示波器基本原理及主要指标详解

示波器基础原理及基本指标
美国力科上海代表处胡为东 021-******** 138******** derek.hu@https://www.360docs.net/doc/bf6099795.html,

Agenda
☆力科公司及其示波器系列产品简介 ☆什么是示波器 ☆示波器的类型及区别 ☆数字示波器前端输入的主要构成 ☆数字示波器的主要指标及选择指南
2

力科公司简介
丰富的高技术产品开发经验
§ 1964年成立,专业研制高能物理测 试仪器. § 1970年开始生产电子测试仪器. § 1984年开始生产数字示波器. § 1995年在NASDAQ股票市场上市. § 2002年推出创新的X-Stream I技 术系列示波器. § 2008年推出创新的X-Stream II技 术系列示波器. § 世界三大数字示波器供应商之一 . § 世界上唯一一家专业、专注 于数字 示波器的公司 § 科学家的测试仪器,在高端应用领 域保持领先地位
公司总部设在美国纽约.
3

力科全系列示波器产品:为您探索数字世界保驾护航
我们创造示波器:
§ 准确地捕获、测量 和显示信号 § 集成硬件和软件结构, 缩短测量时间,提供洞 察力
100 GHz
Signal Complexity →
4 GHz – 30 GHz
§ 满怀信心地查看、调 试、验证或检查标准 一致性
1.5 GHz – 6 GHz
400 MHz – 2 GHz 200 MHz – 1 GHz
§ 应用深入的调试和分析工具箱,以数字 方式和可视方式提取实用信息 § 通过量身定制扩展工程师的能力
100 MHz – 500 MHz 60 MHz – 300 MHz
带宽 →
4

Lecroy全新第四代 Zi 系列示波器
WaveMaster8 Zi: 4 – 30 GHZ
WavePro7 Zi: 1.5 – 6 GHZ
超快速反应能力 长存储器处理速度提高了10-100倍 深入的调试和验证工具箱 强大的通用信号测试功能
5

WavePro 7 Zi系列
715Zi
带宽
1.5 GHz
(500 MHz 1 M?)
725Zi
2.5 GHz
(500 MHz 1 M?)
735Zi
3.5 GHz
(500 MHz 1 M?)
740Zi
4 GHz
(500 MHz 1 M?) (3.5 GHz ProBus50 ?)
760Zi
6 GHz
(500 MHz 1 M?) (3.5 GHz ProBus50 ?)
通道数 输入阻抗 输入接口类型 采样率 (4ch) 采样率(2ch) 采样率(1ch) 标配存储深度 (4ch) 标配存储深度(2ch) 最大存储深度 (4ch/2ch) 显示器尺寸和分辨率 保修
10 GS/s* 20 GS/s* 20 GS/s* ProBus (1 M?/50?)
4 1 M?/50? ProBus(1 M ?/50?) ProLink(50 ?) 20 GS/s 40 GS/s 40 GS/s 10 Mpts 20 Mpts 128/256 Mpts 15.3” Widescreen, WXGA, 1280 x 768 pixels 3 Years
6

WaveMaster 8 Zi系列
WaveMaster WaveMaster WaveMaster WaveMaster WaveMaster WaveMaster WaveMaster WaveMaster
804Zi 带宽 通道数量 4 GHz
806Zi 6 GHz
808Zi 8 GHz 4 40 GS/s, 4ch
813Zi 13 GHz
816Zi 16 GHz
820Zi 20 GHz
825Zi 25 GHz 4
(全部带宽时为2)
830Zi 30 GHz
采样率 标配存储器 最大存储器 输入阻抗
80 GS/s, 全部带宽时
40 GS/s, 4 ch
使用外部通道复用选项时2ch上为80 GS/s
10 Mpts, 4ch
在采用选项时80 GS/s及2ch时为20 Mpts
10 Mpts, 4ch
在全部带宽, 80 GS/s及2ch时为20 Mpts
256 Mpts, 4ch
在采用选项时80 GS/s及2ch时为512 Mpts
256 Mpts, 4ch
在全部带宽, 80 GS/s及2ch时为512 Mpts
50? / 1 M?
4个 -ProLink (50 ?) 4个 -ProBus (1 M ?/50?) 15.3” 宽屏, WXGA, 1280 x 768像素 3年 2个 -2.92 mm (50 ?) 4个 -ProLink (50 ?) 2个 -ProBus (1 M ?/50?)
输入类型 显示器尺寸和 分辨率 保修
7

