会学数学、进而学好数学.从数学史的内容分布来看,在数学教育中渗透数学史的元素可以从以下几个方面人手. 一、数学史之数学概念的发生、发展过程 数学概念是数学中最基本的元素之一,对数学概念的历史挖掘可以更好的让学生对概念的本质产生直观印象,从源头帮助学生学好知识,学透知识. 正数与负数的历史发展 正数与负数的产生是人类思维进化的大飞跃.在原始时期,人们没有数的概念,在计数的时候往往使用手指计数,当手指数量不够用

的时候,人们就会借助结绳、棍棒、石子的方式计数.随着社会的发展,尤其是经济的发展.对计数的要求就逐渐变高,于是就有了自然数的概念,分数的产生.而在生活中则有了比0度还低的温度……这些情景的出现就要求人类开始考虑数字的正反,多少两个层面的含义,于是就诞生了负数的概念.这种正负数产生的过程就可以让学生真切的感知负数诞生的历史背景和社会生态,有利于学生将正负数的知识迁移运用到生活当中. 二、数学史之定理的发现与证明过程 传统课堂中对定理的证明和介绍往往是将证明过程进行展示,学生对定理的来历和证明过程的原始记载并无掌握,不能很好的形成对所学知识的深刻印象.将定理证明的来源及其在不同国家的历史发展介绍给学生将有助于深化对定理的理解,学习伟大数学家对待证明的方法,并感悟数学思想的魅力. 勾股定理的证明

在中国,勾股定理的证明最早可以追溯到4000年前.在《周髀算经》的开头就有关于勾股定理的相关内容;而在西方有文字记载的最早给出勾股定理证明的则是毕达哥拉斯.相传是毕达哥拉斯在朋友家做客时,无意中看到朋友家地板的形状,于是便在大脑中出现了一系列的假设和猜想,并随后给予了论证.当毕达哥拉斯证明了勾股定理以后,欣喜若狂,于是杀牛百头以示祝贺.现在,数学家已经从不同的角度对勾股定理进行了证明,证明方法多达几十种. 三、数学史之数学历史中较为有名的难题解析 在数学的发展史中,有一些流传下来的被后人津津乐道的数学难题,这些题目的解答中往往蕴含着丰富的数学解题思想和独特的思维方式,同时也可以让学生感受到数学问题的奥秘并从中获得启示. 哥尼斯堡七桥问题

数列与三角函数练习题 难题

[例1]已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x )=(x -1)2,且a 1=f (d -1),a 3=f (d +1),b 1=f (q +1),b 3=f (q -1), (1)求数列{a n }和{b n }的通项公式; 解:(1)∵a 1=f (d -1)=(d -2)2,a 3=f (d +1)=d 2 , ∴a 3-a 1=d 2-(d -2)2=2d , ∵d =2,∴a n =a 1+(n -1)d =2(n -1);又b 1=f (q +1)=q 2,b 3=f (q -1)=(q -2)2 , ∴ 2 2 1 3)2(q q b b -==q 2 ,由q ∈R ,且q ≠1,得q =-2, ∴b n =b ·q n -1=4·(-2)n -1 [例2]设A n 为数列{a n }的前n 项和,A n = 2 3 (a n -1),数列{b n }的通项公式为b n =4n +3; (1)求数列{a n }的通项公式; (2)把数列{a n }与{b n }的公共项按从小到大的顺序排成一个新的数列,证明:数列{d n }的通项公式为d n =3 2n +1 ; 解:(1)由A n = 2 3(a n -1),可知A n +1= 2 3(a n +1-1), ∴a n +1-a n =2 3 (a n +1-a n ),即n n a a 1+=3,而a 1=A 1=2 3 (a 1-1),得a 1=3,所以数列是以3 为首项,公比为3的等比数列,数列{a n }的通项公式a n =3n . (2)∵32n +1=3·32n =3·(4-1)2n =3·[42n +C 12n ·42n -1(-1)+…+C 1 22-n n ·4·(-1)+(-1)2n ]=4n +3, ∴32n +1∈{b n }.而数32n =(4-1)2n =42n +C 12n ·42n -1·(-1)+…+C 122-n n ·4·(-1)+(-1)2n =(4k +1), ∴32n ?{b n },而数列{a n }={a 2n +1}∪{a 2n },∴d n =32n +1. [例3]数列{a n }满足a 1=2,对于任意的n ∈N *都有a n >0,且(n +1)a n 2+a n ·a n +1- na n +12 =0,又知数列{b n }的通项为b n =2 n -1 +1. (1)求数列{a n }的通项a n 及它的前n 项和S n ; (2)求数列{b n }的前n 项和T n ; (3)猜想S n 与T n 的大小关系,并说明理由. .解:(1)可解得 1 1+= +n n a a n n ,从而a n =2n ,有S n =n 2+n ,

