压阻式传感器的结构及工作原理

压阻式传感器的结构及工作原理
压阻式传感器的结构及工作原理

压阻式传感器的工作原理

压阻式传感器是指利用单晶硅材料的压阻效应和集成电路技术制成的传感器。单晶硅材料在受到力的作用后,电阻率发生变化,通过测量电路就可得到正比于力变化的电信号输出。压阻式传感器用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制。

当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。

这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计,前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化,而且前者的灵敏度比后者大50~100倍。

压阻式传感器的结构

这种传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极引线。压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。

硅膜片的一面是与被测压力连通的高压腔,另一面是与大气连通的低压腔。硅膜片一般设计成周边固支的圆形,直径与厚度比约为20~60。在圆形硅膜片定域扩散4条P杂质电阻条,并接成全桥,其中两条位于压应力区,另两条处于拉应力区,相对于膜片中心对称。

此外,也有采用方形硅膜片和硅柱形敏感元件的。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散制作电阻条,两条受拉应力的电阻条与另两条受压应力的电阻条构成全桥。

压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。

当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游

供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/bf4088857.html,/

温度传感器原理

一、温度传感器热电阻的应用原理 温度传感器热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 1.温度传感器热电阻测温原理及材料 温度传感器热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。温度传感器热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造温度传感器热电阻。 2.温度传感器热电阻的结构

(1)精通型温度传感器热电阻工业常用温度传感器热电阻感温元件(电阻体)的结构及特点见表2-1-11。从温度传感器热电阻的测温原理可知,被测温度的变化是直接通过温度传感器热电阻阻值的变化来测量的,因此,温度传感器热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制,有关具体内容参见本篇第三章第一节. (2)铠装温度传感器热电阻铠装温度传感器热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,如图2-1-7所示,它的外径一般为φ2~φ8mm,最小可达φmm。 与普通型温度传感器热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。

(3)端面温度传感器热电阻端面温度传感器热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,其结构如图2-1-8所示。它与一般轴向温度传感器热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 (4)隔爆型温度传感器热电阻隔爆型温度传感器热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型温度传感器热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。 3.温度传感器热电阻测温系统的组成 温度传感器热电阻测温系统一般由温度传感器热电阻、连接导线和显示仪表等组成。必须注意以下两点: ①温度传感器热电阻和显示仪表的分度号必须一致

(完整版)四种压力传感器的基本工作原理及特点

(1) 1 dR d R dA A 四种压力传感器的基本工作原理及特点 一:电阻应变式传感器 1 1电阻应变式传感器定义 被测的动态压力作用在弹性敏感元件上, 使它产生变形,在其变形的部位粘 贴有电阻应变片,电阻应变片感受动态压力的变化,按这种原理设计的传感器称 为电阻应变式压力传感器。 1.2电阻应变式传感器的工作原理 电阻应变式传感器所粘贴的金属电阻应变片主要有丝式应变片与箔式应变片 箔式应变片是以厚度为0.002―― 0.008mm 的金属箔片作为敏感栅材料,,箔 栅宽度为0.003――0.008mm 。丝式应变片是由一根具有高电阻系数的电阻丝 (直 径0. 015--0. 05mm ),平行地排成栅形(一般2――40条),电阻值60――200 ?, 通常为 120 ?,牢贴在薄纸片上,电阻纸两端焊有引出线,表面覆一层薄纸,即 制成了纸基的电阻丝式应变片。测量时,用特制的胶水将金属电阻应变片粘贴于 待测的弹性敏感元件表面上,弹性敏感元件随着动态压力而产生变形时, 电阻片 也跟随变形。如下图所示。B 为栅宽,L 为基长。 I 绘式应吏片 b )笹式应变片 材料的电阻变化率由下式决定:

式中; R—材料电阻2

3 —材料电阻率 由材料力学知识得; K —金属电阻应变片的敏感度系数 式中K 对于确定购金属材料在一定的范围内为一常数,将微分 dR 、dL 改写成增 量出、/L,可得 由式(2)可知,当弹性敏感元件受到动态压力作用后随之产生相应的变形 而形应变值可由丝式应变片或箔式应变片测出,从而得到了 ZR 的变化,也就得 到了动态压力的变化,基于这种应变效应的原理实现了动态压力的测量。 1.3电阻应变式传感器的分类及特点 「测低压用的膜片式压力传感器 常用的电阻应变式压力传感器包括彳测中压用的膜片一一应变筒式压力传感器 -测高压用 的应变筒式压力传感器 1.3.1膜片一一应变筒式压力传感器的特点 该传感器的特点是具有 较高的强度和抗冲击稳定性,具有优良的静态特性、 动态特性和较高的自震频率,可达30khz 以上,测量的上限压力可达到9.6mp a 。 适于测量高频脉动压力,又加上强制水冷却。也适于高温下的动态压力测量,如 火箭发动机的压力测量,内燃机、压气机等的压力测量。 1.3.2膜片式应变压力传咸器的特点 A 这种膜片式应变压力传感器不宜测量较大的压力,当变形大时,非线性 较大。但小压力测量中由于变形很小,非线性误差可小于 0.5%,同时又有较高 的灵敏度,因此在冲击波的测量中,国内外都用过这种膜片式压力传感器。 B 这种传感器与膜片一应变筒式压力传感器相比, 自振频率较低,因此在低dR "R [(1 2 ) C(1 2 )]