Agenda
☆力科公司及其示波器系列产品简介 ☆什么是示波器 ☆示波器的类型及区别 ☆数字示波器前端输入的主要构成 ☆数字示波器的主要指标及选择指南
8

信号基本概念:
§ 信号: § 连续时间信号和离散时间信号
连续信号:y=x(t) 离散信号:y=x(nT)
9

模拟信号与数字信号
§ 模拟信号和数字信号在电学里面通常指的是电压信号或者 电流信号。 § 模拟信号是指随时间连续变化的电压信号或者电流信号。 § 问题:怎样将模拟信号转换为离散信号? § 数字信号是指用二进制码(0101......)表示的信号。 § 问题:怎样将离散信号(或者模拟信号)转换为数字信号 ? § 问题:为何要使用数字信号来表示模拟信号?
10

电压和电流
§ 电压(电位差):电荷从A点移动到B点的能量变化,Uba=dW/dt,在 我们日常研发过程中所说的电压是以“地(通常是与大地相连,0电平 )”为参考的。 § 电流:单位时间内通过某一导体横截面的电荷大小。 § 电压和电流都是随着时间而变化的,不同的变化蕴含着不同的信息, 因此我们需要了解它们随着时间的变化情况。
§ 示波器就是用来帮助我们测量和观察电压和电流随着时间 的变化情况的。
11

示波器经常被认为是…
一扇窗户. . .
. . . 进入微观电子世界
12

示波器获取波形图像
§ 示波器的基本功能就是将肉眼无法识别的电子信号转 换成可观测的波形图形 § 示波器获取连续信号的片断图形, 然后创造波形显示.
13

怎样将A点的电压波形送到示波器进行处理和显示呢?
14

设计一个 怎样的电 路将A点的 信号引出 来且不影 响其正常 工作?
显示
15

阻抗变换网络
显示
示波器的 无源探头 系统
16

无源探头的基本构造
PROBE 9 M?
SCOPE
1 M?
17

所有示波器都需要探头
18

Agenda
☆力科公司及其示波器系列产品简介 ☆什么是示波器 ☆示波器的类型及区别 ☆数字示波器前端输入的主要构成 ☆数字示波器的主要指标及选择指南
19

示波器主要分类 § 模拟示波器 § 数字示波器 § 采样示波器
20

示波器原理及其应用分析解析

示波器原理及其应用 示波器介绍 示波器的作用 示波器属于通用的仪器,任一个硬件工程师都应该了解示波器的工作原理并能够熟练使用示波器,掌握示波器是对每个硬件工程师的基本要求。 示波器是用来显示波形的仪器,显示的是信号电压随时间的变化。因此,示波器可以用来测量信号的频率,周期,信号的上升沿/下降沿,信号的过冲,信号的噪声,信号间的时序关系等等。 在示波器显示屏上,横坐标(X)代表时间,纵坐标(Y)代表电压,(注,如果示波器有测量电流的功能,纵坐标还代表电流。)还有就是比较少被关注的-亮度(Z),在TEK的DPO示波器中,亮度还表示了出现概率(它用16阶灰度来表示出现概率)。 1.1.示波器的分类 示波器一般分为模拟示波器和数字示波器;在很多情况下,模拟示波器和数字示波器都可以用来测试,不过我们一般使用模拟示波器测试那些要求实时显示并且变化很快的信号,或者很复杂的信号。而使用数字示波器来显示周期性相对来说比较强的信号,另外由于是数字信号,数字示波器内置的CPU或者专门的数字信号处理器可以处理分析信号,并可以保存波形等,对分析处理有很大的方便。

1.2.1 模拟示波器 模拟示波器使用电子枪扫描示波器的屏幕,偏转电压使电子束从上到下均匀扫描,将波形显示到屏幕上,它的优点在于实时显示图像。 模拟示波器的原理框图如下: 见上图所示,被测试信号经过垂直系统处理(比如衰减或放大,即我们拧垂直按钮-volts/div),然后送到垂直偏转控制中去。而触发系统会根据触发设置情况,控制产生水平扫描电压(锯齿波),送到水平偏转控制中。 信号到达触发系统,开始或者触发“水平扫描”,水平扫描是一个是锯齿波,使亮点在水平方向扫描。触发水平系统产生一个水平时基,使亮点在一个精确的时间内从屏幕的左边扫描到右边。在快速扫描过程中,将会使亮点的运动看起来

