二极管基础知识1

二极管基础知识简介
Prepared by:Daniel ouyang

二極管基本原理
晶体二极管是一个由P型半导体和N型半导体形成的P-N结,在界面处两侧形成空间电荷层,有 自建电场。二极管最重要的特性就是单向导电性。在正向电压的作用下,导通电阻很小;而在 反向电压作用下导通电阻极大或无穷大。当没有外加电压时,由于P-N结两边载流子浓度差引起 的扩散电流和自建电场引起的漂移电流相等,这样就处于电平衡状态。当施加正向电压时,外 界电场和自建电场的互相抵消使载流子的扩散电流增加引形成正向电流。当施加反向电压时, 外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱 和电流。当外加的反向电压增高到一定程度,P-N结空间电荷层中的电场强度达到临界值产生载 流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,这就是二极管的击 穿现象。 结合时,结面处电子与电洞相结合,造成 在靠近接面处的N型半导体失去电子后变 成正离子,而P型 半导体失去电洞后变 成负离子,此时正离子排斥电洞,负离子 排斥电子,因而阻 止了电子与电洞继续 结合,达到平衡状态 p 型材料是在晶体中掺入三个价电子 n 型材料是当所加的杂质为像锑、砷及磷 的杂质原子而形成,如硼、 镓合铟。 这种五个价电子的元素。
Page: 2

二极管的主要参数
VF IF IR VB VRM Trr
正向工作压降 正向平均工作电流 反向漏电流 反向击穿电压 反向工作峰值电压 反向恢复时间 二极管通过额定正向电流时,在两极间所产生的电压降 在额定温度条件下,允许通过的整流电流的平均值 在规定的反向电压条件下流过二极管的反向电流值 二极管反向电流急剧增大到出现击穿现象时的反向电压值 二极管正常工作时所允许的反向电压峰值,通常VRM为VB 的三分之二或略小一些 在规定的条件下,二极管从正向导通转换到反向时,电流通 过零点经过峰值后,减少到某规定值时的时间间隔。 Conditions: IF=0.5A IR=1A Irr=0.25A 在应用中,Trr与电流的工作频 率相关,一般建议使用的频率 为Trr/1000,这样的使用为最 安全的保证
Page: 3

二极管分类
Group General Purpose Fast
Rectifier Recovery Rectifier Ultra Fast Recovery Rectifier Super Fast Recovery Rectifier Schottky Barrier Rectifier
Trr
>500
500-150
100-50
35
<5
几种常用的二极管元件
1. 整流二极管 将交流电源整流成为直流电流的二极管 2. 检波二极管 检波二极管是用于把迭加在高频载波上的低频信号检出来的器件 3. 开关二极管 在脉冲数字电路中,用于接通和关断电路的二极管 4. 稳压二极管 稳压二极管是由硅材料制成的面结合型晶体二极管,它是利用PN结反向击 穿时的电压基本上不随电流的变化而变化的特点,来达到稳压的目的 5. 变容二极管 利用PN结的电容随外加偏压而变化这一特性制成的非线性电容元件,被广 泛地用于参量放大器,电子调谐及倍频器等微波电路中 6. 阶跃恢复二极管 是一种特殊的变容管,也称作电荷储存二极管,简称阶跃管,它具有 高度非线性的电抗,应用于倍频器时代独有的特点,利用其反向恢复 电流的快速突变中所包含的丰富谐波,可获得高效率的高次倍频
Page: 4

二极管特性
二极管最主要的特性既是单向的导电性,见下面的伏安特性曲线图. VB(V)
VF(V) VB(V) IR(uA) N型区的自由电子远 离接面而移动至电压 正端, P型区的电洞 亦远离接面而移动至 电压负端,结果n极 的正离子与p极的负 离子 增加,空乏区也 随之加宽。直到位能 障壁的电位差等于外 加电压为止 外加偏压克服了P-N接面的 位能障壁,使自由电子由电源 的负极经过二 极体的N极很容 易地通过接面,与P极的多数 载子--电洞复合,变成价电 子, 通过P极到达电源的正 端,以致产生大量的顺向电流
Page: 5

TVS 的特性
VRWM (工作电压):此电压值是TVS组件导通的关键值;在低于此 电压值的状况下,组件被视为不导通(断路);若电压值高于工作电 压,组件即进入导通状态。 VBR (崩溃电压):TVS进入崩溃状态的关键电压值。在此电压下, 组件对瞬时成为一个低阻抗的路径。 IT (测试电流):当横跨于TVS组件两端的电压值为崩溃电压时(组件 处于崩溃状态)所量得的电流值。 VC (最大箝制电压):当通过TVS组件的电流值为IPP时,此时横跨在 组件两端的电压降。这个电压值也是组件所能承受的最大值 IPP (脉波电流的最大峰值):此电流值是组件可容许大电流的最大值 IR (最大反向漏电流):当横跨于TVS组件两端的电压值刚好进入工 作电压时(组件正好要成为导通状态)所量得的电流值即为最大的反向 漏电流 100%
IP In% of IPP
The power formula ( Pp ) = Vc X Ipp
50%
tr
tp
Page: 6

Schottky
在低频时,整流二极管很容易在顺向或逆向电压,形成开、关状。但当频 率增加时,一般二 极管在逆向时已不能快速的截止。这表示一般二极管在高频时 ,因其在逆向周期的起始时 间,仍维时关闭状态,不能有整流的效能,为解决这 个问题可使用萧特基二极管(Schottky Diode) 使用萧特基二极管可解决逆向恢复时间的问题,这种特殊二极管如下图所示 ,在其接面的一 边使用金、银或铂(Platinum)金属,在另一边使用掺入杂质的 硅材料(通常形成N型材 料)。当萧特基二极管未加偏压时,N型区的自由电子 较金属区中的自由电子的轨道小(即 能阶低),此轨道大小(或能阶大小)的差 异,称为萧特基障壁(Schottky Barrier)
Page: 7

二极管的生产流程
1. WAFER PREPARATION
2. PHOSPHORUS PRE-DEPOSITION
3. SINGLE SIDE SAND BLASTING
4. BORON PRE-DEPOSITION
5. WAFER DIFFUSION
6. DOUBLE SIDE SAND BLASTING
7. FIRST OXIDATION
8. 1ST PHOTO : GRID ETCHING
9. SECOND OXIDATION
10. 2RD PHOTO : GLASS PASSIVATION
11. THIRD OXIDATION
12. 3RD PHOTO : CONTACT ETCHING
13. NICKEL METALLIZATION
14. GOLD PLATING
15. FUNCTION TEST & SHIPPING Page: 8