压力传感器原理及应用-称重技术

压力传感器是压力检测系统中的重要组成部分,由各种压力敏感元件将被测压力信号转换成容易测量的电 信号作输出,给显示仪表显示压力值,或供控制和报警使用。 压力传感器的种类繁多,如压阻式压力传感器、应变式压力传感器、压电式压力传感器、电容式压力传感 器、压磁式压力传感器、谐振式压力传感器及差动变压器式压力传感器,光纤压力传感器等。 一、压阻式压力传感器 固体受力后电阻率发生变化的现象称为压阻效应。压阻式压力传感器是基于半导体材料(单晶硅)的压阻效应原理制成的传感器,就是利用集成电路工艺直接在硅平膜片上按一定晶向制成扩散压敏电阻,当硅膜片 受压时,膜片的变形将使扩散电阻的阻值发生变化。 压阻式具有极低的价格和较高的精度以及较好的线性特性。 1、压阻式压力传感器基本介绍 压阻式传感器有两种类型:一种是利用半导体材料的体电阻做成粘贴式应变片,称为半导体应变片,因此 应变片制成的传感器称为半导体应变式传感器,另一种是在半导体材料的基片上用集成电路工艺制成的扩 散电阻,以此扩散电阻的传感器称为扩散型压阻传感器。 半导体应变式传感器半导体应变式传感器的结构形式基本上与电阻应变片传感器相同,也是由弹性敏感元件等三部分组成,所不同的是应变片的敏感栅是用半导体材料制成。半导体应变片与金属应变片相比,最 突出的优点是它的体积小而灵敏高。它的灵敏系数比后者要大几十倍甚至上百倍,输出信号有时不必放大 即可直接进行测量记录。此外,半导体应变片横向效应非常小,蠕变和滞后也小,频率响应范围亦很宽, 从静态应变至高频动态应变都能测量。由于半导体集成化制造工艺的发展,用此技术与半导体应变片相结 合,可以直接制成各种小型和超小型半导体应变式传感器,使测量系统大为简化。但是半导体应变片也存 在着很大的缺点,它的电阻温度系统要比金属电阻变化大一个数量级,灵敏系数随温度变化较大它的应变 —电阻特性曲线性较大,它的电阻值和灵敏系数分散性较大,不利于选配组合电桥等等。 扩散型压阻式传感器扩散型压阻传感器的基片是半导体单晶硅。单晶硅是各向异性材料,取向不同时特性不一样。因此必须根据传感器受力变形情况来加工制作扩散硅敏感电阻膜片。 利用半导体压阻效应,可设计成多种类型传感器,其中压力传感器和加速度传感器为压阻式传感器的基本 型式。 硅压阻式压力传感器由外壳、硅膜片(硅杯)和引线等组成。硅膜片是核心部分,其外形状象杯故名硅杯,在硅膜上,用半导体工艺中的扩散掺杂法做成四个相等的电阻,经蒸镀金属电极及连线,接成惠斯登电桥 再用压焊法与外引线相连。膜片的一侧是和被测系数相连接的高压腔,另一侧是低压腔,通常和大气相连,也有做成真空的。当膜片两边存在压力差时,膜片发生变形,产生应力应变,从而使扩散电阻的电阻值发 生变化,电桥失去平衡,输出相对应的电压,其大小就反映了膜片所受压力差值。

电阻应变式传感器的原理与应用

专科毕业论文(设计) 题目:电阻应变式传感器的原理与应用 系院:电子工程系 学生姓名:王宇鹏 学号:0861520226 专业:应用电子 年级:3年级 完成日期:11月29日 指导教师:樊翠玲

电阻应变式传感器设计原理与应用 电阻应变式传感器概述 以电阻应变计为转换元件的电阻式传感器。电阻应变式传感器由弹性敏感元件、电阻应变计、补偿电阻和外壳组成,可根据具体测量要求设计成多种结构形式。弹性敏感元件受到所测量的力而产生变形,并使附着其上的电阻应变计一起变形。电阻应变计再将变形转换为电阻值的变化,从而可以测量力、压力、扭矩、位移、加速度和温度等多种物理量。常用的电阻应变式传感器有应变式测力传感器、应变式压力传感器、应变式扭矩传感器(见转矩传感器)、应变式位移传感器(见位移传感器)、应变式加速度传感器(见加速度计)和测温应变计等。电阻应变式传感器的优点是精度高,测量范围广,寿命长,结构简单,频响特性好,能在恶劣条件下工作,易于实现小型化、整体化和品种多样化等。它的缺点是对于大应变有较大的非线性、输出信号较弱,但可采取一定的补偿措施。因此它广泛应用于自动测试和控制技术中。电阻应变式传感器传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。半导体