示波器_使用方法_步骤

示波器 摘要:以数据采集卡为硬件基础,采用虚拟仪器技术,完成虚拟数字示波器的设计。能够具有运行停止功能,图形显示设置功能,显示模式设置功能并具有数据存储和查看存储数据等功能。实验结果表明, 该仪器能实现数字示波器的的基本功能,解决了传统测试仪器的成本高、开发周期长、数据人工记录等问题。 1.实验目的 1.理解示波器的工作原理,掌握虚拟示波器的设计方法。 2.理解示波器数据采集的原理,掌握数据采集卡的连接、测试和编程。 3.掌握较复杂的虚拟仪器的设计思想和方法,用LabVIEW实现虚拟示波器。 2. 实验要求 1.数据采集 用ELVIS实验平台,用DAQmx编程,通过数据采集卡对信号进行采集,并进行参数的设置。 2.示波器界面设计 (1)设置运行及停止按钮:按运行时,示波器工作;按停止时,示波器停止工作。 (2)设置图形显示区:可显示两路信号,并可进行图形的上下平移、图形的纵向放大与缩小、图形的横向扩展与压缩。 (3)设置示波器的显示模式:分为单通道模式(只显示一个通道的图形),多通道模式(可同时显示两个通道),运算模式(两通道相加、两通道相减等)。

万联芯城https://www.360docs.net/doc/bf6099795.html,作为国内优秀的电子元器件采购网,一直秉承着以良心做好良芯的服务理念,万联芯城为全国终端生产研发企业提供原装现货电子元器件产品,拥有3000平方米现代化管理仓库,所售电子元器件有IC集成电路,二三极管,电阻电容等多种类别主动及被动类元器件,可申请样片,长久合作可申请账期,万联芯城为客户提供方便快捷的一站式电子元器件配套服务,提交物料清单表,当天即可获得各种元件的优势报价,整单付款当天发货,物料供应全国,欢迎广大客户咨询合作,点击进入万联芯城

数字示波器基础知识

数字示波器基础知识 耦合 耦合控制机构决定输入信号从示波器前面板上的BNC输入端通到该通道垂直偏转系统其它部分的方式。耦合控制可以有两种设置方式,即DC耦合和AC耦合。 DC耦合方式为信号提供直接的连接通路。因此信号提供直接的连接通路。因此信号的所有分量(AC 和:DC)都会影响示波器的波形显示。 AC耦合方式则在BDC端和衰减器之间串联一个电容。这样,信号的DC分量就被阻断,而信号的低频AC分量也将受阻或大为衰减。示波器的低频截止频率就是示波器显示的信号幅度仅为其直实幅度为71%时的信号频率。示波器的低频截止频率主要决定于其输入耦合电容的数值。 和耦合控制机构有关的另一个功能是输入接地功能。这时,输入信号和衰减器断开并将衰减器输入端连至示波器的地电平。当选择接地时,在屏幕上将会看到一条位于0V电平的直线。这时可以使用位置控制机构来调节这个参考电平或扫描基线的位置。 输入阻抗 多数示波器的输入阻抗为1MΩ和大约25pF相关联。这足以满足多数应用场合的要求,因为它对多数电路的负载效应极小。 有些信号来自50Ω输出阻抗的源。为了准确的测量这些信号并避免发生失真,必须对这些信号进行正确的传送和端接。这时应当使用50Ω特性阻抗的电缆并用50Ω的负载进行端接。某些示波器,如PM3094和PM3394A,内部装有一个50Ω的负载,提供一种用户可选择的功能。为避免误操作,选择此功能时需经再次确认。由于同样的理由,50Ω输入阻抗功能不能和某些探头配合使用。 相加和反向 简单的把两个信号相加起来似乎没有什么实际意义。然百,把两个有关信号之一反向,再将二者相加,实际上就实现了两个信号的相减。这对于消除共模干扰(即交流声),或者进行差分测量都是非常有用的。 从一个系统的输出信号中减去输入信号,再进行适当的比例变换,就可以测出被测系统引起的失真。 由于很多电子系统本身就具有反向的特性,这样只要把示波器的两个输入信号相加就能实现我们所期望的信号相减。 带宽

