STM32常用项初始化配置说明

STM32常用项初始化配置说明
STM32常用项初始化配置说明

注:下面是一些常用的代码,网上很多但是大多注释不全。高手看没问题,对于我们这些新手就费劲了……所以我把这些代码集中,进行了逐句注释,希望对新手们有价值。

阅读flash:芯片内部存储器flash操作函数

我的理解——对芯片内部flash进行操作的函数,包括读取,状态,擦除,写入等等,可以允许程序去操作flash上的数据。

基础应用1:

FLASH时序延迟几个周期,等待总线同步操作。推荐按照单片机系统运行频率,0—24MHz时,取Latency=0;24—48MHz时,取Latency=1;48~72MHz时,取Latency=2。所有程序中必须的

用法:FLASH_SetLatency(FLASH_Latency_2);

位置:RCC初始化子函数里面,时钟起振之后。

基础应用2:

开启FLASH预读缓冲功能,加速FLASH的读取。所有程序中必须的

用法:FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);

位置:RCC初始化子函数里面,时钟起振之后。

3、阅读lib:调试所有外设初始化的函数。

我的理解——不理解,也不需要理解。只要知道所有外设在调试的时候,EWRAM需要从这个函数里面获得调试所需信息的地址或者指针之类的信息。

基础应用1,只有一个函数debug。所有程序中必须的。

用法:#ifdef DEBUG

debug();

#endif

位置:main函数开头,声明变量之后。

4、阅读nvic:系统中断管理。

我的理解——管理系统内部的中断,负责打开和关闭中断。

基础应用1,中断的初始化函数,包括设置中断向量表位置,和开启所需的中断两部分。所有程序中必须的。

用法:void NVIC_Configuration(void)

{

NVIC_InitTypeDef NVIC_InitStructure; //中断管理恢复默认参数

#ifdef VECT_TAB_RAM //如果C/C++ Compiler\Preprocessor\Defined symbols中的定义了VECT_TAB_RAM(见程序库更改内容的表格)

NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0); //则在RAM调试

#else //如果没有定义

VECT_TAB_RAM

NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);//则在Flash里调试

#endif //结束判断语句

//以下为中断的开启过程,不是所有程序必须的。

//NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);

//设置NVIC优先级分组,方式。

//注:一共16个优先级,分为抢占式和响应式。两种优先级所占的数量由此代码确定,NVIC_PriorityGroup_x可以是0、1、2、3、4,分别代表抢占优先级有1、2、4、8、16个和响应优先级有16、8、4、2、1个。规定两种优先级的数量后,所有的中断级别必须在其

中选择,抢占级别高的会打断其他中断优先执行,而响应级别高的会在其他中断执行完优先执行。

//NVIC_InitStructure.NVIC_IRQChannel = 中断通道名; //开中断,中断名称见函数库

//NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占优先级

//NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //响应优先级

//NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //启动此通道的中断

//NVIC_Init(&NVIC_InitStructure); //中断初始化

}

5、阅读rcc:单片机时钟管理。

我的理解——管理外部、内部和外设的时钟,设置、打开和关闭这些时钟。

基础应用1:时钟的初始化函数过程——

用法:void RCC_Configuration(void) //时钟初始化函数

{

ErrorStatus HSEStartUpStatus; //等待时钟的稳定

RCC_DeInit(); //时钟管理重置RCC_HSEConfig(RCC_HSE_ON); //打开外部晶振HSEStartUpStatus = RCC_WaitForHSEStartUp(); //等待外部晶振就绪

if (HSEStartUpStatus == SUCCESS)

{

FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);

//flash读取缓冲,加速

FLASH_SetLatency(FLASH_Latency_2); //flash操作的延时

RCC_HCLKConfig(RCC_SYSCLK_Div1); //AHB使用系统时钟

RCC_PCLK2Config(RCC_HCLK_Div2); //APB2(高速)为HCLK的一半RCC_PCLK1Config(RCC_HCLK_Div2); //APB1(低速)为HCLK的一半//注:AHB主要负责外部存储器时钟。PB2负责AD,I/O,高级TIM,串口1。APB1负责DA,USB,SPI,I2C,CAN,串口2345,普通TIM。

RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); //PLLCLK = 8MHz * 9 = 72 MH

RCC_PLLCmd(ENABLE); //启动PLL

while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET){} //等待PLL启动

RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); //将PLL设置为系统时钟源

while (RCC_GetSYSCLKSource() != 0x08){} //等待系统时钟源的启动

}

//RCC_AHBPeriphClockCmd(ABP2设备1 | ABP2设备2 |, ENABLE); //启动AHP设备

//RCC_APB2PeriphClockCmd(ABP2设备1 | ABP2设备2 |, ENABLE);//启动ABP2设备

//RCC_APB1PeriphClockCmd(ABP2设备1 | ABP2设备2 |, ENABLE); //启动ABP1设备}

6、阅读exti:外部设备中断函数

我的理解——外部设备通过引脚给出的硬件中断,也可以产生软件中断,19个上升、下降或都触发。EXTI0~EXTI15连接到管脚,EXTI线16连接到PVD(VDD监视),EXTI线17连接到RTC(闹钟),EXTI线18连接到USB(唤醒)。

基础应用1,设定外部中断初始化函数。按需求,不是必须代码。

用法:void EXTI_Configuration(void)

{

EXTI_InitTypeDef EXTI_InitStructure; //外部设备中断恢复默认参数

EXTI_InitStructure.EXTI_Line = 通道1|通道2; //设定所需产生外部中断的通道,一共19个。

EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; //产生中断

EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; //上升下降沿都触发

EXTI_InitStructure.EXTI_LineCmd = ENABLE; //启动中断的接收

EXTI_Init(&EXTI_InitStructure); //外部设备中断启动

}

7、阅读dma:通过总线而越过CPU读取外设数据

我的理解——通过DMA应用可以加速单片机外设、存储器之间的数据传输,并在传输期间不影响CPU进行其他事情。这对于入门开发基本功能来说没有太大必要,这个内容先行跳过。

8、阅读systic:系统定时器

我的理解——可以输出和利用系统时钟的计数、状态。

基础应用1,精确计时的延时子函数。推荐使用的代码。

用法:

static vu32

TimingDelay; //全局变量声明

void

SysTick_Config(void) //sy stick初始化函数

{

SysTick_CounterCmd(SysTick_Counter_Disable); //停止系统定时器

SysTick_ITConfig(DISABLE); //停止systick中断

SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); //systick使用HCLK作为时钟源,频率值除以8。

SysTick_SetReload(9000); //重置时间1毫秒(以72MHz为基础计算)

SysTick_ITConfig(ENABLE); //开启systic中断

}

void Delay (u32

nTime) //延迟一毫秒的函数

{

SysTick_CounterCmd(SysTick_Counter_Enable); //systic开始计时TimingDelay = nTime; //计时长度赋值给递减变量

while(TimingDelay != 0); //检测是否计时完成

SysTick_CounterCmd(SysTick_Counter_Disable); //关闭计数器

SysTick_CounterCmd(SysTick_Counter_Clear); //清除计数值

}

void TimingDelay_Decrement(void) //递减变量函数,函数名由“stm32f10x_it.c”中的中断响应函数定义好了。

{

if (TimingDelay != 0x00) //检测计数变量是否达到0

{ TimingDelay--; //计数变量递减

}

}

注:建议熟练后使用,所涉及知识和设备太多,新手出错的可能性比较大。新手可用简化的延时函数代替:

void Delay(vu32

nCount) //简单延时函数

{

for(; nCount != 0;

nCount--); //循环变量递减计数

}

当延时较长,又不需要精确计时的时候可以使用嵌套循环:

void Delay(vu32 nCount) //简单的长时间延时函数

{int i; //声明内部递减变量

for(; nCount != 0; nCount--) //递减变量计数

{for (i=0; i<0xffff;