应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。 关键词:应变片;电阻;组桥方式;误差补偿

目录 电阻应变式称重传感器原理 一、电阻应变片 二、弹性体 三、检测电路 称重传感器的选择 应变片的粘贴技术 电阻应变片选用方法与原则应变片的组桥方式 温度补偿

传感器电容式湿度传感器的应用重点

题目传感器电容式湿度传感器的应用 姓名 学号 系(院)_电子电气工程学院_ 班级 目录 前言 (3) 1. 绪论 (1) 1.1电容式传感器的工作原理 (1)

1.2电容式传感器的特点 . (4) 2. 系统设计 (6) 2.1硬件电路设计 (6) 2.2 湿敏电容器的特性 (8) 2.3 电容式传感器数据处理 (8) 2.4测试结果 (8) 结论 (10) 参考文献 (11) 淄博职业学院 前言 人类的生存和社会活动与湿度密切相关,随着现代化的实现,很难找出一个与湿度无关的领域来。在电子科学技术日益发达的今天, 人类对自身的生活环境及工作环境要求越来越高。湿度的监测与控制在国民经济各个部门,如国防、科研、煤炭开采和井下监测以及人生活等诸多领域有着非常广泛的应用。众所周知, 湿度的测量较复杂,而对湿度进行控制更不易。人们熟知的毛发湿度计、干湿球湿度计等已不能满足现代工作条件和环境的要求。为此,人们研制了各种湿度传感器,其中电阻和电容型湿度传感器以其测量范围宽, 响应速度快, 测量精度高, 稳定性好, 体积小, 重量轻,制造工艺简单等显示出极大的优越性, 在实际中得到了广泛应用。由于应用领域不同,对湿度传感器的技术要求也不同。从制造角度看,同是湿度传感器,材料、结构不同,工艺不同。其性能和技术指标有很大差异,因而价格也相差甚远。湿度是一个重要的物理量,航天航空,计量等许多环境中需要在高温下进行湿度的测量,很多行业中,如发电、纺织食品、医药、仓储、农业等,对温度、湿度参量的要求都非常严格,目前,在低温条件下,(通常是指100℃以下),湿度

测量已经相对成熟,有商品化产品,并广泛应用于各种行业,另外有许多以行业需要在高温环境下测量湿度,如航天航空、机车舰船、发电变电、冶金矿山、计量科研、电厂、陶瓷、工业管道、发酵环境实验箱、高炉等场合,这时,湿度测量结果往往不如低温环境下的测量结果理想,另外,在恶劣的环境下工作,例如气流速度、温度、湿度变化非常剧烈或测量污染严重的工业化气体时,将使精度大大下降。然而,随着科技的进步,人们对湿度的测量设备进行了越来越深层的研究,本文就以电容型湿度传感器进行阐述。 1. 绪论 1.1电容式传感器的工作原理 电容式传感器是将被测量的变化转换为电容量变化的一种装置,它本身就是一种可变电容器。由于这种传感器具有结构简单,体积小,动态响应好,灵敏度高,分辨率高,能实现非接触测量等特点,因而被广泛应用于位移、加速度、振动、压力、压差、液位、等分含量等检测领域。 这里主要介绍电容式传感器的原理、结构类型、测量电路及其工程应用。当被测量的变化使S 、d 或ε任意一个参数发生变化时,电容量也随之而变,从而完成了由被测量到电容量的转换。当式中的三个参数中两个固定,一个可变,使得电容式传感器有三种基本类型:变极距型电容传感器、变面积型电容传感器和变介电常数型电容传感器。电容式传感器的测量电路就是将电容式传感器看成一个电容并转换成电压或其他电量的电路。因此,常用的测量电路主要有桥式电路、调频电路、脉冲宽度制电路、运算放大器电路、二极管双T 形交流电桥和环行二极管充放电法等。调频电路实际是把电容式传感器作为振荡器谐振回路的一部分, 当输入量导致电容量发生变化时,振荡器的振荡频率就发生变化。虽然可将频率作为测量系统的输出量,用以判断被测非电量的大小,但此时系统是非线性的,不易校正,因此必须加入鉴频器,将频率的变化转换为电压振幅的变化,经过放大就可以用仪器指示或记录仪记录下来。