示波器的使用方法详解

* 声明 鼎阳科技有限公司,版权所有。 未经本公司同意,不得以任何形式或手段复制、摘抄、翻译本手册的内容。 ⅠSDS1000系列数字存储示波器简介 SDS1000 系列数字示波器体积小巧、操作灵活;采用彩色TFT-LCD及弹出式菜单显示,实现了它的易用性,大大提高了用户的工作效率。此外,SDS1000 系列性能优异、功能强大、价格实惠。具有较高的性价比。SDS1000 实时采样率最高 2GSa/s 、存储深度最高 2Mpts, 完全满足捕捉速度快、复杂信号的市场需求;支持USB设备存储,用户还可通过U盘或LAN 口对软件进行升级,最大程度地满足了用户的需求;所有型号产品都支持PictBridge 直接打印,满足最广泛的打印需求。 SDS1000系列有二十一种型号: [ SDS1000C系列 ]: SDS1102C、SDS1062C、SDS1042C、SDS1022C [ SDS1000D系列 ]:SDS1102D、SDS1062D、SDS1042D、SDS1022D [ SDS1000CM系列 ]: SDS1152CM、SDS1102CM、SDS1062CM [ SDS1000CE系列 ]: SDS1302CE、SDS1202CE、SDS1102CE、SDS1062CE [ SDS1000CF系列 ]: SDS1304CF、SDS1204CF、SDS1104CF、SDS1064CF [ SDS1000CN系列 ]:SDS1202CN、SDS1102CN ●超薄外观设计、体积小巧、桌面空间占用少、携带更方便 ●彩色TFT-LCD显示,波形显示更清晰、稳定 ●丰富的触发功能:边沿、脉冲、视频、斜率、交替 ●独特的数字滤波与波形录制功能 ●Pass/Fail功能,可对模板信号进行定制 ●3种光标模式、32 种自动测量种类

数字示波器原理及使用

数字示波器的原理及使用 【摘要】示波器就是以直角坐标为参数系,以时间扫描为时基两维地显示物理量——电量瞬时变化的仪器,它不但能观测低频信号(包括单次信号),同时也能观测高频信号与快速脉冲信号 ,并能对其表征的参量进行分析与测量。随着数字集成电路技术的发展而出现的数字存储示波器,不但能对波形进行显示,还能对波形进行存储、分析、计算,并能组成自动测试系统,使之成为了电子测量领域的基础测试仪器之一。 关键词:示波器,信号,数字集成电路,数字存储 【Abstract】Oscilloscope is an instrument that can display electrical signals in rectangular coordinates system based on amplitude and time、It can not only observe the low-frequency signal (including single signal), but also the high-frequency signal and pulse signal, and parameters on the characterization of the analysis and measurement、The digital storage oscilloscope was invented with the development of digital integrated circuit technology, which can not only display the waveform but also can store, analysis, calculate the Parameters of the signal and can form an automatic testing system、The digital storage oscilloscope have become one of the basic testing instrument for electronic measurement 、 Keywords: oscilloscope,signal,digital integrated circuit, digital storage oscilloscope 1、前言 随着数字集成电路技术的发展,数字式示波器的出现以其存储波形及多种信号分析、计算、处理等优良的性能逐步取代模拟示波器。与模拟示波器相比,数字示波器可以实现高带宽及方便地实现对模拟信号波形进行长期存储并能利用机内微处理器系统对存储的信号做进一步的处理,例如对被测波形的频率、幅值、前后沿时间、平均值等参数的自动测量以及多种复杂的处理。 2、数字示波器的基本原理 2、1数字存储示波器的组成原理 典型的数字示波器原理框图如图2、1所示,它分为实时与存储两种工作状态,当其以实时状态工作时,其电路组成原理与模拟示波器相同。当其以存储状态工作时,它的工作过程一般分为存储与显示两个阶段,在存储工作阶段,模拟输入信号先经过适当的放大或衰减,然后经过采样与量化两个过程的数字化处理,将模拟信号转化成数字信号后,在逻辑控制电路的控制下将数字信号写入到存储器中。量化过程就就是将采样获得的离散值通过 A/D转换器转换成二进制数字。采样,量化及写入过程都就是在同一时钟频率下进行的。在显示工作阶段,将数字信号从存储器中读出来,并经D/A转换器转换成模拟信号,经垂直放大器放大加到CRT 的Y偏转板。与此同时,CPU的读地址计数脉冲加之D/A转换器,得到一个阶梯波的扫描电压,加到水平放大器放大,驱动CRT的X偏转板,从而实现在CRT上以稠密的光点包络重现模拟信号。