i++)} //内部循环递减变量计数

}

STM32学习笔记——时钟频率

********************************

本学习笔记基于STM32固件库V3.0

使用芯片型号:STM32F103

开发环境:MDK

********************************

第一课时钟频率

STM32F103内部8M的内部震荡,经过倍频后最高可以达到72M。目前TI的M3系列芯片最高频率可以达到80M。

在stm32固件库3.0中对时钟频率的选择进行了大大的简化,原先的一大堆操作都在后台进行。系统给出的函数为SystemInit()。但在调用前还需要进行一些宏定义的设置,具体的设置在system_stm32f10x.c文件中。

文件开头就有一个这样的定义:

//#define SYSCLK_FREQ_HSE HSE_Value

//#define SYSCLK_FREQ_20MHz 20000000

//#define SYSCLK_FREQ_36MHz 36000000

//#define SYSCLK_FREQ_48MHz 48000000

//#define SYSCLK_FREQ_56MHz 56000000

#define SYSCLK_FREQ_72MHz 72000000

ST 官方推荐的外接晶振是8M,所以库函数的设置都是假定你的硬件已经接了8M 晶振来运算的.以上东西就是默认晶振8M 的时候,推荐的CPU 频率选择.在这里选择了:

#define SYSCLK_FREQ_72MHz 72000000

也就是103系列能跑到的最大值72M

然后这个C文件继续往下看

#elif defined SYSCLK_FREQ_72MHz

const uint32_t SystemFrequency = SYSCLK_FREQ_72MHz;

const uint32_t SystemFrequency_SysClk = SYSCLK_FREQ_72MHz;

const uint32_t SystemFrequency_AHBClk = SYSCLK_FREQ_72MHz;

const uint32_t SystemFrequency_APB1Clk = (SYSCLK_FREQ_72MHz/2);

const uint32_t SystemFrequency_APB2Clk = SYSCLK_FREQ_72MHz;

这就是在定义了CPU跑72M的时候,各个系统的速度了.他们分别是:硬件频率,系统时钟,AHB总线频率,APB1总线频率,APB2总线频率.再往下看,看到这个了:

#elif defined SYSCLK_FREQ_72MHz

static void SetSysClockTo72(void);

这就是定义72M 的时候,设置时钟的函数.这个函数被SetSysClock ()函数调用,而

SetSysClock ()函数则是被SystemInit()函数调用.最后SystemInit()函数,就是被你调用的了

所以设置系统时钟的流程就是:

首先用户程序调用SystemInit()函数,这是一个库函数,然后SystemInit()函数里面,进行了一些寄存器必要的初始化后,就调用SetSysClock()函数. SetSysClock()函数根据那个#define

SYSCLK_FREQ_72MHz 72000000 的宏定义,知道了要调用SetSysClockTo72()这个函数,于是,就一堆麻烦而复杂的设置^然后,CPU跑起来了,而且速度是72M. 虽然说的有点累赘,但大家只需要知道,用户要设置频率,程序中就做的就两个事情:

第一个: system_stm32f10x.c 中#define SYSCLK_FREQ_72MHz 72000000

第二个:调用SystemInit()

STM32时钟初始化函数SystemInit()详解

2012-07-10 17:58:31| 分类:STM32|字号订阅

花了一天的时间,总算是了解了SystemInit()函数实现了哪些功能,初学STM32,,现记录如下(有理解错误的地方还请大侠指出):

使用的是3.5的库,用的是STM32F107VC,开发环境RVMDK4.23

我已经定义了STM32F10X_CL,SYSCLK_FREQ_72MHz

函数调用顺序:

startup_stm32f10x_cl.s(启动文件)→SystemInit() →SetSysClock () → SetS ysClockTo72()

初始化时钟用到的RCC寄存器复位值:

RCC_CR = 0x0000 xx83; RCC_CFGR = 0x0000 0000;RCC_CIR = 0x0000 0000; R CC_CFGR2 = 0x0000 0000;