杨辉三角形的生活运用和规律

杨辉三角形规律 每行数字两边对称每行数字左右对称,由1开始逐渐变大,然后变小,回到1。 第n行的数字个数为n个。 第n行数字和为2^(n-1)。(2的(n-1)次方) 每个数字等于上一行的左右两个数字之和。可用此性质写出整个帕斯卡三角形。 将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第2n个斐波那契数。将第2n行第2个数,跟第2n+1行第4个数、第2n+2行第6个数……这些数之和是第2n-1个斐波那契数。 第n行的第1个数为1,第二个数为1×(n-1),第三个数为1×(n-1)×(n-2)/2,第四个数为1×(n-1)×(n-2)/2×(n-3)/3…依此类推。 两个未知数和的n次方运算后的各项系数依次为杨辉三角的第(n+1)行

杨辉三角在弹球游戏中的应用 如图1的弹球游戏,小球向容器内跌落,碰到第一层挡物后向两侧跌落碰到第二层阻挡物,再向两侧跌落第三层阻挡物,如此一直下跌最终小球落入底层。根据具体地区获的相应的奖品(。 图1 我们来分析一下为什么小球落到不同区域奖品会有如此大的差别?A 区的奖品价值高于D 区,说明小球落入A 区的可能性要比落入D 区的可能性小,转化为数学问题就是小球落入A 区和D 区的概率。小球要落入D 区的情况有两种,有概率知识得: D 1 D 2 就是说,小球落入D 区的概率是等于它肩上两区域概率之和的 2 1,据此小球落入各区的概率为可以按以上方法类推,如下: 2121 1 8381 3213232323232 1 64646641564206415646641 A B C D E F G 图2

三角函数与数列高考题

三角函数与数列(高考题)1.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=. (1)证明:sin A sin B=sin C;(2)若b2+c2-a2=bc,求tan B. 2.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c. (1)求C; (2)若c=,△ABC的面积为,求△ABC的周长. 3.在△ABC中,a2+c2=b2+ac. (1)求∠B的大小; (2)求cos A+cos C的最大值. 4.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin 2B=b sin A. (1)求B; (2)若cos A=,求sin C的值. 5.设f(x)=2sin(π-x)sin x-(sin x-cos x)2. (1)求f(x)的单调递增区间; (2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g的值. 6.设f(x)=sin x cos x-cos2. (1)求f(x)的单调区间; (2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f=0,a=1,求△ABC面积的最大值. 7.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍. (1)求;(2)若AD=1,DC=,求BD和AC的长. 8.已知向量=,=(sinx,cos2x),x∈R,设函数f(x)=·. (1) 求f(x)的最小正周期. (2) 求f(x) 在上的最大值和最小值. 9.已知ΔABC的角A,B,C所对的边分别是a,b,c,设向量,, . (1)若//,求证:ΔABC为等腰三角形;(2)若⊥,边长c= 2,角C=,求ΔABC的面积.