后端
1. 晶圆准备
2. 晶圆切割
3. 晶粒测分
4. 引脚装填
5. 引脚焊接
6. 成型前清洗
7. 二级体成型
8. 去残胶
9. 电镀前处理
10. 电镀
11. 印字
12. TMTT测试
Page: 9

二极管的应用
Page: 10

二极管的应用
输入: TVS 可以使用在此作为吸收突波的元件 AC TO DC: 由于频率不高50-60HZ 所以一般 的整流二极管就可以 DC TO AC: 在此TVS 可使用做吸收突波 AC TO DC: 由于在此阶段频率属于高频,所以 一般整流器不能使用.Schottky 是最好的选 择 输出: 由于需要输出电压的稳定,所以会选用 稳压管/TVS.
Page: 11

二极管的选用
Page: 12

选用的标准
电流: 首先需要考虑使用位置的电流,温度,由这些来决定选用材料的电流 频率: 决定材料的使用等级(即TRR),一般使用频率和材料Trr的比率 为1/1000为最安全. 电压: 需对使用位置电压测试,如能测试出位置开关机瞬间突波,以突波 为准,稍大于突波即可.如测试为稳定状况下,将以此电压X2. 温度: 可以使用结温的计算公式,但建议以时间测试的温度为准.
Tj = Rja*W+Ta Ta = 環境溫度 W = 消耗瓦特 一般情况下以测试的情况为准
Page: 13

二极管的基本特性与应用(精)

几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。 当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平 面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固 地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。 面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流” 电路中。 平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 1、正向特性 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电 压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2、反向特性 在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当 二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。 二极管的主要参数 用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数: 1、额定正向工作电流 是指二极管长期连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。所以,二极管使用中不要超过二极管额定正向工作电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。 2、最高反向工作电压 加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工

二极管知识大全

二极管的结构特性 (1) 二极管的工作原理 (2) 二极管的分类………………………………………………………………………3-4 二极管的主要技术参数指标…………………………………………………………5. 二极管的主要作用 (6) 怎样选择合适的二极管 (7) 时间:2012-2-24

1 二极管的结构 半导体二极管主要由一个PN结加上电极、引出断线和管壳构成的。P型半导体引出的电极为二极管的正极,N型半导体引出的电极为负极。二极管的基本特性与PN结的基本特性相同。 , 图 1结构图(可双击该图用AUTOCAD软件观看) 2 二极管的特性 普通二极管最显著的特点是其单向导电性,根据此特性二极管常用于电子线路中,起到整流、

图 2典型二极管的特性曲线及其分区 3 工作原理 二极管的基本原理是根据二极管的伏安特性,正向导通反向截止,可将双向变化的交流电转换成单向脉动的直流电,此转换过程称为整流;利用PN结反向击穿时,电流在较大的范围内变化而端电压基本不变的特性,制成特殊二极管,称为稳压二极管。 2中1区为正向死区。PN结上加了正向偏压但仍无电流,该区宽度随材料而不同:硅管是,锗管是。 2中2区为正向导通区。PN结上加了正向偏压后,正向电流呈指数规律明显上升。 2中3区为反向截止区。PN结上加了较大的反向偏压后,在很大的电压范围内维持一个很小的固定的反向漏电流。 2中4区为反向击穿区。PN结上加了较大的反向偏压后,在某个电压值上,PN结被击穿引起迅速上升的反向电流。一般的整流、检波二极管一到此区就被加在其上的高压大电流烧毁。但是,专门设计用来工作在此区的二极管,只要设法将热量及时导出,同时在电路中限制电流的最大值,它就可以正常工作,一般应用该区的二极管是专门生产的稳压二极管。 4 二极管的分类 二极管按制造材料不同,分为硅和锗二极管。 表 1列出了两种材料的区别。 表 1 两种材料的区别

电子技术基础试卷及答案

《电子技术基础》第一章半导体二极管试卷 一、单项选择题 1.测量二极管(小功率)的管脚极性时,万用表的电阻档应选( )。(2 分) A.R×1 B.R×10 C.R×100或R×1k D.R×10k 2.测量二极管反向电阻时,若用两手将两管脚捏紧,其电阻值会( )。(2 分) A.变大 B.先变大后变小 C.变小 D.不变 3.二极管正反向电阻相差( )。(2 分) A.越小越好 B.越大越好 C.无差别最好 D.无要求 4.用万用表R×100Ω挡来测试二极管,其中( )说明管子是好的。(2 分) A.正、反向电阻都为零 B.正、反向电阻都为无穷大 C.正向电阻为几百欧,反向电阻为几百千欧 D.反向电阻为几百欧,正向电阻为几百欧 5.变容二极管工作时,应加( )。(2 分) A.反向电压 B.正向电压 C.正向电压或反向电压 6.把电动势为1.5V的干电池的正极直接接到一个硅二极管的正极,负极直接接到硅二极管的负极,则该管( )。(2 分) A.基本正常 B.击穿 C.烧坏 D.电流为零 7.在电路中测得某二极管正负极电位分别为3V与10V,判断二极管应是( )。(2 分) A.正偏 B.反偏 C.零偏

8.2AP9表示( )。(2 分) A.N型材料整流管 B.N型材料稳压管 C.N型材料普通管 D.N型材料开关管 9.变容二极管常用在( )电路中。(2 分) A.高频 B.低频 C.直流 10.用于整流的二极管型号是( )。(2 分) A.2AP9 B.2CW14C C.2CZ52B D.2CK84A 二、判断题 11.( )发光二极管可以接收可见光线。(2 分) 12.( ) 二极管加反向电压时一定截止。(2 分) 13.( )当反向电压小于反向击穿电压时,二极管的反向电流很小;当反向电压大于反向击穿电压后,其反向电流迅速增加。(2 分) 14.( )PN结正向偏置时电阻小,反向偏置时电阻大。(2 分) 15.( )有两个电极的元件都叫二极管。(2 分) 16.( )二极管具有单向导电性。(2 分) 17.( )光电二极管可以将光信号转化成为电信号。(2 分) 18.( )PN结是一种特殊的物质,一般情况下不能导电。(2 分) 19.( )二极管是线性元件。(2 分) 20.( )二极管加正向电压时一定导通。(2 分) 三、填空题 21. 硅二极管的死区电压为V,锗二极管的为V;导通管压降,硅管为V,锗管为V。(4 分) 22.PN结正偏时,P区接电源的极,N区接电源的极;PN结反偏时,P区接电 源的极,N区接电源的极。(4 分)