压力传感器工作原理

电阻应变式压力传感器工作原理细解 2011—10-14 15:37元器件交易网 字号: 中心议题: 电阻应变式压力传感器工作原理 微压力传感器接口电路设计 微压力传感器接口系统得软件设计 微压力传感器接口电路测试与结果分析 解决方案: 电桥放大电路设计 AD7715接口电路设计 单片机接口电路设计 本文采用惠斯通电桥滤出微压力传感器输出得模拟变量,然后用INA118放大器将此信号放大,用7715A/D 进行模数转换,将转换完成得数字量经单片机处理,最后由LCD 将其显示,采用LM334 做得精密5 V 恒流源为电桥电路供电,完成了微压力传感器接口电路设计,既能保证检测得实时性,也能提高测量精度。 微压力传感器信号就是控制器得前端,它在测试或控制系统中处于首位,对微压力传感器获取得信号能否进行准确地提取、处理就是衡量一个系统可靠性得关键因素.后续接口电路主要指信号调节与转换电路,即能把传感元件输出得电信号转换为便于显示、记录、处理与控制得有用电信号得电路。由于用集成电路工艺制造出得压力传感器往往存在:零点输出与零点温漂,灵敏度温漂,输出信号非线性,输出信号幅值低或不标准化等问题。本文得研究工作,主要集中在以下几个方面: (1)介绍微压力传感器接口电路总体方案设计、系统得组成与工作原理。

(2)系统得硬件设计,介绍主要硬件得选型及接口电路,包括A/D 转换电路、单片机接口电路、1602显示电路。 (3)对系统采用得软件设计进行研究,并简要阐述主要流程图,包括主程序、A/D转换程序、1602显示程序。 1 电阻应变式压力传感器工作原理 电阻应变式压力传感器就是由电阻应变片组成得测量电路与弹性敏感元件组合起来得传感器。当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面得电阻应变片也会产生应变,表现为电阻值得变化。这样弹性体得变形转化为电阻应变片阻值得变化。把4 个电阻应变片按照桥路方式连接,两输入端施加一定得电压值,两输出端输出得共模电压随着桥路上电阻阻值得变化增加或者减小。一般这种变化得对应关系具有近似线性得关系。找到压力变化与输出共模电压变化得对应关系,就可以通过测量共模电压得到压力值。 当有压力时各桥臂得电阻状态都将改变,电桥得电压输出会有变化. 式中:Uo为输出电压,Ui 为输入电压。 当输入电压一定且ΔRi 〈

压力传感器工作原理

压力传感器 压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 1、压阻式压力传感器原理与应用: 压阻式压力传感器是利用单晶硅材料的压阻效应和集成电路技术制成的传感器。压阻式传感器常用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制。 压阻效应 当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计,前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。 压阻式压力传感器结构 压阻式压力传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极引线。压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。硅膜片的一面是与被测压力连通的高压腔,另一面是与大气连通的低压腔。硅膜片一般设计成周边固支的圆形,直径与厚度比约为20~60。在圆形硅膜片(N型)定域扩散4条P杂质电阻条,并接成全桥,其中两条位于压应力区,另两条处于拉应力区,相对于膜片中心对称。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散制作电阻条,两条受拉应力的电阻条与另两条受压应力的电阻条构成全桥。

压阻式压力传感器

压阻式压力传感器 利用单晶硅材料的压阻效应和集成电路技术制成的传感器。单晶硅材料在受到力的作用后,电阻率发生变化,通过测量电路就可得到正比于力变化的电信号输出。压阻式传感器用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制(见加速度计)。 压阻效应当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计(见电阻应变计),前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。 压阻式压力传感器的结构这种传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极引线。压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。硅膜片的一面是与被测压力连通的高压腔,另一面是与大气连通的低压腔。硅膜片一般设计成周边固支的圆形,直径与厚度比约为20~60。在圆形硅膜片(N型)定域扩散4条P杂质电阻条,并接成全桥,其中两条位于压应力区,另两条处于拉应力区,相对于膜片中心对称。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散制作电阻条,两条受拉应力的电阻条与另两条受压应力的电阻条构成全桥。 发展状况1954年C.S.史密斯详细研究了硅的压阻效应,从此开始用硅制造压力传感器。早期的硅压力传感器是半导体应变计式的。后来在N型硅片上定域扩散P型杂质形成电阻条,并接成电桥,制成芯片。此芯片仍需粘贴在弹性元件上才能敏感压力的变化。采用这种芯片作为敏感元件的传感器称为扩散型压力传感器。这两种传感器都同样采用粘片结构,因而存在滞后和蠕变大、固有频率低、不适于动态测量以及难于小型化和集成化、精度不高等缺点。70年代以来制成了周边固定支撑的电阻和硅膜片的一体化硅杯式扩散型压力传感器。它不仅克服了粘片结构的固有缺陷,而且能将电阻条、补偿电路和信号调整电路集成在一块硅片上,甚至将微型处理器与传感器集成在一起,制成智能传感器(见单片微型计算机)。这种新型传感器的优点是:①频率响应高(例如有的产品固有频率达1.5兆赫以上),适于动态测量;②体积小(例如有的产品外径可达0.25毫米),适于微型化;③精度高,可