高中数学论文:浅谈高中数学个性化课堂教学尝试

高中数学论文 让学生个性在数学课堂中张扬 ——浅谈高中数学个性化课堂教学尝试 【内容提要】学习是学生的个性化行为,作为教师,应当在课堂教学环境中创设一个有利于张扬学生个性的场所,因此高中数学要求学生积极、主动、健康地学习,充分发展其个性特长。这就需要我们教师在课堂教学中更加关注和努力尝试个性化教学,然而如何在课堂教学中实施有效的个性化教学就成了关键问题。本文以杨辉三角型数列问题为例,谈谈如何在日常教学中实施个性化课堂教学的问题。 【关键词】个性化课堂教学 数学学习是学生学习的个性化行为,在这个个性化过程中,让学生在数学课堂教学中展示个性化学习,让学生的个性得到充分的发展,做到教师个性化的教和学生个性化的学的统一。数学课程理念倡导:日常教学要使学生积极、主动、健康地学习,充分发展其个性特长。为了实现这一目标,教师在课堂教学时,要凭借良好的教学素质,创造性地处理教材,合理的创设课堂氛围,最优化地组合课堂结构,最大程度的发挥学生的主体作用,让课堂真正成为学生自己的舞台。充分发掘学生的聪明才智,调动学生的学习积极性,使课堂教学适应个体个性化的自然需要,从而有效的提高课堂效率。而以往受应试教育和教学设施的影响,高中实施个性化教育还只停留在“空想”阶段,随着新课程改革的不断深入和现代教育技术的应用,使得个性化课堂教学成为一种可能,更是一种必然.而教学实践中,教师对如何开展个性化课堂教学比较陌生,不知道如何有效地对学生进行个性化教学。这一问题成为了日常教学的焦点,也是一个难点。下面就结合《杨辉三角型数列问题》教学案例谈谈笔者在实施个性化课堂教学中的尝试。 高一学生在学习完数列内容后,开展了有关杨辉三角问题的研究性学习,初步熟悉了杨辉三角的概念及基本性质.为了进一步培养学生的能力,真正达到研究性学习的目的,借用学生熟悉的杨辉三角模型,设计了有关杨辉三角型数列问题的延续课。 一、知识积累阶段 例1 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1

杨辉三角(教案)

杨辉三角(1) 目的要求 1.了解有关杨辉三角的简史,掌握杨辉三角的基本性质。 2.通过研究杨辉三角横行的数字规律,培养学生由特殊到一般的归纳猜想能力。 3.通过小组讨论,培养学生发现问题。探究知识、建构知识的研究型学习习惯及合作化学习的团队精神。 内容分析 本课的主要内容是总结杨辉三角的三个基本性质及研究发现杨辉三角横行的若干规律。 杨辉三角的三个基本性质主要是二项展开式的二项式系数即组合数的性质,它是研究杨辉三角其他规律的基础。杨辉三角横行的数字规律主要包括横行各数之间的大小关系。组合关系以及不同横行数字之间的联系。 研究性课题,主要是针对某些数学问题的深入探讨,或者从数学角度对某些日常生活中和其他学科中出现的问题进行研究。目的在于培养学生的创新精神和创造能力。它要求教师给学生提供研究的问题及背景,让学生自主探究知识的发生发展过。从问题的提出、探索的过程及猜想的建立均主要由学生自主完成,教师不可代替,但作为组织者,可提供必要指导。 教师首先简介杨辉三角的相关历史,激发学生的民族自豪感和创造欲望,然后引导学生总结有关杨辉三角的基本知识(研究的基础)及介绍发现数字规律的主要方法(研究的策略),并类比数列的通项及求和,让学生对n阶杨辉三角进行初步的研究尝试活动,让学生充分展开思维进入研究状态。 以下主要分小组合作研究杨辉三角的横行数字规律,重点发现规律,不必在课堂上证明。 教学过程 (一)回顾旧知 1.用电脑展示贾宪三角图、朱泄杰的古法七乘方图、帕斯卡三角图(附后),同时播放用古代民族乐器演奏的音乐。

教师介绍杨辉三角的简史:北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算,南宋数学家杨辉在《详解九章算法》(1961年)记载并保存了“贾宪三角”,故称杨辉三角。元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了“贾宪三角”成“古法七乘方图”。在欧洲直到1623年以后,法国数学家帕斯卡在13岁时发现了“帕斯卡三角”。 2.用电脑展示15阶杨辉三角或事先印好15阶杨辉三角分发给学生。对照杨辉三角,回顾高二下学期学过的杨辉三角的构造及基本性质,并由学生叙述。 1°与二项式定理的关系:杨辉三角的第n行就是二项式 n b a) (+展开 式的系数列 } {R N C。 2°对称性:杨辉三角中的数字左、右对称,对称轴是杨辉三角形底边 上的“高”,即 r n n r n c C- =。 3°结构特征:杨辉三角除斜边上1以外的各数,都等于它“肩上”的 两数之和,即 r n r n n r n C c C 1 1- - - + =。 (二)分组研究杨辉三角横行规律(将全班学生按前后排四或五人一组分成若干研究小组) 1.介绍数学发现的方法:杨辉三角中蕴涵了许多优美的规律。古今中外,许多数学家如贾宪、杨辉、朱世杰、帕斯卡、华罗庚等都曾深入研究过,并将研究结果应用于其他工作。他们研究的方法可以归纳为:

三角函数数列公式大全

三角函数数列公式大全 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

三角函数公式:(1).弧度制:180o rad π=,'18015718o o rad π = ≈ 弧长公式:l r α=,扇形面积公式:2112 2 S r lr α== (2)定义式:设角α终边上一点为(),P x y ,22r OP x y ==+则: sin ,cos ,tan ;y x y r r x ααα= == (3)同角基本关系式:22sin sin cos 1,tan ;cos α αααα +== (4)诱导公式:奇变偶不变,符号看象限。 (5)两角和差公式:()sin sin cos cos sin ,αβαβαβ±=± ()cos cos cos sin sin ,αβαβαβ±= ()tan tan tan ;1tan tan αβ αβαβ ±±= (6)二倍角公式:2 2tan sin 22sin cos ,tan 2;1tan α ααααα == - 2222cos 2cos sin 12sin 2cos 1ααααα=-=-=-; (7)降幂公式: ()()22111 sin cos sin 2,sin 1cos 2,cos 1cos 2;222 ααααααα==-=+ (8)合一公式:()22sin cos sin ,a b a b ααα?+=++其中tan b a ?=。 2.三角函数图像和性质:

(二)、函数图像的四种变换: (三)、函数性质: 1.奇偶性: (1)定义:奇函数:对于定义域内任何自变量x ,都有()()f x f x -=-,则称()f x 为奇函数。 偶函数:对于定义域内任何自变量x ,都有()()f x f x -=,则 称()f x 为偶函数。 (2)图像:奇函数图像关于原点对称,若自变量可以取0,则()00f =;偶函数图像关于y 轴对称。 (3)常见的奇函数:,,a k y kx y y x x ===(a 为奇数), (),0,k y x k R k x =+ ∈≠sin ,y x =tan ;y x = 常见的偶函数:,a y m y x ==(a 为偶数),cos y x =,y x =。 (4)奇偶函数四则运算与复合:

浅谈数学教学中的德育教育

浅谈数学教学中的德育教育 发表时间:2011-10-27T09:05:41.360Z 来源:《学习方法报●语数教研周刊》2011年第5期供稿作者:薛在敏 [导读] 德育在现代人素质结构中占居着核心地位,德育是素质教育的根本. 山东海阳市留格庄镇第二初级中学薛在敏 别林斯基说过:“有许多种教育与发展,而且每一种都具有自己的重要性,不过德育在它们中应该首屈一指”.德育在现代人素质结构中占居着核心地位,德育是素质教育的根本.寓德育教育于中学数学教学中,是素质教育、义务教育数学教学大纲的重要组成部分,数学教育要实施素质教育就应该在学科教学中有机地渗透德育,引导学生在学习数学的同时提高自身素质,完善自我. 一、立足教材,挖掘德育内容 德育渗透在数学中的内容是多方面的.大纲要求:“根据数学学科特点,对学生进行学习目的的教育,爱祖国、爱社会主义、爱科学教育,辩证唯物主义观点的启蒙教育——”.其中爱国主义教育是德育教育的灵魂和核心,缺乏或忽视它都是不健全、不完善的教育.在教材中有许多反映我国国情建设、科技资源、环境保护等内容,有意识、有计划地加以发挥是渗透德育的基本途径. 如教学“科学记数法”时,向学生讲解“我国的领土有960万平方公里,我国的第一大岛台湾的面积是135700平方米——”.通过讲解这些知识进行国情教育,使学生了解祖国的大好河山,心中有祖国,做爱国的中国人;同时明确认识到台湾是中国的一部分,香港、澳门的回归已成现实,我们盼望着祖国的完全统一. “近几年我国国内生产总值连续增长,2001年达到95933万亿元,2002年102398万亿元,2003年116694万亿元”.每一年的增长率是多少?通过完成这道应用题,学生们了解到了祖国在改革开放中各个方面取得的成就,瞩目祖国的不断强大,从而进一步激发学生们热爱祖国,拥护改革开放政策,为他们将来的学习和发展奠定坚实的思想基础. 中国上下五千年中,数学方面的发明创造是数学发展史中的光辉篇章.在进行圆周长、圆面积、扇形面积、圆柱(锥)体积等教学时,所用的圆周率,都不忘介绍祖冲之、刘徽为研究圆周率所作的巨大努力和杰出的贡献,用以激发学生们的民族自豪感,坚定学好数学的决心. 在教学完全平方公式时,也不失时机地讲解“杨辉三角”的辉煌业绩以及在高数中的重要地位,激发学生的求知欲望,为将来的发展而奋斗. 二、结合实际,丰富德育内涵 数学属于理科类,其思想往往是内隐和深藏的,有时就需要教师创造渗透德育教育的条件,如自编习题,这也是扩大教育的一种好方法. 现代的学生大部分是独生子女,在长辈们无微不至的关怀下,往往养成了以自我为中心不良习性,不懂得关心别人和尊敬长辈.有些家长向我反映,他们的孩子在家好吃好穿,不考虑别人,更有甚者,穿衣服要穿名牌,很少顾及到家长辛勤劳作的艰辛.于是我在教学时,经常自编了一些暗示题 编题时,我还结合学校“向灾区人民献爱心”活动,培养学生的社会责任感;结合植树节,渗透绿化环境、美化家园、爱我海阳核电的教育;结合“两弹一星”的丰功伟绩,激发学生爱科学、学科学、报效祖国的远大理想;还结合诸如节约用煤、粮食增产、降低利息、缴纳税款等资料,使学生在解题中受到全方位的思想教育,达到全面提高学生素质. 三、摆正态度,倡导德育评价 数学是一门基础性极强的学科,部分学生由于某一阶段或某一时期的学习态度、方法等因素导致了当前学习上的障碍和暂时落后,从而引起了同班同学的冷眼,致使他们有一种抬不起头的感觉,学习上很大程度上会出现畏难怕学的情绪,在这种情况下,我的态度十分鲜明,就是帮助他们,我尽可能地让他们感到班级、同学的温暖,给他们最好的位置, 四、改进教法,提高德育实效 随着现代社会的飞速发展,建设成就、科技发明可以说无一不是群体的力量.在实践中、竞争中团结合作,是每一个公民必须具备的素质,培养学生这些思想品质,也是实施德育教育的一项内容,数学学科十分有利于培养学生的这些意识.在教学过程中改变传统的“我讲你听”的方式,充分让学生主动的参与教学,设计“一帮一”、“一对红”,自由讨论、邻桌小议、分组讨论等形式,达到协作互助、共同进步.如教学“解直角三角形”知识后,课后让学生分小组结合,自由选择课题,设计问题,运用解直角三角形知识解决生活中的实际问题.于是有的小组测量旗杆高度、有的测量河宽,——学生们有的准备工具、有的测量数据、解答计算,最后带到课内评比交流,师生共同评价.这种方法使学生互相取长补短,学生间合作,小组间竞争,从中学做人,提高德育的实效性,把个人融于团队之中. 数学教学中对学生进行的德育渗透,可能只是点点滴滴,但只要长期坚持,学生定会耳濡目染,潜移默化,集腋成裘,学生的品德素质将随着数学学习同步提高,从而实现真正意义上的素质教育.

杨辉三角 小学数学 精品

杨辉三角 人教版小学数学五年级下期第115页第10题,涉及著名的“杨辉三角”, 对此,教参中已有所介绍。为了提高学生的学习兴趣,加深对“杨辉三角”的理解,增强学生的民族自豪感和爱国热情,下面推荐一个有趣的数学游戏。 老师出示一张图(有条件的可以使用多媒体): 宣布:“现在和同学们玩一个有趣的数学游戏。请一位同学在这个图的最下面一行6个圆圈里任意各填一个一位数,我随即在顶端那个圆圈里写一个数。然后,大家按照图中的连线,算出最下面那行相邻两个圆圈里的数的和,填入上一行的圆圈里。自下而上照这样进行下去,直到算出顶端那个圆圈里应该填的数,一定跟我已经填好的数一样。哪位同学愿意试一试?” 等那位同学把最下面一行的6个数填好以后,老师迅速算出左起第三、四两个数的和的10倍,加上第二、五两个数的和的5倍,再加上第一、六两个数,得数就是顶端那个圆圈里应该填的数。 比如,从左到右,学生所填的数是4、1、8、6、2、3,老师就应该填10 ×(8+6)+5×(1+2)+(4+3)=140+15+7=162。 这是为什么呢?原来,“杨辉三角”中的数是有规律的。 规律是:自上而下,每个圆圈里的数等于与它相连的,上一行圆圈里的数的和。比如,第三行中间圆圈里的数之所以是2,就因为与它相连的第二行两个圆圈里的数都是1,1+1=2。依此类推。 游戏相当于把上面的过程倒回去,所以要把圆圈里的数分别乘上1、5、10、10、5、1。