数字示波器及其简单原理图

数字示波器及其简单原理图 数字示波器可以分为数字存储示波器(DSOs)、数字荧光示波器(DPOs)、混合信号示波器(MSOs)和采样示波器。 数字式存储示波器与传统的模拟示波器相比,其利用数字电路和微处理器来增强对信号的处理能力、显示能力以及模拟示波器没有的存储能力。数字示波器的基本工作原理如上图所示当信号通过垂直输入衰减和放大器后,到达模-数转换器(ADC)。ADC 将模拟输入信号的电平转换成数字量,并将其放到存贮器中。存储该值得速度由触发电路和石英晶振时基信号来决定。数字处理器可以在固定的时间间隔内进行离散信号的幅值采样。接下来,数字示波器的微处理器将存储的信号读出并同时对其进行数字信号处理,并将处理过的信号送到数-模转换器(DAC),然后DAC的输出信号去驱动垂直偏转放大器。DAC也需要一个数字信号存储的时钟,并用此驱动水平偏转放大器。与模拟示波器类似的,在垂直放大器和水平放大器两个信号的共同驱动下,完成待测波形的测量结果显示。数字存储示波器显示的是上一次触发后采集的存储在示波器内存中的波形,这种示波器不能实时显示波形信息。其他几种数字示波器的特点,请参考相关书籍。

Agilent DSO-X 2002A 型数字示波器面板介绍

该示波器有两个输入通道CH1和CH2,可同时观测两路输入波形。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。 荧光屏(液晶屏幕)是显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。 操作面板上的各个按钮按下后,相应参数设置会显示在荧光屏上。 开机后,荧光屏显示如下: 测试信号时,首先要将示波器的地(示波器探笔的黑夹子)与被测电路的地连接在一起。根据输入通道的选择,将示波器探头接触被测点(信号端)。按下Auto Scale,示波器会自动将扫描到的信号显示在荧光屏上。 输入耦合方式:模拟示波器输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC);部分数字示波器则没有GND耦合这种方式,其通过在屏幕上直接标注零电平线的位置的方法来实现GND耦合(用来确定零电平线)的功能。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观

示波器的初级使用方法教程

示波器的使用方法教程 ST-16示波器的使用 示波器是有着极其广泛用途的测量仪器之一〃借助示波器能形象地观察波形的瞬变过程,还可以测量电压。电流、周期和相位,检查放大器的失真情况等〃示波器的型号很多,它的基本使用方法是差不多的〃下面以通用ST一16型示波器为例,介绍示波器的使用方法。 面板上旋钮或开关的功能 图1是ST一16型示波器的面板图。 示波器是以数字座标为基础来显示波形的〃通常以X轴表示时间,Y轴表示幅度〃因而在图1中,面板下半部以中线为界,左面的旋钮全用于Y轴,右面的旋钮全用于X 轴。面板上半部分为显示屏。显示屏的右边有三个旋钮是调屏幕用的〃所有的旋钮,开关功能见表1。其中8、10,14,16号旋钮不需经常调,做成内藏式。

显示屏读数方法 在显示屏上,水平方向X轴有10格刻度,垂直方向Y轴有8格刻度〃这里的一格刻度读做一标度,用div表示〃根据被测波形垂直方向(或水平方向)所占有的标度数,乘以垂直输入灵敏度开关所在档位的V/div数(或水平方向t/div),得出的积便是测量结果。Y轴使用10:1衰减探头的话还需再乘10。 例如图2中测电压峰—峰值时,V/div档用0〃1V/div,输入端用了10 : l 衰减探头,则Vp-p=0〃1V/div×3〃6div×10=3〃6V,t/div档为2ms/div,则波形的周期:T=2ms/div×4div=8ms。 使用前的准备 示波器用于旋钮与开关比较多,初次使用往往会感到无从着手。初学者可按表2方式进行调节。表2位置对示波器久藏复用或会使用者也适用。