二极管基本知识介绍18页

二极管 几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 一、二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。 当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二、二极管的类型

二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge 管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。 面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 三、二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 1.正向特性 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当

《电子技术基础》二极管的基础知识

课题:晶体二极管 教学目标: 知识目标:1、掌握晶体二极管的构成、符号 2、掌握晶体二极管的导电特性 3、分析使用二极管时的主要参数及伏安特性 能力目标:1、培养学生分析、探究问题的能力 2、培养学生灵活运用知识的能力 3、培养学生的动手和实践能力 情感目标:使学生在学习过程中,获得知识的同时进一步激发学生学习的动机和兴趣 教学重点:晶体二极管的构成、符号、导电特性及伏安特性的分析 教学难点:1、伏安特性分析。 2、几个参数的记忆及区分。 教学方法:启发、引导、观察、讨论、讲解、实验结合 课时安排: 2课时 (教学用具:多媒体课件,实验用器材) 教学过程: 新课导入:提出学习目标,复习提问导入新课 1、什么是半导体?常见的的半导体材料有哪几种? 2、半导体根据内部载流子的不同分为哪几种? 新课讲授: 一、二极管的结构和符号 (一)结构 在本征半导体上利用特殊工艺分别渗入硼元素和磷元素加工出P型半导体和N型半导体,在P型和N型半导体的结合部位形成一个特殊的结构,即PN结,PN结是构成各种半导体器件的基础。 在P区和N区两侧各接上电极引线,并将其封装在密封的壳体中,即构成半导体二极管,如图。接在P区的引线称为阳极(正极)用a表示,接在N区的引线称为阴极或负极,用k表示。 二极管的核心即是一个PN结。 (二)符号 电子技术中的元件在电路图中都是用符号来表示的,如电阻用什么符号表示? 二极管的符号如下图: 图中三角箭头代表二极管正向导电时电流的方向。

(三)分类 1、二极管根据所用半导体材料不同分为锗管和硅管。 2、根据内部结构不同可分为点接触型和面接触型。点接触型主要用于高频小电流场合如:检波、混频、小电流整流。面接触型主要用于低频大电流场合如:大电流整流。 知识拓展 认识常见的几种二极管:小功率二极管、大功率二极管、贴片二极管、发光二极管等。 要求:学生课后利用网络查找更多形式的二极管。 二、二极管的导电特性 通过实验来探究学习二极管的导电特性,在做实验之前首先了解一下实验所用的元件 (一)认识元件 认识实验中使用的元件:电池、电阻、开关、二极管、指示灯。 (二)实验一 实验电路如下图:讲解电路构成。 请实验小组说明指示灯情况,说明了什么? 结论:指示灯亮,说明二极管导通,称为导通状态。 二极管导通时,其阳极电位高于阴极电位,此时的外加电压称为正向电压,二极管处于正向偏置状态,简称“正偏”。 (三)实验二 实验电路如下图:讲解电路构成。 请实验小组说明指示灯情况,说明了什么? 结论:灯泡不亮,说明二极管不导通,称为截止状态

电子技术基础试题库完整

电子技术基础(模拟篇) 第一章半导体二极管 一、单选题 1.当温度升高时,二极管正向特性和反向特性曲线分别()。 A. 左移,下移 B. 右移,上移 C. 左移,上移 D. 右移,下移 2.在PN结外加正向电压时,扩散电流漂移电流,当PN结外加反向电压时,扩散电流漂移电流。 A. 小于,大于 B. 大于,小于 C. 大于,大于 D. 小于,小于 3.设二极管的端电压为U,则二极管的电流方程为() A. U I e S B. T U U I e S C. )1 e( S - T U U I D. 1 e S - T U U I 4.下列符号中表示发光二极管的为()。 5.稳压二极管工作于正常稳压状态时,其反向电流应满足( )。 A. I D = 0 B. I D < I Z且I D > I ZM C. I Z > I D > I ZM D. I Z < I D < I ZM 6.杂质半导体中()的浓度对温度敏感。 A. 少子 B. 多子 C. 杂质离子 D. 空穴 7.从二极管伏安特性曲线可以看出,二极管两端压降大于()时处于正偏导通状态。 A. 0 B. 死区电压 C. 反向击穿电压 D. 正向压降 8.杂质半导体中多数载流子的浓度主要取决于()。 A. 温度 B. 掺杂工艺 C. 掺杂浓度 D. 晶体缺陷 9. PN结形成后,空间电荷区由()构成。 A. 电子和空穴 B. 施主离子和受主离子 C. 施主离子和电子 D. 受主离子和空穴 10.硅管正偏导通时,其管压降约为()。 A 0.1V B 0.2V C 0.5V D 0.7V 11.用模拟指针式万用表的电阻档测量二极管正向电阻,所测电阻是二极管的电阻,由于不

半导体二极管基础知识测试题

2020秋季电子技术基础第一次月考 半导体二极管基础知识测试题 (满分100分,时间:1.5小时) 一、填空题(每题2分,第19题1分,共37分) 1、根据导电能力来衡量,自然界的物质可以分为 、 和 。 2、导电性能介于导体和绝缘体之间的物质是 。 3、半导体具有 特性、 特性和 特性。 4、二极管P 区的引出端叫 极或 极, N 区的引出端叫 极或 极。 5、按二极管所用的材料不同可分为 和 两类;二极管按用途分,有 二极管、 二极管、 二极管、 二极管、 二极管、 二极管和 二极管等。 6、二极管的正向接法是 接电源的正极, 接电源的负极;反向接法则相反。 7、硅二极管导通时的正向管压降约为 V,锗二极管导通时的管压降约为 V 。 8、二极管最主要的特性是 ,它是指:PN 结正偏时呈 状态,正向电阻 很(小,大),正向电流很 (小,大); PN 结反偏时呈 状态,反向电阻很 (小,大),反向电流很 (小,大)。 9、二极管是用一个PN 结制成的半导体器件,它的最基本的性质是 硅 管的死区电压和正向压降比锗管的 ,而反向饱和电流比锗管的 得 多。 10、硅二极管的死区电压约为 V 。 11、使用二极管时,应考虑的主要参数是 、 。 12、电路中流过二极管的正向电流过大,二极管将会 ;如果加在二极管两端的反向电压过高,二极管将会 。 13、2CW 是 材料的 二极管; 2AP 是 材料的 二极管; 2DZ 是 材料的 二极管; 2AK 是 材料的 二极管。 14、有一锗二极管正反向电阻均接近于零,表明该二极管已 ;有一硅二极管正、反向电阻均接近于无穷大,表明二极管已 。