等玩过两三次以后,学生一定会急于知道老师是怎样做到未卜先知的,甚至有些爱动脑筋的学生,已经在开始探求其中的奥秘了。这时,可以启发学生用学过的“用字母表示数”的方法,看看最下面那行所填的6个数,在整个计算过程中究竟各用了几次。 设:第六行所填的6个数依次为A、B、C、D、E、F。第五行就是A+B、B +C、C+D、D+E、E+F;第四行就是A+2B+C、B+2C+D、C+2D+E、D+2E+F;第三行就是A+3B+3C+D、B+3C+3D+E、C+3D+3E+F;第二行就是A+4B+6C+4D+E、B+4C+6D+4E+F;顶端的数就是A+5B+10C+10D +5E+F,即10(C+D)+5(B+E)+(A+F)。从而得出前面所总结出的方法。 “杨辉三角”在数学中有着重要作用,同时又具有直观形象的特点,对于培养学生的思维能力很有好处,值得给学生提供一个加深印象的机会。 杨辉三角 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 …… 中还隐藏着许多奥秘: 请看这些斜线上的数: 自然数 1 三角形数 1 1 四面体数 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 …… 一、自然数:1,2,3,4,… 求前n个自然数的和,无需使用公式,答案就在第n个自然数的左下方。比如,前4个自然数的和,就在第4个自然数4的左下方,是10。前5个自

三角函数数列不等式

,. 玉林市第十一中学2017春段考试卷 第I 卷(选择题) 请点击修改第I 卷的文字说明 评卷人 得分 一、选择题 1.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) A .64 B .81 C .128 D .243 2.设数列,,,,…,则是这个数列的 A.第6项 B.第7项 C.第8项 D.第9项 3.一个三角形的三个内角A 、B 、C 成等差数列,那么()tan A C +的值是 A .3 B .3- C .3- D .不确定 4.(选修4—5)设,x y R +∈且2x y +=,则41x y +的最小值为( ) A .9 B .92 C .7 D .72 5.已知首项为正数的等差数列{}n a 满足:0,02004200320042003+a a a a , 则使前n 项和0>n S 成立的最大自然数是 ( ) A .4005 B.4010 C .4011 D .4006

,. 6.在ABC ?中,bc c b a ++=222,则A 等于( ) A ????30.45.60.120.D C B 7.在ABC ?中,若tan tan 1A B >,则ABC ?是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法确定 .38.在等差数列{}n a 中a 3+a 4+a 5=12,n S 为数列{}n a 的前n 项和,则S 7 =( ) A.14 B.21 C.28 D.35 9.已知ABC ?中,已知45,2,2,A AB BC ∠=?= =则C ∠= ( ) A .30° B .60° C .120° D .30°或150° 10.在△ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边,∠A=60o,1=b , △ABC 的面积ABC S ?=3,则 C B A c b a sin sin sin ++++的值等于( ) (A) 3932 (B) 3326 (C) 338 (D) 32 11.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则2a 10-a 12的值为 ( ) A.20 B.22 C.24 D.28 12.等差数列{}n a 的前n 项和是n S ,若12345,9,a a a a +=+=则10S 的值为 ( ) A 、55 B 、60 C 、65 D 、70 13.已知0>a ,0>b 且223=+b a ,则ab 的最大值为( )

斐波那契数列的启示

Xxxxxxxxxxx大学 课程论文(2013-2014学年春季学期) 论文题目: 课程名称: 任课教师: 班级: 学号: 姓名:

浅谈斐波那契数列 摘要: 斐波那契数列,又称作黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21……这个数列从第三项开始,每一项都等于前两项之和。斐波那契数列的发明者,是意大利数学家列昂纳多?斐波那契(Leonardo Fibonacci)。本文主要就斐波那契数列的提出与特征进行简要分析,通过举例重点说明斐波那契数列在实际生活当中的表现与应用,进而得到启示。 关键词: 斐波那契数列; 特征; 应用 Research on Fibonacci sequence (Institute of Technology, China Agricultural University, FENG-Wei) Abstract: Fibonacci sequence, also known as the golden series, referring to such a sequence: 1,1,2,3,5,8,13,21…… this sequence beginning from the third term, each of which equal to the sum of the first two terms. The inventor of Fibonacci series was an Italian mathematician——Leonardo Fibonacci. This tractate focuses on the characteristics of Fibonacci sequence and has a brief analysis, as well as giving examples to analyze the performance and application of Fibonacci sequence in real life, and then get inspirations. Key words: Fibonacci sequence; Characteristics; Application