使用前的校准 示波器的测试精度与电源电压有关,当电网电压偏离时,会产生较大的测量误差〃因此在使用前必须对垂直和水平系统进行校准。校准方法步骤如下: 1〃接通电源,指示灯有红光显示,稍等片刻,逆时针调节辉度旋钮,并适当调准聚焦,屏幕上就显示出不同步的校准信号方波。 2〃将触发电平调离“自动”位置,逆时针方向旋转旋钮使方波波形同步为止。并适当调节水平移位(11)和垂直移位(5)。 3〃分别调节垂直输入部分增益校准旋钮(10)和水平扫描部分的扫描校准旋钮(14),使屏幕显示的标准方波的垂直幅度为5div,水平宽度为10div,如图3所示,ST一16示波器便可正常工作了。 示波器演示和测量举例 一,用ST一16示波器演示半波整流工作原理: 首先将垂直输入灵敏度选择开关(以下简写V/div)拨到每格0〃5V档,扫描时间转换开关(s/div)拨至每格5ms档,输入耦合开关拨至AC档,将输入探头的两端与电源变压器次级相接,见图4,这时屏幕显示如图5(a)所示的交流电压波形。 如果将探头移到二极管的负端处,这时屏幕上显示图5(b)所示的半波脉冲电压波形〃接上容量较大的电解电容器C进行滤波,调节一下触发电平旋钮(15),在示波器屏幕上可看到较为平稳的直流电压波形,见图5(c)。电容C的容量越大,脉冲成分越小,电压越平稳。

示波器的基础学习知识原理和使用

示波器的原理和使用 示波器是一种用途广泛的基本电子测量仪器,用它能观察电信号的波形、幅度和频率等电参数。用双踪示波器还可以测量两个信号之间的时间差,一些性能较好的示波器甚至可以将输入的电信号存储起来以备分析和比较。在实际应用中凡是能转化为电压信号的电学量和非电学量都可以用示波器来观测。 【实验目的】 1.了解示波器的基本结构和工作原理,掌握使用示波器和信号发生器的基本方法。2.学会使用示波器观测电信号波形和电压幅值以及频率。 3.学会使用示波器观察李萨如图并测频率。 图1-1 示波器结构图 【实验原理】 不论何种型号和规格的示波器都包括了如图1-1所示的几个基本组成部分:示波管(又称阴极射线管,cathode ray tube,简称CRT)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号发生电路(锯齿波发生器)、自检标准信号发生电路(自检信号)、触发同步电路、电源等。 1.示波管的基本结构

示波管的基本结构如图1-2所示。主要由电子枪、偏转系统和荧光屏三部分组成,全都密封在玻璃壳体内,里面抽成高真空。 (1)电子枪:由灯丝、阴极、控制栅极、第一阳极和第二阳极五部分组成。灯丝通电后加热阴极。阴极是一个表面涂有氧化物的金属圆筒,被加热后发射电子。控制栅极是一个顶端有小孔的圆筒,套在阴极外面。它的电位比阴极低,对阴极发射出来的电子起控制作用,只有初速度较大的电子才能穿过栅极顶端的小孔然后在阳极加速下奔向荧光屏。示波器面板上的“辉度”调整就是通过调节电位以控制射向荧光屏的电子流密度,从而改变了屏上的光斑亮度。阳极电位比阴极电位高很多,电子被它们之间的电场加速形成射线。当控制栅极、第一阳极与第二阳极电位之间电位调节合适时,电子枪内的电场对电子射线有聚集作用,所以, H-灯丝;K-阴极;G1,G2- 控制栅极;A1-第一阳极;A2-第二阳极;Y-竖直偏转板;X-水平偏转板 图1-2 示波管结构图 第一阳极也称聚集阳极。第二阳极电位更高,又称加速阳极。面板上的“聚集”调节,就是调第一阳极电位,使荧光屏上的光斑成为明亮、清晰的小圆点。有的示波器还有“辅助聚集”,实际是调节第二阳极电位。 (2)偏转系统:它由两对互相垂直的偏转板组成,一对竖直偏转板,一对水平偏转板。在偏转板上加以适当电压,电子束通过时,其运动方向发生偏转,从而使电子束在荧光屏上产生的光斑位置也发生改变。 (3)荧光屏:屏上涂有荧光粉,电子打上去它就发光,形成光斑。不同材料的荧光粉发光的颜色不同,发光过程的延续时间(一般称为余辉时间)也不同。荧光屏前有一块透明的、带刻度的坐标板,供测定光点的位置用。在性能较好的示波管中,将刻度线直接刻在荧光屏玻璃内表面上,使之与荧光粉紧贴在一起以消除视差,光点位置可测得更准。2.波形显示原理