SystemInit()

在调用SetSysClock()之前RCC寄存器的值如下(都是一些与运算,或运算,在此就不赘述了):RCC->CR = 0x0000 0083; RCC->CIR = 0x00FF0000; RCC->CFGR2 = 0x00000000;至于这些寄存器都代表着什么意思,详见芯片资料RCC寄存器,该文重点不在此处;SetSysClock()函数如下:

static void SetSysClock(void)

{

#ifdef SYSCLK_FREQ_HSE

SetSysClockToHSE();

#elif defined SYSCLK_FREQ_24MHz

SetSysClockTo24();

#elif defined SYSCLK_FREQ_36MHz

SetSysClockTo36();

#elif defined SYSCLK_FREQ_48MHz

SetSysClockTo48();

#elif defined SYSCLK_FREQ_56MHz

SetSysClockTo56();

#elif defined SYSCLK_FREQ_72MHz //我的定义的是SYSCLK_FREQ_72MHz,所以调用S etSysClockTo72()

SetSysClockTo72();

#endif

}

SetSysClockTo72()函数如下:

static void SetSysClockTo72(void)

{

__IO uint32_t StartUpCounter = 0, HSEStatus = 0;

/* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/

/* Enable HSE */

RCC->CR |= ((uint32_t)RCC_CR_HSEON);

/* Wait till HSE is ready and if Time out is reached exit */

do

{

HSEStatus = RCC->CR & RCC_CR_HSERDY;

StartUpCounter++;

} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));

if ((RCC->CR & RCC_CR_HSERDY) != RESET)

{

HSEStatus = (uint32_t)0x01;

}

else

{

HSEStatus = (uint32_t)0x00;

}

if (HSEStatus == (uint32_t)0x01)

{

/* Enable Prefetch Buffer */

FLASH->ACR |= FLASH_ACR_PRFTBE;

/* Flash 2 wait state */

FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);

FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;

/* HCLK = SYSCLK */

RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;

/* PCLK2 = HCLK */

RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;

/* PCLK1 = HCLK */

RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;

#ifdef STM32F10X_CL

/* Configure PLLs ------------------------------------------------------*/

/* PLL2 configuration: PLL2CLK = (HSE / 5) * 8 = 40 MHz */

/* PREDIV1 configuration: PREDIV1CLK = PLL2 / 5 = 8 MHz */

RCC->CFGR2 &= (uint32_t)~(RCC_CFGR2_PREDIV2 | RCC_CFGR2_PLL2 MUL |

RCC_CFGR2_PREDIV1 | RCC_CFGR2_PREDIV1SRC);

RCC->CFGR2 |= (uint32_t)(RCC_CFGR2_PREDIV2_DIV5 | RCC_CFGR2_P LL2MUL8 |

RCC_CFGR2_PREDIV1SRC_PLL2 | RCC_CFGR2_PREDIV 1_DIV5);

/* Enable PLL2 */

RCC->CR |= RCC_CR_PLL2ON;

/* Wait till PLL2 is ready */

while((RCC->CR & RCC_CR_PLL2RDY) == 0)

{

}

/* PLL configuration: PLLCLK = PREDIV1 * 9 = 72 MHz */ RCC->CFGR &= (uint32_t)~(RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLSRC | RCC_CFGR_PLLMULL);

RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_ PLLSRC_PREDIV1 |

RCC_CFGR_PLLMULL9);

#else

/* PLL configuration: PLLCLK = HSE * 9 = 72 MHz */

RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTP RE |

RCC_CFGR_PLLMULL));

RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL9); #endif /* STM32F10X_CL */

/* Enable PLL */

RCC->CR |= RCC_CR_PLLON;

/* Wait till PLL is ready */

while((RCC->CR & RCC_CR_PLLRDY) == 0)

{

/* Select PLL as system clock source */

RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));

RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;

/* Wait till PLL is used as system clock source */

while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)