极管入门知识:二极管结构和工作原理

在自然界中,根据材料的导电能力,我们可以将他们划分导体、绝缘体和半导体。常见的导体如铜和铝、常见的绝缘体如橡胶、塑料等。什么是半导体呢半导体的导电能力介于导体和绝缘体之间,常见的半导体材料有硅(Si)和锗(Ge)。到此,请记住两种半导体材料:硅、锗。因为以后你会听说硅管、锗管。意思很明显,说明这种二极管或三极管是用硅或锗作为基材的。 半导体硅原子结构图 半导体有几个特性有必要了解一下:热敏性、光敏性和掺杂性; 半导体的热敏性:半导体的导电能力受温度影响较大,当温度升高时,半导体的导电能力大大增强,被称为半导体的热敏性。利用半导体的热敏性可制成热敏元件,在汽车上应用的热敏元件有温度传感器,如水温传感器、进气温度传感器等。 半导体硅的空穴和自由电子示意图 半导体的光敏性:半导体的导体的导电能力随光照的不同而不同。当光照增强时,导电能力增强,称为半导体光敏性。利用光敏性可制成光敏元件。在汽车上应用的光敏元件有汽车自动空调上应用的光照传感器。 半导体的掺杂性:当在导体中掺入少量杂质,半导体的导电性能增加。 什么是本征半导体、P型半导体和N型半导体,有哪些区别 本征半导体:纯净的半导体称为本征半导体。 P型半导体:在本征半导体硅或锗中掺入微量的三价元素硼(B)或镓,就形成P型半导体。 P型半导体示意图-空穴是多数载流子 N型半导体:在本征半导体硅或锗中掺入微量的五价元素磷(P)就形成N型半导体。 N型半导体中自由电子是多数载流子

PN结和二极管 在半导体硅或锗中一部分区域掺入微量的三价元素硼使之成为P型,另一部分区域掺入微量的五价元素磷使之成为N型半导体。在P型和N型半导体的交界处就形成一个PN 结。一个PN结就是一个二极管,P区的引线称为阳极,N区的引线称为阴极。 二极管结构图:P区引线成为阳极、N区引线成为阴极 二极管的单向导电性能 二极管具前单向导电性能, (1)正向导通:当PN结加上正向电压,即P区接蓄电池正级,N区接蓄电池负极时,PN结处于导通状态,如图所示,试灯有电流通过,点亮。 二极管正向导通示意图 注意二极管正向导通时存在着电压降,什么意思呢如果蓄电池电压是12V,则试灯上的电压一定小于12V,大约是吧,哪在那里呢在二极管上,这就是二极管的电压降。二极管的电压降取决于二极管采用的是锗管还是硅管:锗管的电压降是左右;而硅管的电压降是左右。如果蓄电池电压低于二极管正常导通的电压降,则二极管将不能导通。这个原理的重要性在二极管你可能体会不到,但是到了三极管就显的非常重要了。 (2)反向截止:当PN结加上反正电压,即P区接蓄电池负极,N区接蓄电池正极时,PN结处于截止状态,如图所示,试灯没有电流通过,不能点亮。 二极管反向截止示意图 二极管接反向电压时,存在着一个耐压的问题:如果加在二极管的反向电压过高,二极管受不了,就会击穿,此时二极管不在处于截止状态,而是处于导通状态。如果我们设定一个击穿电压,当达到反向击穿电压时,二极管会击穿导通。如果现在电压又小于了

二极管入门知识二极管结构和工作原理

二极管入门知识二极管结 构和工作原理 This model paper was revised by the Standardization Office on December 10, 2020

在自然界中,根据材料的导电能力,我们可以将他们划分导体、绝缘体和半导体。常见的导体如铜 和铝、常见的绝缘体如橡胶、塑料等。什么是半导体呢半导体的导电能力介于导体和绝缘体之间,常见的半导体材料有硅(Si)和锗(Ge)。到此,请记住两种半导体材料:硅、锗。因为以后你会 听说硅管、锗管。意思很明显,说明这种二极管或三极管是用硅或锗作为基材的。 半导体硅原子结构图 半导体有几个特性有必要了解一下:热敏性、光敏性和掺杂性; 半导体的热敏性:半导体的导电能力受温度影响较大,当温度升高时,半导体的导电能力大大增强,被称为半导体的热敏性。利用半导体的热敏性可制成热敏元件,在汽车上应用的热敏元件有温度传感器,如水温传感器、进气温度传感器等。 半导体硅的空穴和自由电子示意图 半导体的光敏性:半导体的导体的导电能力随光照的不同而不同。当光照增强时,导电能力增强,称为半导体光敏性。利用光敏性可制成光敏元件。在汽车上应用的光敏元件有汽车自动空调上应用的光照传感器。 半导体的掺杂性:当在导体中掺入少量杂质,半导体的导电性能增加。 什么是本征半导体、P型半导体和N型半导体,有哪些区别 本征半导体:纯净的半导体称为本征半导体。 P型半导体:在本征半导体硅或锗中掺入微量的三价元素硼(B)或镓,就形成P型半导体。 P型半导体示意图-空穴是多数载流子 N型半导体:在本征半导体硅或锗中掺入微量的五价元素磷(P)就形成N型半导体。 N型半导体中自由电子是多数载流子 PN结和二极管 在半导体硅或锗中一部分区域掺入微量的三价元素硼使之成为P型,另一部分区域掺入微量的五价元素磷使之成为N型半导体。在P型和N型半导体的交界处就形成一个PN结。一个PN结就是一个二极管,P区的引线称为阳极,N区的引线称为阴极。 二极管结构图:P区引线成为阳极、N区引线成为阴极 二极管的单向导电性能 二极管具前单向导电性能, (1)正向导通:当PN结加上正向电压,即P区接蓄电池正级,N区接蓄电池负极时,PN结处于导通状态,如图所示,试灯有电流通过,点亮。 二极管正向导通示意图 注意二极管正向导通时存在着电压降,什么意思呢如果蓄电池电压是12V,则试灯上的电压一定小于12V,大约是吧,哪在那里呢在二极管上,这就是二极管的电压降。二极管的电压降取决于二极管采用的是锗管还是硅管:锗管的电压降是左右;而硅管的电压降是左右。如果蓄电池电压低