示波器的使用方法

示波器的使用 【实验目的】 1.了解示波器的结构和示波器的示波原理; 2.掌握示波器的使用方法,学会用示波器观察各种信号的波形; 3.学会用示波器测量直流、正弦交流信号电压; 4.观察利萨如图,学会测量正弦信号频率的方法。 【实验仪器】 YB4320/20A/40双踪示波器,函数信号发生器,电池、万用电表。 图1实验仪器实物图 【实验原理】 示波器是一种能观察各种电信号波形并可测量其电压、频率等的电子测量仪器。示波器还能对一些能转化成电信号的非电量进行观测,因而它还是一种应用非常广泛的、通用的电子显示器。 1.示波器的基本结构 示波器的型号很多,但其基本结构类似。示波器主要是由示波管、X轴与Y轴衰减器和放大器、锯齿波发生器、整步电路、和电源等几步分组成。其框图如图2所示。

图2示波器原理框图 (1)示波管 示波管由电子枪、偏转板、显示屏组成。 电子枪:由灯丝H、阴极K、控制栅极G、第一阳极A1、第二阳极A2组成。灯丝通电发热,使阴极受热后发射大量电子并经栅极孔出射。这束发散的电子经圆筒状的第一阳极A1和第二阳极A2所产生的电场加速后会聚于荧光屏上一点,称为聚焦。A1与K之间的电压通常为几百伏特,可用电位器W2调节,A1与K 之间的电压除有加速电子的作用外,主要是达到聚焦电子的目的,所以A1称为聚焦阳极。W2即为示波器面板上的聚焦旋钮。A2与K之间的电压为1千多伏以上,可通过电位器W3调节,A2与K之间的电压除了有聚焦电子的作用外,主要是达到加速电子的作用,因其对电子的加速作用比A1大得多,故称A2为加速阳极。在有的示波器面板上设有W3,并称其为辅助聚焦旋钮。 在栅极G与阳极K之间加了一负电压即U K﹥U G,调节电位器W1可改变它们之间的电势差。如果G、K间的负电压的绝对值越小,通过G的电子就越多,电子束打到荧光屏上的光点就越亮,调节W1可调节光点的亮度。W1在示波器面板上为“辉度”旋钮。 偏转板:水平(X轴)偏转板由D1、D2组成,垂直(Y轴)偏转板由D3、、D4组成。偏转板加上电压后可改变电子束的运动方向,从而可改变电子束在荧光屏上产生的亮点的位置。电子束偏转的距离与偏转板两极板间的电势差成正比。 显示屏:显示屏是在示波器底部玻璃内涂上一层荧光物质,高速电子打在上面就会发荧光,单位时间打在上面的电子越多,电子的速度越大光点的辉度就越大。荧光屏上的发光能持续一段时间称为余辉时间。按余辉的长短,示波器分为长、中、短余辉三种。 (2)X轴与Y轴衰减器和放大器 示波管偏转板的灵敏度较低(约为0.1~1mm/V)当输入信号电压不大时,荧光屏上的光点偏移很小而无法观测。因而要对信号电压放大后再加到偏转板上,为此在示波器中设置了X轴与Y轴放大器。当输入信号电压很大时,放大器无法正常工作,使输入信号发生畸变,甚至使仪器损坏,因此在放大器前级设置有衰减器。X轴与Y轴衰减器和放大器配合使用,以满足对各种信号观测的要求。