压力传感器工作原理

压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 1、应变片压力传感器原理与应用: 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 1.1、金属电阻应变片的内部结构:它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 1.2、电阻应变片的工作原理:金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m)

湿度传感器课程设计报告书

第一章湿度传感器的功能及其原理 湿度是表示空气中水蒸气含量的物理量,它与人们的生产、生活密切相关。湿度的检测广泛应用于工业、农业、国防、科技、生活等各个领域。例如,集成电路的生产车间相对湿度低于30%时,容易产生静电感应而影响生产;粉尘大的车间由于湿度小产生静电易发生爆炸;纺织厂的湿度低于65~70%RH时会断线。可见,湿度测量在各个行业都是至关重要的。 在现代社会信息科技的不断迅速发展中,计算机技术、网络技术和传感器技术的高速更新,使得湿度的测量正朝着自动化、智能化、网络化发展。随着2011年物联网作为新兴产业列入国家发展战略,传感器技术作为物联网的最前端—感知层,在其发展中占了举足轻重的地位。而湿度作为日常生产、生活中最重要的参数之一,它的检测在各种环境,各个领域都对起了重要作用。 测量电路由湿度传感器,差动放大器,同相加法放大器等主电路组成;为了实现温度补偿功能,选择铂电阻温度传感器采集环境温度,通过转换电桥和差动放大,输入同相加法器实现加法运算,补偿环境温度对湿度传感器的影响,其中转换电桥工作电压由差动放大器输出电压通过电压跟随器提供。 应用IH3605型温度传感器与集成运放设计测量湿度的电路,测量相对湿度(RH)的围为0%~l00%,电路输出电压为0~10V。要求测量电路具有调零功能和温度补偿功能。使用环境温度为0℃~85℃。

第二章课程设计的要求及技术指标 2.1课程设计的要求 1.根据设计要求,查阅参考资料。 2.进行方案设计及可行性论证。 3.确定设计方案,画出电路原理框图。 4.设计每一部分电路,计算器件参数。 5.总结撰写课程设计报告。 2.2 课程设计的技术指标 1.湿度测量围:0%~100%RH; 2.使用环境温度围:0~85℃; 3.输出电压:0~10V; 4.非线性误差:±0.5%。

压力传感器工作原理

电阻应变式压力传感器工作原理细解 2011-10-14 15:37元器件交易网 字号: 中心议题: 电阻应变式压力传感器工作原理 微压力传感器接口电路设计 微压力传感器接口系统的软件设计 微压力传感器接口电路测试与结果分析 解决方案: 电桥放大电路设计 AD7715接口电路设计 单片机接口电路设计 本文采用惠斯通电桥滤出微压力传感器输出的模拟变量,然后用INA118放大器将此信号放大,用7715A/D 进行模数转换,将转换完成的数字量经单片机处理,最后由LCD 将其显示,采用LM334 做的精密5 V 恒流源为电桥电路供电,完成了微压力传感器接口电路设计,既能保证检测的实时性,也能提高测量精度。 微压力传感器信号是控制器的前端,它在测试或控制系统中处于首位,对微压力传感器获取的信号能否进行准确地提取、处理是衡量一个系统可靠性的关键因素。后续接口电路主要指信号调节和转换电路,即能把传感元件输出的电信号转换为便于显示、记录、处理和控制的有用电信号的电路。由于用集成电路工艺制造出的压力传感器往往存在:零点输出和零点温漂,灵敏度温漂,输出信号非线性,输出信号幅值低或不标准化等问题。本文的研究工作,主要集中在以下几个方面:

(1)介绍微压力传感器接口电路总体方案设计、系统的组成和工作原理。 (2)系统的硬件设计,介绍主要硬件的选型及接口电路,包括A/D 转换电路、单片机接口电路、1602显示电路。 (3)对系统采用的软件设计进行研究,并简要阐述主要流程图,包括主程序、A/D 转换程序、1602显示程序。 1 电阻应变式压力传感器工作原理 电阻应变式压力传感器是由电阻应变片组成的测量电路和弹性敏感元件组合起来的传感器。当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面的电阻应变片也会产生应变,表现为电阻值的变化。这样弹性体的变形转化为电阻应变片阻值的变化。把4 个电阻应变片按照桥路方式连接,两输入端施加一定的电压值,两输出端输出的共模电压随着桥路上电阻阻值的变化增加或者减小。一般这种变化的对应关系具有近似线性的关系。找到压力变化和输出共模电压变化的对应关系,就可以通过测量共模电压得到压力值。 当有压力时各桥臂的电阻状态都将改变,电桥的电压输出会有变化。 式中:Uo 为输出电压,Ui 为输入电压。 当输入电压一定且ΔRi <

