电力电子实验指导书电气

电力电子实验指导书电气
电力电子实验指导书电气

实验一 SCR、GTO、MOSFET、GTR、IGBT

特性实验

一、实验目的

(1)掌握各种电力电子器件的工作特性。

(2)掌握各器件对触发信号的要求。

二、实验所需挂件及附件

三、实验线路及原理

将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R串联后接至直流电源的两端,由DJK06上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压器调节的直流电压源。

实验线路的具体接线如下图所示:

图1-1 新器件特性实验原理图

四、实验内容

(1)晶闸管(SCR)特性实验。

(2)可关断晶闸管(GTO)特性实验。

(3)功率场效应管(MOSFET)特性实验。

(4)大功率晶体管(GTR)特性实验。

(5)绝缘双极性晶体管(IGBT)特性实验。

五、预习要求

阅读电力电子技术教材中有关电力电子器件的章节。

六、思考题

各种器件对触发脉冲要求的异同点?

七、实验方法

(1)按图1-1接线,首先将晶闸管(SCR)接入主电路,在实验开始时,将DJK06上的给定电位器RP1沿逆时针旋到底,S1拨到“正给定”侧,S2拨到“给定”侧,单相调压器逆时针调到底,DJK09上的可调电阻调到阻值为最大的位置;打开DJK06的电源开关,按下控制屏上的“启动”按钮,然后缓慢调节调压器,同时监视电压表的读数,当直流电压升到40V时,停止调节单相调压器(在以后的其他实验中,均不用调节);调节给定电位器RP1,逐步增加给定电压,监视电压表、电流表的读数,当电压表指示接近零(表示管子完全导通),停止调节,记录给定电压U g调节过程中回路电流I d以及器件的管压降U v。

(2)按下控制屏的“停止”按钮,将晶闸管换成可关断晶闸管(GTO),重复上述步骤,并记录数据。

(3)按下控制屏的“停止”按钮,换成功率场效应管(MOSFET),重复上述步骤,并记录数据。

(4)按下控制屏的“停止”按钮,换成绝缘双极性晶体管(IGBT),重复上述步骤,并记录数据。

(5)按下控制屏的“停止”按钮,换成大功率晶体管(GTR),重复上述步骤,并记录数据。

八、实验报告

根据得到的数据,绘出各器件的输出特性。

九、注意事项

(1)注意示波器的用法。

(2)为保证功率器件在实验过程中避免功率击穿,应保证管子的功率损耗(即功率器件的管压降与器件流过的电流乘积)小于8W。

(3)为使GTR特性实验更典型,其电流控制在0.4A以下。

(4)在本实验中,完成的是关于器件的伏安特性的实验项目。

实验二单相桥式全控整流实验

一、实验目的

(1)加深理解单相桥式全控整流工作原理。

(2)研究单相桥式变流电路整流的全过程。

二、实验所需挂件及附件

三、实验线路及原理

图2-1为单相桥式整流带电阻电感性负载,其输出负载R用D42三相可调电阻器,将两个900Ω接成并联形式,电抗L

用DJK02面板上的700mH,直流电压、电流表均在

d

DJK02面板上。触发电路采用DJK03-1组件挂箱上的“锯齿波同步移相触发电路Ⅰ”和“Ⅱ”。

四、实验内容

单相桥式全控整流电路带电阻电感负载。

五、预习要求

阅读电力电子技术教材中有关单相桥式全控整流电路的有关内容。

图2-1 单相桥式整流实验原理图

七、实验方法

(1)触发电路的调试

将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用示波器观察锯齿波同步触发电路各观察孔的电压波形。

将控制电压U ct调至零(将电位器RP2逆时针旋到底),观察同步电压信号和“6”点U6的波形,调节偏移电压U b(即调RP3电位器),使α=180°。

将锯齿波触发电路的输出脉冲端分别接至全控桥中相应晶闸管的门极和阴极,注意不要把相序接反了,否则无法进行整流和逆变。将DJKO2上的正桥和反桥触发脉冲开关都打到“断”的位置,并使U lf和U lr悬空,确保晶闸管不被误触发。

(2)单相桥式全控整流

按图2-1接线,将电阻器放在最大阻值处,按下“启动”按钮,保持U b偏移电压不变(即RP3固定),逐渐增加U ct(调节RP2),在α=0°、30°、60°、90°、120°时,用示波器观察、记录整流电压U d和晶闸管两端电压U

的波形,并记录电源电压

vt

U2和负载电压U d的数值于下表中。

计算公式:U d=O.9U2(1+cosα)/2

八、实验报告

(1)画出α=30°、60°、90°、120°、150°时U d和U VT的波形。

(2)画出电路的移相特性U d=f(α)曲线。

九、注意事项

(1) 注意示波器的用法。

(2)在本实验中,触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,并将U lf及U lr悬空,避免误触发。

(3)为了保证从逆变到整流不发生过流,其回路的电阻R应取比较大的值,但也要考虑到晶闸管的维持电流,保证可靠导通。

实验三单相桥式有源逆变电路实验

一、实验目的

(1)加深理解单相桥式逆变电路的工作原理。

(2)研究单相桥式变流电路逆变的全过程,掌握实现有源逆变的条件。

(3)掌握产生逆变颠覆的原因及预防方法。

二、实验所需挂件及附件

三、实验线路及原理

图3-1为单相桥式有源逆变原理图,三相电源经三相不控整流,得到一个上负下正的直流电源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器返馈回电网。“三相不控整流”是DJK10上的一个模块,其“心式变压器”在此做为升压变压器用,从晶闸管逆变出的电压接“心式变压器”的中压端Am、Bm,返回电网的电压从其高压端A、B输出,为了避免输出的逆变电压过高而损坏心式变压器,故将变压器接成Y/Y接法。图中的电阻R、电抗L

相关主题
相关文档
最新文档