电子技术试题及答案

《电子技术基础》题库 适用班级:2012级电钳3、4、5、6班 备注:本学期进行到第七章;第一、二、三章是重点内容,要求掌握;第四、八章没有涉及。一、填空题: 第一章半导体二极管 ○1、根据导电能力来衡量,自然界的物质可以分为导体,半导体和绝缘体三类。 Δ2、导电性能介于导体和绝缘体之间物质是半导体。 ○3、半导体具有热敏特性、光敏特性、参杂的特性。 Δ4、PN结正偏时,P区接电源的正极,N极接电源的负极。 ○5、PN结具有单向导电特性。 ○6、二极管的P区引出端叫正极或阳极,N区的引出端叫负极或阴极。 Δ7、按二极管所用的材料不同,可分为硅二极管和锗二极管两类; ○8、按二极管用途不同,可分为普通二极管、整流二极管、稳压二极管、开关二极管、发光二极管、光电二极管和变容二极管。 ★9、二极管的正向接法是二极管正极接电源的正极,负极接电源的负极;反响接法相反。 ○10、硅二极管导通时的正向管压降约0.7V ,锗二极管导通时的管压降约0.3V。 Δ11、使用二极管时,应考虑的主要参数是最大整流电流,最高反向电压和反向电流。★12、发光二极管将电信号转换为光信号。 ★13、变容二极管在高频收音机的自动频率控制电路中,通过改变其反向偏置电压来自动调节本机震荡频率。

★14、所谓理想二极管,就是当其正偏时,结电阻为零。 第二章半导体三极管及其放大电路 ○15、三极管是电流控制元件。 ○16、三极管具有放大作用外部电压条件是发射结正偏,集电结反偏。 ★17、当温度升高时,晶体三极管集电极电流Ic变大,发射结压降变小。 Δ18、三极管处在放大区时,其集电结电压小于零,发射结电压大于零。★19、三极管的发射区杂质浓度很高,而基区很薄。 Δ20、三极管实现放大作用的内部条件是:发射区杂质浓度要远大于基区杂质浓度,同时基区厚度要很小. Δ21、工作在放大区的某三极管,如果当I B从12μA增大到22μA时,I C从1mA变为2mA,那么它的β约为100 。 ○22、三极管的三个工作区域分别是饱和区、放大区和截止区。 ★23、发射结﹍正向﹍偏置,集电结正向偏置,则三极管处于饱和状态。 ★24、为了消除乙类互补功率放大器输出波形的(交越)失真,而采用(甲乙类)类互补功率放大器。 ★25、OCL电路是(双)电源互补功率放大电路; ★26、OTL电路是(单)电源互补功率放大电路。 ★27、共集电极电路电压放大倍数(1),输入电阻(大),输出电阻(小),常用在输入级,输出级或缓冲级。 第三章集成运算放大器及其应用 ○28、差分放大电路输入端加上大小相等、极性相同的两个信号,称为共模信号。.Δ29、差分放大电路能够抑制零点漂移。

电子技术基础习题答案(于宝明)

第一章习题 1.1 如需将PN结二极管处于正向偏置,应如何确定外接电压的极性?答:如需将PN结二极管处于正向偏置,外接电压的极性应该是P区端接高电位,N区端接低电位。 1.2 PN结二极管的单向导电性是在什么外部条件下才能显示出来?答:在外部施加了正、反相电压且出现正相导通、反相截止时才能显示出来。 1.3 PN结两端存在内建电位差,若将PN结短路,问有无电流流过?答:二极管短路时没有电流。原因是PN结两端虽有电位差,但是在半导体和金属电极接触处,也有"接触电位差",后者抵消了PN结两端的电位差。金属一半导体结和PN结不同:(1)没有单向导电性,(2)接触电位差和外加电压的极性及幅值无关。这种接触叫做"欧姆接触"。从另一种角度分析,如果有电流,金属导线就会发热,二极管就要冷却。作为一个热平衡的整体,要产生这种现象是不可能的。所以,二极管短路时I=0。 1.4 比较硅、锗两种二极管的性能。在工程实践中,为什么硅二极管应用得较普遍? 答:锗有32 、硅有14 个电子,最外围都有四个价电子。电子数量、层数越多,受热激发的后价电子脱离共价健束缚的可能性就越大,所以,硅半导体更稳定。 1.5 当输入直流电压波动或外接负载电阻变动时,稳压管稳压电路的输出电压能否保持稳定?若能稳定,这种稳定是否是绝对的? 答:当输入直流电压波动或外接负载电阻变动时,稳压管稳压电路的输出电压能保持基本稳定,但是由于其反相击穿特性曲线并非完全垂直下降,所以这种稳定不是绝对的。 1.6 光电子器件为什么在电子技术中得到越来越广泛的应用?试列举一二例。 答:因为可以利用可见或不可见光进行信号指示、遥控、遥测。减少了导线的连接和一些干扰,带来了方便,比如电视机等家电的遥控器、指示灯等都是应用实例。 1.7 如何用万用表的“Ω”挡来辨别一只二极管的阳、阴两极?(提