电阻应变式称重传感器原理

电阻应变式称重传感器原理 电阻应变式称重传感器原理 电阻应变式称重传感器是基于这样一个原理:弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。 由此可见,电阻应变片、弹性体和检测电路是电阻应变式称重传感器中不可缺少的几个主要部分。下面就这三方面简要论述。 一、电阻应变片 电阻应变片是把一根电阻丝机械的分布在一块有机材料制成的基底上,即成为一片应变片。他的一个重要参数是灵敏系数K。我们来介绍一下它的意义。 设有一个金属电阻丝,其长度为L,横截面是半径为r的圆形,其面积记作S,其电阻率记作ρ,这种材料的泊松系数是μ。当这根电阻丝未受外力作用时,它的电阻值为R: R = ρL/S(Ω)(2—1) 当他的两端受F力作用时,将会伸长,也就是说产生变形。设其伸长ΔL,其横截面积则缩小,即它的截面圆半径减少Δr。此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。 对式(2--1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。我们有: ΔR = ΔρL/S + ΔLρ/S –ΔSρL/S2 (2—2) 用式(2--1)去除式(2--2)得到 ΔR/R = Δρ/ρ + ΔL/L –ΔS/S (2—3) 另外,我们知道导线的横截面积S = πr2,则Δs = 2πr*Δr,所以 ΔS/S = 2Δr/r (2—4) 从材料力学我们知道 Δr/r = -μΔL/L (2—5) 其中,负号表示伸长时,半径方向是缩小的。μ是表示材料横向效应泊松系数。把式(2—4)(2—5)代入(2--3),有 ΔR/R = Δρ/ρ + ΔL/L + 2μΔL/L =(1 + 2μ(Δρ/ρ)/(ΔL/L))*ΔL/L = K *ΔL/L (2--6) 其中 K = 1 + 2μ +(Δρ/ρ)/(ΔL/L)(2--7) 式(2--6))说明了电阻应变片的电阻变化率(电阻相对变化)和电阻丝伸长率(长度相对变化)之间的关系。 需要说明的是:灵敏度系数K值的大小是由制作金属电阻丝材料的性质决定的一个常数,它和应变片的形状、尺寸大小无关,不同的材料的K值一般在 1.7—3.6之间;其次K值是一个无因次量,即它没有量纲。 在材料力学中ΔL/L称作为应变,记作ε,用它来表示弹性往往显得太大,很不方便

湿度传感器原理及其应用

湿度传感器的原理及其应用 随着时代的发展,科研、农业、暖通、纺织、机房、航空航天、电力等工业部门,越来越需要采用湿度传感器,对产品质量的要求越业越高,对环境温、湿度的控制以及对工业材料水份值的监测与分析都已成为比较普遍的技术条件之一。湿度传感器产品及湿度测量属于90年代兴起的行业。如何使用好湿度传感器,如何判断湿度传感器的性能,这对一般用户来讲,仍是一件较为复杂的技术问题。 一、湿度传感器的分类及感湿特点 湿度传感器,分为电阻式和电容式两种,产品的基本形式都为在基片涂覆感湿材料形成感湿膜。空气中的水蒸汽吸附于感湿材料后,元件的阻抗、介质常数发生很大的变化,从而制成湿敏元件。 国内外各厂家的湿度传感器产品水平不一,质量价格都相差较大,用户如何选择性能价格比最优的理想产品确有一定难度,需要在这方面作深入的了解。湿度传感器具有如下特点: 1、精度和长期稳定性 湿度传感器的精度应达到±2%~±5%RH,达不到这个水平很难作为计量器具使用,湿度传感器要达到±2%~±3%RH的精度是比较困难的,通常产品资料中给出的特性是在常温(20℃±10℃)和洁净的气体中测量的。在实际使用中,由于尘土、油污及有害气体的影响,使用时间一长,会产生老化,精度下降,湿度传感器的精度水平要结合其长期稳定性去判断,一般说来,长期稳定性和使用寿命是影响湿度传感器质量的头等问题,年漂移量控制在1%RH水平的产品很少,一般都在±2%左右,甚至更高。 2、湿度传感器的温度系数 湿敏元件除对环境湿度敏感外,对温度亦十分敏感,其温度系数一般 0.2~0.8%RH/℃范围内,而且有的湿敏元件在不同的相对湿度下,其温度系数又有差别。温漂非线性,这需要在电路上加温度补偿式。采用单片机软件补偿,或无温度补偿的湿度传感器是保证不了全温范围的精度的,湿度传感器温漂曲线的线性化直接影响到补偿的效果,非线性的温漂往往补偿不出较好的效果,只有采用硬件温度跟随性补偿才会获得真实的补偿效果。湿度传感器工作的温度范围也是重要参数。多数湿敏元件难以在40℃以上正常工作。 3、湿度传感器的供电 金属氧化物陶瓷,高分子聚合物和氯化锂等湿敏材料施加直流电压时,会导致性能变化,甚至失效,所以这类湿度传感器不能用直流电压或有直流成份的交流电压。必须是交流电供电。 4、互换性 目前,湿度传感器普遍存在着互换性差的现象,同一型号的传感器不能互换,严重影响了使用效果,给维修、调试增加了困难,有些厂家在这方面作出了种种努力,(但互换性仍很差)取得了较好效果。 5、湿度校正 校正湿度要比校正温度困难得多。温度标定往往用一根标准温度计作标准即可,而湿度的标定标准较难实现,干湿球温度计和一些常见的指针式湿度计是不能用来作标定的,精度无法保证,因其要求环境条件非常严格,一般情况,(最好在湿度环境适合的条件下)在缺乏完善的检定设备时,通常用简单的饱和盐溶液检定法,并测量其温度。 二、对湿度传感器性能作初步判断的几种方法 在湿度传感器实际标定困难的情况下,可以通过一些简便的方法进行湿度传感器性能判断与检查。