{

}

}

else

{ /* If HSE fails to start-up, the application will have wrong clock configuration. User can add here some code to deal with this error */

}

}

1:AHB, APB1,APB2时钟确定

//HCLK = SYSCLK ,从下面的分析可以得出SYSCLK是使用PLLCLK时钟的,也就是72MHZ(至于72MHZ如何得来,请看下面分析)

//那么就是HCLK(AHB总线时钟)=PLLCLK = 72MHZ

//AHB总线时钟等于系统时钟SYSCLK,也就是AHB时钟= HCLK = SYSCLK = 72M HZ

/* HCLK = SYSCLK */

RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;

//PLCK2等于HCLK一分频,所以PCLK2 = HCLK,HCLK = 72MHZ, 那么PLCK2(APB2总线时钟) = 72MHZ

//APB2总线时钟等于HCLK的一分频,也就是不分频;APB2 时钟= HCLK = SYSCLK = 72MHZ

/* PCLK2 = HCLK */

RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;

//PCLK1 = HCLK / 2;PCLK1 等于HCLK时钟的二分频,那么PCLK1(APB1) = 72MHZ / 2 = 36MHZ

//APB1总线时钟等于HCLK的二分频,也就是APB1时钟= HCLK / 2 = 36MHZ

/* PCLK1 = HCLK */

RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;

2:如何得出SYSCLK(系统时钟)为72MHZ(外部晶振25MHZ)

//记得参考英文芯片资料的时钟树P115页和RCC时钟寄存器进行理解

RCC->CFGR2 |= (uint32_t)(RCC_CFGR2_PREDIV2_DIV5 | RCC_CFGR2_PLL2 MUL8 | RCC_CFGR2_PREDIV1SRC_PLL2 | RCC_CFGR2_PREDIV1_DIV5);

RCC_CFGR2_PREDIV2_DIV5: PREDIV2 = 5;5分频

也就是PREDIV2对输入的外部时钟5分频,那么PLL2和PLL3没有倍频前是25 /5 = 5MHZ

RCC_CFGR2_PLL2MUL8 : PLL2MUL = 8; 8倍频

8倍频后,PLL2时钟= 5 * 8 = 40MHZ; 因此PLL2CLK = 40MHZ

RCC_CFGR2_PREDIV1SRC_PLL2 : RCC_CFGR2的第16位为1,选择PLL2CLK 作为P REDIV1的时钟源

RCC_CFGR2_PREDIV1_DIV5:PREDIV1 = 5;PREDIV1对输入时钟5分频PREDIV1 CLK = PLL2CLK / 5 = 8MHZ

以上是对RCC_CFGR2进行的配置

--------------------------------------------------------------------------------------RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLL SRC_PREDIV1 |

RCC_CFGR_PLLMULL9);

RCC_CFGR_PLLXTPRE_PREDIV1 :操作的是RCC_CFGR的第17位PLLXTPRE,操作这一位和操作RCC_CFGR2寄存器的位[3:0]中的最低位是相同的效果

RCC_CFGR_PLLSRC_PREDIV1 :选择PREDIV1输出作为PLL输入时钟;PREDIV1CLK = 8MHZ,所以输入给PLL倍频的时钟源是8MHZ

RCC_CFGR_PLLMULL9 :PLLMUL = 9;PLL倍频系数为9,也就是对 PLLCLK = PRE DIV1CLK * 8 = 72MHZ

以上是对RCC_CFGR进行的配置

---------------------------------------------------------------------------------------------------

RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL; //选择PLLCLK作为系统时钟源

--------------------------------------------------------------------------------------------------

至此基本配置已经完成,配置的时钟如下所述:

SYSCLK(系统时钟) = 72MHZ

AHB总线时钟= 72MHZ

APB1总线时钟 = 36MHZ

APB2总线时钟 = 72MHZ

PLL时钟= 72MHZ PLL2时钟 = 40MHZ

相关主题
相关文档
最新文档