二极管基本知识

二极管基本知识 1. 基本概念 二极管由管芯、管壳和两个电极构成。管芯就是一个PN结,在PN结的两端各引出一个引线,并用塑料、玻璃或金属材料作为封装外壳,就构成了晶体二极管,如下图所示。P区的引出的电极称为正极或阳极,N区的引出的电极称为负极或阴极。 1.1 二极管的伏安特性 二极管的伏安特性是指加在二极管两端电压和流过二极管的电流之间的关系,用于定性描述这两者关系的曲线称为伏安特性曲线。通过晶体管图示仪观察到硅二极管的伏安特性如下图所示。 1.2 正向特性 1)外加正向电压较小时,二极管呈现的电阻较大,正向电流几乎为零,曲线OA段称为不导通区或死区。一般硅管的死区电压约为0.5伏, 锗的死区电压约为0.2伏,该电压值又称门坎电压或阈值电压。 2)当外加正向电压超过死区电压时,PN结内电场几乎被抵消,二极管呈现的电阻很小,正向电流开始增加,进入正向导通区,但此时电压与电流不成比例如AB段。随外加电压的增加正向电流迅速增加,如BC段特性曲线陡直,伏安关系近似线性,处于充分导通状态。 3)二极管导通后两端的正向电压称为正向压降(或管压降),且几乎恒定。硅管的管压降约为0.7V,锗管的管压降约为0.3V。

1.3 反向特性 1)二极管承受反向电压时,加强了PN结的内电场,二极管呈现很大电阻,此时仅有很小的反向电流。如曲线OD段称为反向截止区,此时电流称为反向饱和电流。实际应用中,反向电流越小说明二极管的反向电阻越大,反向截止性能越好。一般硅二极管的反向饱和电流在几十微安以下,锗二极管则达几百微安,大功率二极管稍大些。 2)当反向电压增大到一定数值时(图中D点),反向电流急剧加大,进入反向击穿区,D点对应的电压称为反向击穿电压。二极管被击穿后电流过大将使管子损坏,因此除稳压管外,二极管的反向电压不能超过击穿电压。 2. 整流电路 2.1 单向半波整流电路 二极管就像一个自动开关,u2为正半周时,自动把电源与负载接通,u2为负半周时,自动将电源与负载切断。因此,由下图可见,负载上得到方向不变、大小变化的脉动直流电压uo如下图所示。由于该电路只在u2的正半周有输出,所以称为半波整流电路。如果将整流二极管的极性对调,可获得负极性的直流脉动电压。 2.2 全波整流电路 整流原理: 设变压器二次侧的电压为:

二极管知识大全

封面 二极管的结构特性 (1) 二极管的工作原理 (2) 二极管的分类.................................................................................3-4 二极管的主要技术参数指标..................................................................5. 二极管的主要作用 (6) 怎样选择合适的二极管 (7) 时间:2012-2-24

1 二极管的结构 半导体二极管主要由一个PN结加上电极、引出断线和管壳构成的。P型半导体引出的电极为二极管的正极,N型半导体引出的电极为负极。二极管的基本特性与PN结的基本特性相同。 , 图 1结构图(可双击该图用AUTOCAD软件观看) 2 二极管的特性 普通二极管最显著的特点是其单向导电性,根据此特性二极管常用于电子线路中,起到整流、

图 2典型二极管的特性曲线及其分区 3 工作原理 二极管的基本原理是根据二极管的伏安特性,正向导通反向截止,可将双向变化的交流电转换成单向脉动的直流电,此转换过程称为整流;利用PN结反向击穿时,电流在较大的范围内变化而端电压基本不变的特性,制成特殊二极管,称为稳压二极管。 3.1 2中1区为正向死区。PN结上加了正向偏压但仍无电流,该区宽度随材料而不同:硅管是0.5V, 锗管是0.7V。 3.2 2中2区为正向导通区。PN结上加了正向偏压后,正向电流呈指数规律明显上升。 3.3 2中3区为反向截止区。PN结上加了较大的反向偏压后,在很大的电压范围内维持一个很小 的固定的反向漏电流。 3.4 2中4区为反向击穿区。PN结上加了较大的反向偏压后,在某个电压值上,PN结被击穿引起 迅速上升的反向电流。一般的整流、检波二极管一到此区就被加在其上的高压大电流烧毁。但是,专门设计用来工作在此区的二极管,只要设法将热量及时导出,同时在电路中限制电流的最大值,它就可以正常工作,一般应用该区的二极管是专门生产的稳压二极管。 4 二极管的分类 4.1二极管按制造材料不同,分为硅和锗二极管。 表 1列出了两种材料的区别。 表 1 两种材料的区别

电子技术基础试题库

电子技术基础(模拟篇) 第一章 半导体二极管 一、单选题 1. 当温度升高时,二极管正向特性和反向特性曲线分别( )。 A. 左移,下移 B. 右移,上移 C. 左移,上移 D. 右移,下移 2. 在PN 结外加正向电压时,扩散电流 漂移电流,当PN 结外加反向电压时,扩散电流 漂 移电流。 A. 小于,大于 B. 大于,小于 C. 大于,大于 D. 小于,小于 3. 设二极管的端电压为U ,则二极管的电流方程为( ) A. U I e S B. T U U I e S C. )1e (S -T U U I D. 1e S -T U U I 4. 下列符号中表示发光二极管的为( )。 5. 稳压二极管工作于正常稳压状态时,其反向电流应满足( )。 A. I D = 0 B. I D < I Z 且I D > I ZM C. I Z > I D > I ZM D. I Z < I D < I ZM 6. 杂质半导体中( )的浓度对温度敏感。 A. 少子 B. 多子 C. 杂质离子 D. 空穴 7. 从二极管伏安特性曲线可以看出,二极管两端压降大于( )时处于正偏导通状态。 A. 0 B. 死区电压 C. 反向击穿电压 D. 正向压降 8. 杂质半导体中多数载流子的浓度主要取决于( )。 A. 温度 B. 掺杂工艺 C. 掺杂浓度 D. 晶体缺陷 9. PN 结形成后,空间电荷区由( )构成。 A. 电子和空穴 B. 施主离子和受主离子 C. 施主离子和电子 D. 受主离子和空穴 10. 硅管正偏导通时,其管压降约为( )。 A 0.1V B 0.2V C 0.5V D 0.7V 11. 用模拟指针式万用表的电阻档测量二极管正向电阻,所测电阻是二极管的 电阻,由于不 同量程时通过二极管的电流 ,所测得正向电阻阻值 。 A. 直流,相同,相同 B. 交流,相同,相同 C. 直流,不同,不同 D. 交流,不同,不同 12. 在25oC 时,某二极管的死区电压U th ≈0.5V ,反向饱和电流I S ≈0.1pA ,则在35oC 时,下列哪组 数据可能正确:( )。