杨辉三角

杨辉三角 教学设计思想: 这节课是高三数学(选修II )的研究性课题,是在高二学过的“二项式定理”的基础上,进一步探讨和研究杨辉三角的性质,实质上就是二项展开式的二项式系数即组合数的性质。 (1)让学生在教师设计的问题情境中,自己根据已经学过的知识去发现问题→提出问题→解决问题,即观察、猜想、归纳杨辉三角横行、竖向、斜向的数字各数之间的大小关系、组合关系及各数字之间的联系等规律。 (2)在学生自主探究知识的发生发展过程中从中体会到数学世界的神奇和有趣,激发他们对数学的热爱之情。培养他们的交流与协作的能力。 (3)通过向他们介绍杨辉三角的有关历史,让他们了解中国古代数学的伟大成就,增强他们的民族自豪感。 教学 目标: 1 使学生了解杨辉及杨辉三角的有关历史,掌握杨辉三角的基本性质,并能认识到中国古代的数学的辉煌成就。 2 让学生在老师的启发下自己去探讨杨辉三角中行、列的数字的特点, 发现杨辉三角的有关的性质,培养学生由特殊到一般的归纳猜想能力。 3通过讨论,培养学生发现问题、提出问题、解决问题的能力。在交流中培养学生的协作能力,形成探究知识、建构知识的研究型学习习惯及合作化学习的团队精神,为进一步学习作好准备。 教学过程: 一 引入 今天我们在高二学过的杨辉三角的基础上,进一步探索杨辉三角数字中横 向、竖向、斜向…中蕴含的有趣的数量关系。(幻灯片:出示杨辉三角的前3行,余下的让学生补充完整) 二 杨辉简介 杨辉,中国南宋时期杰出的数学家 和数学教育家。在13世纪中叶活动于 苏杭一带,其著作甚多。其中《详解九章算术》 中的“开方作法本源图”,曾被称为“杨辉三角”, 杨辉指明次系贾宪(约11世纪)所用. 三 探讨杨辉三角的性质 ? ??++++++=++++++=+++++=++++=+++=++=+=+6 43223245665 432234554 3223443 22332 221061520156)(510105)(464)(33)(2)()(1)(b ab b a b a b a b a a b a b ab b a b a b a a b a b ab b a b a a b a b ab b a a b a b ab a b a b a b a b a

三角函数与数列

三角函数与数列(高考题) 1.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=. (1)证明:sin A sin B=sin C;(2)若b2+c2-a2=bc,求tan B. 2.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c. (1)求C; (2)若c=,△ABC的面积为,求△ABC的周长. 3.在△ABC中,a2+c2=b2+ac. (1)求∠B的大小; (2)求cos A+cos C的最大值. 4.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin 2B=b sin A. (1)求B; (2)若cos A=,求sin C的值.

5.设f(x)=2sin(π-x)sin x-(sin x-cos x)2. (1)求f(x)的单调递增区间; (2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g的值. 6.设f(x)=sin x cos x-cos2. (1)求f(x)的单调区间; (2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f=0,a=1,求△ABC面积的最大值. 7.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍. (1)求;(2)若AD=1,DC=,求BD和AC的长.

8.已知向量=,=(sinx,cos2x),x∈R,设函数f(x)=·. (1) 求f(x)的最小正周期. (2) 求f(x) 在上的最大值和最小值. 9.已知ΔABC的角A,B,C所对的边分别是a,b,c,设向量,, . (1)若知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1. (1)求数列{b n}的通项公式; (2)令c n=.求数列{c n}的前n项和T n. 11.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*. (1)求通项公式a n;(2)求数列{|a n-n-2|}的前n项和. 12.已知数列的前项和为,且对一切正整数都成立。 (Ⅰ)求,的值;

杨辉三角的规律以及推导公式

精心整理 杨辉三角的规律以及定理 二项式定理与杨辉三角1与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。 2的展开式来探讨。杨辉三角我们首先从一个二次多项式(a+b)222此代数式的系数为:121 由上式得出:(a+b)+2ab+b=由此可发现,此代数式的系+3+b+3ab(a+b 的展开式是什么呢?答案为(a+b的展开式。为133但似乎没有什么规律,所以让我们再来看b2+4a展开式为由此又可发现,代数式的系数为+4+b+6464似乎发现了一些规律,就可以发现以下呈三角形的数列:1 ) 1(1)11(112) 121(113) 1331(114) 14641(115) 15101051(116) 1615201561(11)1,4,6,4,1,(,1,2,1)(1,3,3,1)1,杨辉三角形的系数分别为:(1,1),(:所以(),1,7,21,35,35,21,7,1) (1,5,10,10,5,1),(1,6,15,20,15,6,17642547765233 (a+b)=ab+7ab+21a+bb+35a+7abb+35a。b+21a n的次数依次上b-n,n-n 等于a的次数依次下降、n-1、2...n由上式可以看出,(a+b) (2) 方。系数是杨辉三角里的系数。、、升,01 杨辉三角的幂的关系2 精心整理.