压电式压力传感器原理

压电式压力传感器原理、特点及应用 压电式压力传感器的原理 压电式压力传感器的原理主要是压电效应,它是利用电气元件和其他机械把待测的压力转换成为电量,再进行相关测量工作的测量精密仪器,比如很多压力变送器和压力传感器。压电传感器不可以应用在静态的测量当中,原因是受到外力作用后的电荷,当回路有无限大 的输入抗阻的时候,才可以得以保存下来。但是实际上并不是这样的。因此压电传感器只可以应用在动态的测量当中。它主要的压电材料是:磷酸二氢胺、酒石酸钾钠和石英。而石英呢,其实是一种天然的晶体,而压电效应就是在此晶体的基础上发现的。在规定的范围里, 压电性质是不会消失,而是一直存在的。但是如果温度在这个规定的范围之外,压电性质就会彻底地消失不见。当应力发生变化的时候,电场的变化很小很小,其他的一些压电晶体就会替代石英。酒石酸钾钠,它是具有很大的压电系数和压电灵敏度的,但是,它只可以使用在室内的湿度 和温度都比较低的地方。磷酸二氢胺是一种人造晶体,它可以在很高的湿度和很高的温度的环境中使用,所以,它的应用是非常广泛的。随着技术的发展,压电效应也已经在多晶体上得到应用了。例如:压电陶瓷,铌镁酸压电陶瓷、铌酸盐系压电陶瓷和钛酸钡压电陶瓷等等都包括在内。

压电式压力传感器的特点 以压电效应为工作原理的传感器,是机电转换式和自发电式传感器。它的敏感元件是压电的材料制作而成的,而当压电材料受到外力作用的时候,它的表面会形成电荷,电荷会通过电荷放大器、测量电路的放大以及变换阻抗以后,就会被转换成为与所受到的外力成正比关系的电量输出。 它是用来测量力以及可以转换成为力的非电物理量,例如:加速度和压力。它有很多优点:重量较轻、工作可靠、结构很简单、信噪比很高、灵敏度很高以及信频宽等等。但是它也存在着某些缺点:有部分电压材料忌潮湿,因此需要采取一系列的防潮措施,而输出电流的响应又比较差, 那就要使用电荷放大器或者高输入阻抗电路来弥补这个缺点,让仪器更好地工作。 压电式压力传感器的应用 压电式压力传感器的应用领域很广泛:电声学、生物医学和工程力学等等。它能够测量发动机里面的燃烧压力,也能够应用在军事方面。它可以测量在膛中的枪炮子弹在击发的那一刻,膛压的改变量以及炮口所受到的冲击波压力。它能够测量很小的压力,也能够测量大 的压力。由于它的使用寿命很长、重量较轻、体积较小、结构较简单,因此它所涉及的领域远远不止这些。在对建筑物、桥、汽车和飞机等的冲击和震动的测量,也是非常广泛的。特别是在宇航和航空的领域

电阻应变式传感器的基本原理、结构和应用

一、原理 由欧姆定律知,对于长为 、截面积为 、电阻率为 的导体, 其电阻 若 、 和 均发生变化,则其电阻也变化,对上式全微分, 有 设半径为的圆导体, = ,代入上式,电阻的相对变化为 因为 则 式中——导体的纵向应变。其数值一般很小,常以微应变 度量, 1 =10-6; ——材料泊桑比,一般金属=0.3-0.5; ——压阻系数,与材质有关; E——材料的弹性模量。 上式中, 表示几何尺寸变化而引起电阻的相对变化量; 表示由于材料电阻率的变化而引起电阻的相对变化量。