二极管基础知识

二极管基础知识之一--二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。 当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管基础知识之二--二极管分类(类型) 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。 面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。 平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管基础知识之三--二极管的主要参数介绍 用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数: 1、额定正向工作电流 是指二极管长期连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。所以,二极管使用中不要超过二极管额定正向工作电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为 1A。 2、最高反向工作电压 加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工作电压值。例如,IN4001二极管反向耐压为50V,IN4007反向耐压为1000V。 3、反向电流 反向电流是指二极管在规定的温度和最高反向电压作用下,流过二极管的反向电流。反向电流越小,管子的单方向导电性能越好。值得注意的是反向电流与温度有着密切的关系,大约温度每升高10,反向电流增大一倍。例如2AP1型锗二极管,在25时反向电流若为250uA,温度升高到35,反向电流将上升到 500uA,依此类推,在75时,它的反向电流已达8mA,不仅失去了单方向导电特性,还会使管子过热而损坏。又如,2CP10型硅二极管,25时反向电流仅为5uA,温度升高到75时,反向电流也不过160uA。故硅二极管比锗二极管在高温下具有较好的稳定性。 4、正向电压降VF:二极管通过额定正向电流时,在两极间所产生的电压降。

二极管分类及作用_基础整理

2013.10.20整理 稳压二极管(齐纳二极管): 此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很小的数值,在这个低阻区中电流增加而电压则保持恒定。 各种应用电路? 肖特基二极管(SBD): 是一种热载流子二极管。低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千毫安。反向耐压低。 肖特基二极管常见的型号:MBR300100CT,MBRS240,MBRS340,SS14或SS系列IN5819 瞬态抑制二极管(TVS): 当TVS 二极管的两极受到反向瞬态高能量冲击时,它能以10的负12次方秒量级的速度,将其两极间的高阻抗变为低阻抗,吸收高达数千瓦的浪涌功率,使两极间的电压箝位于一个预定值,有效地保护电子线路中的精密元器件,免受各种浪涌脉冲的损坏。 将TVS 二极管加在信号及电源线上,能防止微处理器或单片机因瞬间的脉冲,如静电放电效应、交流电源之浪涌及开关电源的噪音所导致的失灵。 常用型号:SMBJ系列 瞬态抑制二极管如何选型?? 快恢复二极管(FRD): 是一种具有开关特性好、反向恢复时间短特点的半导体二极管,主要应用于开关电源、PWM脉宽调制器、变频器等电子电路中,作为高频整流二极管、续流二极管或阻尼二极管使用。 从性能上可分为快恢复和超快恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100纳秒以下。 肖特基二极管和快恢复二极管区别?? 开关二极管: 要根据应用电路的主要参数(例如正向电流、最高反向电压、反向恢复时间等)来选择开关二极管的具体型号。 为在电路上进行"开"、"关"而特殊设计制造的一类二极管。它由导通变为截止或由截止

二极管基本认识

第5单元 二极管 课题 项目四 二极管知识 课时 4学时 教学内容 1、常用二极管的外形特征。 2、常用二极管的基本功能。 3、二极管常用参数及检测 教学目标 1、认知目标:认识半导体,了解PN 结的原理及结构和掌握二极管伏安特性。 2、技能目标:掌握用万用表判别二极管的极性和好坏的方法,掌握二极管基本分析方法 3、情感目标:通过对二极管基本知识的学习,提高把知识转化为技术的意识,今后在实验过程中培养认真的态度,把理论转化为实践。 教学重点 二极管伏安特性。 教学难点 使用万用表检测二极管的好坏和极性。 教学方法 设疑法、讲解法、提问法、示范法、练习法 教学过程 学生活动 一、 创设意境,导入新课 开始新课之前,先看一下几个问题: 1、我们常用的电源有交流电、直流电,那我们需要的直流电怎么得来? 2、半导体是什么?半导体二极管有哪些特性? 今天,我们将学习一种新的元器件,学过之后你就会明白上面的问题。 二、 新课内容 (一)半导体知识部分 1.半导体概述 半导体是个熟悉的名词,但是什么是半导体呢? 自然界的物质按导电能力的强弱可分为如下几类: 一类是导电能力特别强的物质叫导体(如银、铜、铝等),导体的电阻率通常在m ?Ω--5810~10。 另一类是导电能力非常差,几乎可以看成不能导电的物质,叫绝缘体(如塑料、橡胶、陶瓷等),绝缘体的电阻率通常在m ?Ω16810~10。 还有一类是半导体,其导电能力介于导体和绝缘体之间(如锗、硅、砷化镓等)叫半导体,半导体的电阻率通常在m ?Ω-7410~10。 P

2.半导体特性 半导体除了在导电能力方面与导体和绝缘体不同外,它还具有不同于其它物质的特点,例如,当半导体受到外界光和热的照射时,或掺入某些杂质时其导电能力将发生显著的变化。这个特点说明,半导体的导电机构必然不同于其它物质。 半导体特性: *1、半导体的导电能力介于导体与绝缘体之间。 2、在一定温度下,本征半导体因本征激发而产生自由电子和空穴对,故其有一定的导电能力。 *3、本征半导体的导电能力主要由温度决定;杂质半导体的导电能力主要由所掺杂质的浓度决定。 4、P型半导体中空穴是多子,自由电子是少子。N型半导体中自由电子是多子,空穴是少子。 *5、半导体的导电能力与温度、光强、杂质浓度和材料性质有关。 3.半导体结构(了解方式学习) 在电子学中,用得最多的半导体是硅和锗,硅和锗的外层电子都是4个,都是四价元素。与相邻四个原子分别用四个共价键相连,形成原子有规律地整齐排列的结构,称为晶体结构,这就是晶体管的来由。本来外层电子受共价键束缚,但是少数电子获得一定的动能才能挣脱共价键的束缚成为自由电子。在电子挣脱共价键的束缚成为自由电子后,共价键中就留下一个空位,这个空位叫做空穴。于是半导体可以导电,但是在常温下只有极少电子能称为自由电子,所以导电能力较弱。完全纯净的、结构完整的半导体晶体称为本征半导体。但是本征半导体易受温度的影响,而且导电能力差,不能直接使用在电子线路中,必须利用掺杂特性制作杂质半导体。 在硅(或锗)晶体中掺入微量的五价元素P,磷原子的5个价电子中有4个电子和硅原子组成共价键,多出一个电子很容易脱离原子核的束缚而成为自由电子,同时磷原子也就成为带正电的离子。这样,由于磷元素的掺入,使硅晶体中自由电子的数目大大增加。当然硅原子由于热激发也产生少量的电子—空穴对。这种半导体的导电主要是靠电子,所以称它为电子半导体,简称N型半导体。本征半导体中空穴和自由电子成对出现,但是在杂质半导体中不同,略讲多子和少子概念。 在硅(或锗)晶体中掺入微量的三价元素B,硼原子有3个价电子,它与硅原子组成共价键时缺少一个价电子而形成一个空穴,空穴的浓度比电子的浓度大得多。这种半导体的导电主要是靠空穴,所以称它为空穴半导体,简称P型半导体。 4.PN结原理 (1)PN 结的形成 在同一片半导体基片上,分别制造P型半导体和N型半导体,经过载流子的扩散,在它们的交界面处就形成了PN结。 PN结是多数载流子的扩散运动和少数载流子的漂移运动相较量,最终达到动态平衡的必然结果,相当于两个区之间没有电荷运动,空间电荷区的厚度固定不变。