精心整理 首先我们把杨辉三角的每一行分别相加,如下: 1(1) 11(1+1=2) 121(1+2+1=4) 1331(1+3+3+1=8) 14641(1+4+6+4+1=16) 15101051(1+5+10+10+5+1=32) 1615201561(1+6+15+20+15+6+1=64) … 相加得到的数136…刚好,6,…次幂,即杨辉三角行个数之和等n-次 杨辉三角中斜行和水平行之间的关 (1) 1(2)n=1 11(3)n=2 121(4)n=3 1331(5)n=4 14641(6)n=5 15101051n=6 1615201561 把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6

三角函数-数列公式大全

三角函数公式:(1).弧度制:180o rad π=,'18015718o o rad π=≈ 弧长公式:l r α= ,扇形面积公式:211 2 2 S r lr α== (2)定义式:设角α终边上一点为(),P x y ,22r OP x y == +则: sin ,cos ,tan ;y x y r r x ααα= == (3)同角基本关系式:2 2sin sin cos 1,tan ;cos α αααα +== (4)诱导公式:奇变偶不变,符号看象限。 (5)两角和差公式:()sin sin cos cos sin ,αβαβαβ±=± ()cos cos cos sin sin ,αβαβαβ±= ()tan tan tan ;1tan tan αβ αβαβ ±±= (6)二倍角公式:2 2tan sin 22sin cos ,tan 2;1tan α ααααα == - 2222cos 2cos sin 12sin 2cos 1ααααα=-=-=-; (7)降幂公式:()()22111 sin cos sin 2,sin 1cos 2,cos 1cos 2;222 ααααααα==-=+ (8)合一公式:()22 sin cos sin ,a b a b ααα?+=++其中tan b a ?=。 2.三角函数图像和性质:

(二)、函数图像的四种变换: (三)、函数性质: 1.奇偶性: (1)定义:奇函数:对于定义域任何自变量x ,都有()()f x f x -=-,则称()f x 为奇函数。 偶函数:对于定义域任何自变量x ,都有()()f x f x -=,则称()f x 为偶函 数。 (2)图像:奇函数图像关于原点对称,若自变量可以取0,则()00f =;偶函数图像关于y 轴对称。 (3)常见的奇函数: ,,a k y kx y y x x == =(a 为奇数), (),0,k y x k R k x =+ ∈≠sin ,y x =tan ;y x = 常见的偶函数:,a y m y x ==(a 为偶数),cos y x =,y x =。 (4)奇偶函数四则运算与复合: 2周期性: (1)定义:对于定义域任何自变量x ,都有()()f x T f x +=,则称()f x 为以T 为周期的函数。

杨辉三角的各种算法实现

/* Name: 杨辉三角算法集锦 Copyright: 始发于goal00001111的专栏;允许自由转载,但必须注明作者和出处Author: goal00001111 Date: 27-11-08 19:04 Description: 分别使用了二维数组,一维数组,队列,二项式公式,组合公式推论和递归方法等9种算法 算法思路详见代码注释——注释很详细,呵呵 */ #include #include using namespace std; const int MAXROW = 40; void PrintBlank(int n); int Com(int n, int m); int Try(int row, int cel); void Fun_1(int row); void Fun_2(int row); void Fun_3(int row); void Fun_4(int row); void Fun_5(int row); void Fun_6(int row); void Fun_7(int row); void Fun_8(int row); void Fun_9(int row); int main() { int row; cin >> row; Fun_1(row); cout << endl; Fun_2(row); cout << endl; Fun_3(row); cout << endl; Fun_4(row); cout << endl; Fun_5(row);

cout << endl; Fun_6(row); cout << endl; Fun_7(row); cout << endl; Fun_8(row); cout << endl; Fun_9(row); system("pause"); return 0; } //输出n个空格 void PrintBlank(int n) { for (int i=0; i

相关文档
最新文档