不同属性的导体,这两项所占的比例相差很大。 若定义导体产生单位纵向应变时,电阻值相对变化量为导体的灵敏度系数,则 显然,S S愈大,单位纵向应变引起的电阻值相对变化愈大,说明应变片愈灵敏。 可用不同的导体材料制成应变片,目前主要有金属电阻应变片和半导体应变片两类。 二、金属电阻应变片 1.结构形式

原理: 对于金属电阻应变片,材料电阻率随应变产生的变化很小,可忽略,得: 电阻丝应变片又称金属丝电阻应变片,其优点是制作方便,应变横向效应大. 选用应变片时,要考虑应变片的性能参数,主要有:应变片的电阻值、灵敏度、允许电 流和应变极限等。市售金属电阻应变片的电阻值已趋于标准化,主要规格有60Ω、120Ω、350Ω 600Ω和1000Ω等,其中120Ω用得最多。 应变片产品包装上标明的"标称灵敏系数",出厂时测定的该批产品的平均灵敏度系数值。 2.其他结构形式

三、半导体应变片 结构形式 对于半导体应变片,几何尺寸变化引起的电阻变化远小于由材料电阻率变化引起的电阻变化,前者可忽略不计,可得 从而可得半导体应变片灵敏度系数为 半导体应变片的最突出优点是灵敏度大,S可达60~150, 能直接与记录仪器连接而不需放大器,使测量系统简化。 此外,其横向效应小,机械滞后小和体积小。缺点是电阻值和灵敏度的温度稳定性差。 当应变较大时,非线性严重。由于受晶向、杂质等因素影响,灵敏度分散度大。 学习时注意观察应变片粘贴的位置及方向。

压力传感器的工作原理

压力传感器的工作原理 您需要登录后才可以回帖登录|注册发布 压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 压阻式压力传感器原理与应用: 压阻式压力传感器是利用单晶硅材料的压阻效应和集成电路技术制成的传感器。压阻式传感器常用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制。 压阻效应 当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计,前者电阻随压力的变化主要取决于电阻率的变

化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。 压阻式压力传感器结构 压阻式压力传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极 引线。压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。硅膜片的一面是与被测压力连通的高压腔,另一面是与大气连通的低压腔。硅膜片一般设计成周边固支的圆形,直径与厚度比约为20~60。在圆形硅膜片(N型)定域扩散4条P杂质电阻条,并接 成全桥,其中两条位于压应力区,另两条处于拉应力区,相对于膜片中心对称。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散制作电阻条?,两条受拉应力的电阻条与另两条受压应力的电阻条构 成全桥。 电子血压计中压力传感器的原理应用及常见故障 压力传感器是工业生应用中最为常见的一种传感器,其广泛应 用于各种工业自控环境,在医用中常见于电子血压计,下面,便来为您简单介绍一些压力传感器原理应用及常见故障。 电子血压计压力传感器的工作原理及应用 压力传感器一般有电容式的和压阻式的。电容式的利用两片金 属间的电容变化来对应压力值,压阻式利用电阻值变化来对应压力值。 电子血压计压力传感器的常见问题

压力传感器原理【详解】

压力传感器原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一.压力传感器原理 一些常用传感器原理及其应用: 1、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。

金属电阻应变片的内部结构 1、应变片压力传感器原理 如图1所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω?cm2/m) S——导体的截面积(cm2) L——导体的长度(m) 我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长

压力变送器的工作原理

压力变送器的工作原理 压力变送器的工作原理 压力变送器主要由测压元件传感器(也称作压力传感器)、放大电路和支持结构件三类组成。它能将测压元件传感器测量到的气体、液体等物理压力参数变化转换成电信号(如4~20mA等),以提供指示报警仪、记载仪、调理器等二次仪表进行显示、指示和调整。 压力变送器用于测量液体、气体或蒸汽的液位、密度和压力,然后转换为成4~20mA 信号输出。 压差变送器也称差压变送器,主要由测压元件传感器、模块电路、显示表头、表壳和过程连接件等组成。它能将接收的气体、液体等压力差信号转变成标准的电流电压信号,以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节。 差压变送器根据测压范围可分成一般压力变送器(0.001MPa~20MPA)和微差压变送器(0~30kPa)两种。 差压变送器的测量原理是:流程压力和参考压力分别作用于集成硅压力敏感元件的两端,其差压使硅片变形(位移很小,仅μm级),以使硅片上用半导体技术制成的全动态惠斯登电桥在外部电流源驱动下输出正比于压力的mV级电压信号。由于硅材料的强性极佳,所以输出信号的线性度及变差指标均很高。工作时,压力变送器将被测物理量转换成mV级的 电压信号,并送往放大倍数很高而又可以互相抵消温度漂移的差动式放大器。放大后的信号经电压电流转换变换成相应的电流信号,再经过非线性校正,最后产生与输入压力成线性对应关系的标准电流电压信号。 压力传感器工作原理 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用 1 、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式

相关文档
最新文档