电阻 电容 二极管 基础知识要点

电阻器基本知识 ——半飘居士 电阻器主要用途是分流,分压和负载使用 分类有固定式电阻器和电位器,其中固定式电阻器可分为膜式电阻(碳膜R T、金属膜R J、合成膜R H 和氧化膜R Y)、实芯电阻(有机R S 和无机R N)、金属线绕电阻(RX)、特殊电阻(MG 型光敏电阻、MF 型热敏电阻)四种 碳膜电阻,成本较低,性能一般。 金属膜电阻,体积小,成本较高。 线绕电阻,耐热性能好,大功率的场合。 碳膜电位器 线绕电位器,阻值范围小,功率较大 主要性能指标 额定功率:为保证安全使用,一般选其额定功率比它在电路中消耗的功率高1-2 倍,在电路图中非线绕电阻器额定功率的符号表示如下图 标称值: 色环颜色所代表的数字或意义

精密度电阻器的色环标志用五个色环表示。第一至第3色环表示电阻的有效数字,第4色环表示倍乘数,第5色环表示容许偏差 表示17.5Ω±1% 最高工作电压 如果电压超过规定值,电阻器内部产生火花,引起噪声,甚至损坏。 高频特性 在高频条件下,要考虑其固定有电感和固有电容的影响 非线绕电阻器LR《=0.05uh,CR《=5pf 线绕电阻器LR 几十uh CR 几十pf

命名方法 示例:R J71-0.125-5.1kI 型的命名含义:R电阻器-J 金属膜-7 精密-1 序号-0.125 额定功率-5.1k 标称阻值-I 误差5%。 稳定性;衡量电阻器在外界条件(温度、湿度、电压、时间、负荷性质等)作用下电阻变化的程度

装接前要人工老化处理,提高稳定性;人工老化分为温度循环老化和电老化两种。 (1)温度循环老化 将待用电阻器置于(9015)℃的高温箱中经4h后取出,自然冷却至室温;再置入一40℃的低温箱经4h 后取出,自然恢复至室温。这样进行只次循环后,进行筛选,剔除不合格或损坏者。 (2)电老化 在待用电阻器两端加直流电压,使用电阻器所承受的功率为额定功率的1.5倍,通电5 min后,在常温下恢复30 min。注意所加电压不要超过最大工作电压。之后进行筛选,剔除不合格或损坏者。电阻器的测量 1.固定电阻器:选择合适的量程,使指针指示值尽可能落到刻度的中段位置,即全 刻度起始的20%~80%弧度范围内,以使测量更准确。 2.熔断电阻器的检测:(熔断电阻器,是一种具有电阻器和熔断器双重作用的特殊元件。它在电路中用字母“RF”或“R”表示,分为可恢复式熔断电阻器和一次性熔断电阻器两种) 若发现熔断电阻器表面发黑或烧焦,可断定是其负荷过重。对于表面无任何痕迹的熔断电阻器好坏的判断,可借助万用表R×1 挡来测量,为保证测量准确,应将熔断电阻器一端从电路上焊下。若测得的阻值为无穷大,则说明此熔断电阻器已失效开路,若测得的阻值与标称值相差甚远,表明电阻变值,也不宜再使用。 3.电位器的检测 旋柄转动是否平滑,开关通、断时“喀哒”声是否清脆 A万用表欧姆挡测“1”、“2”两端,如万用表的指针不动或与标称阻值相差很多,则表明该电位器已损坏。 B 检测电位器的活动臂与电阻片的接触是否良好。 用万用表的欧姆档“1”“2”(或“2”、“3”)两端,将电位器的转轴按逆时针方向 旋至接近“关”的位置,阻值越小越好。再顺时针慢慢旋转轴柄,电阻值应逐渐增大, 表头中的指针应平稳移动。当旋至“3”端时,阻值应接近电位器的标称值。如指针在 电位器的轴柄转动过程中有跳动现象,说明活动触点有接触不良的故障。 4 热敏电阻的检测 ①.正温度系数热敏电阻(PTC)的检测 用万用表R×1 挡,分两步 A 常温检测(室内温度接近25℃) 已损坏 将两表笔接触PTC 热敏电阻的两引脚测出其实际阻值,并与标称阻值相对比,二者相差在±2Ω内即为正常。相差过大,则说明 B 加温检测;将一热源(例如电烙铁)靠近PT C 热敏电阻对其加热,同时用万用表监测其电阻值是否随温度的升高而增大,如是,说明热敏电阻正常,若阻值无变化,说明其性能变劣,不能继续使用。注意不要使热源与P TC 热敏电阻靠得过近或直接接触热敏电阻,以防止将其烫坏。 ②负温度系数热敏电阻(NTC)的检测 测标称电阻值R t Rt 是生产厂环境温度为25℃时所测得的,所以用万用表测量Rt 时,亦应在环境温度接近25℃时进行。测试时,不要用手捏住热敏电阻体,以防止人体温度对测试产生影响

相关文档
最新文档