(整理)数字存储示波器的原理及使用

数字存储示波器的原理及使用 示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图象,便于人们研究各种电现象的变化过程。目前大量使用的示波器有两种:模拟示波器和数字示波器。模拟示波器发展较早,技术也非常成熟,其优点主要是带宽宽、成本低。但是随着数字技术的飞速发展,数字示波器拥有了许多模拟示波器不具备的优点:不仅具有可存储波形、体积小、功耗低,使用方便等优点,而且还具有强大的信号实时处理分析功能;具有输入输出功能,可以与计算机或其他外设相连实现更复杂的数据运算或分析。随着相关技术的进一步发展,数字示波器的频率范围也越来越高了,其使用范围将更为广泛因此,学习数字示波器的使用具有重要的意义。 实验目的 1. 了解数字示波器的工作原理; 2. 掌握数字示波器的使用方法; 3. 会用数字示波器测量未知信号的参数。 实验原理 数字存储示波器与模拟示波器不同在于信号进入示波器后立刻通过高速A/D转换器将模拟信号前端快速采样,存储其数字化信号。并利用数字信号处理技术对所存储的数据进行实时快速处理,得到信号的波形及其参数,并由示波器显示,从而实现模拟示波器功能。而且测量精度高,还可以存储和调用显示特定时刻信号。 一个典型的数字存储示波器原理框图如图1所示,模拟输入信号先适当地放大或衰减,然后再进行数字化处理。数字化包括“取样”和“量化”两个过程,取样是获得模拟输入信号的离散值,而量化则是使每个取样的离散值经A/D转换成二进制数字,最后,数字化的信号在逻辑控制电路的控制下依次写入到RAM(存储器)中,CPU从存储器中依次把数字信号读出并在显示屏上显示相应的信号波形。GPIB为通用接口总线系统,通过它可以程控数字存储示波器的工作状态,并且使内部存储器和外部存储器交换数据成为可能。 由此可见,数字示波器必须要完成波形的取样、存储和波形的显示,另外为了满足一般应用的需求,几乎所有微机化的数字示波器都提供了波形的测量与处理功能。 1. 波形的取样和存储 由于数字系统只能处理离散信号,所以必须对模拟连续波形先进行抽样,再进行A/D 转换。根据Nyquist定理,只有抽样频率大于要处理信号频率的两倍时,才能在显示端理想地复现该信号。 由此可见,数字示波器必须要完成波形的取样、存储和波形的显示,另外为了满足一般应用的需求,几乎所有微机化的数字示波器都提供了波形的测量与处理功能。

示波器基本原理

目录 第一章示波器基本原理 (2) 1、1 模拟示波器 (2) 1、1、1示波管 (2) 1、1、2模拟示波器方框图 (3) 1、2 数字存储示波器(DSO) (4) 第二章示波器的使用 (5) 2、1示波器的各个系统和控制 (5) 2、2示波器的正确使用 (7) 第三章模拟示波器的校准 (9) 第四章数字存储示波器的使用和校准 (13) 4、1 TDS220的结构 (13) 4、2 TDS220的常规检查 (14) 4、3 TDS220的校准过程 (16)

第一章 示波器基本原理 示波器是一种图形显示设备,它能够直接观测和真实显示被测信号,是观察电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器,它可分为模拟和数字类型。下面就分模拟和数字部分对示波器的基本原理进行简单介绍。 1、1 模拟示波器 模拟示波器是第一代示波器产品,拥有极佳的"波形更新率"(约每秒超过二十万次),它仅仅在扫描的回扫时间及闭锁(Hold off )时间内不显示信号,因此又称为模拟实时示波器(Analog Real Time Oscilloscope )。由于模拟示波器是数字示波器在的基础,我们先来看模拟示波器的工作原理。 1、1、1示波管 模拟示波器的心脏是阴极射线管(CRT ),示波管由电子枪、偏转系统和荧光屏组成,它们被密封在真空的玻璃壳内,如图1-1所示。 电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打在荧光屏上,荧光屏的内表面涂有荧光物质,这样电子束打中的点就发出光来。 电子在从电子枪到屏幕的途中要经过

偏转系统,在偏转系统上施加电压就可以使光点在屏幕上移动。偏转系统由水平(X )偏转板和垂直(Y )偏转板组成。这种偏转方式称为静电偏转。 将输入信号加到Y 轴偏转板上,而示波器自己使电子束沿X 轴方向扫描。这样就使得光点在屏幕上描绘出输入信号的波形。这样扫出的信号波形称为波形轨迹 1、1、2模拟示波器方框图 从上一小节可以看出,只要控制X 轴偏转板和Y 轴偏转板上的电压,就能控制示波管显示的图形形状。因此,只要在示波管的X 轴偏转板上加一个与时间变量成正比的电压,在y 轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。因此,往往给X 轴加上锯齿波。 示波器的基本组成框图如图1-2所示,它主要由示波管、Y 轴系统、X 轴系统三部分组成。此外还包括电源电路,它产生电路中需要的多种电源。示波器中还往往有一个精确稳定的方波信号发生器,供校验示波器用。 被测信号通过探头到达示波器的垂直系统,经衰减器适当衰减后送至垂直放大器,放大后产生足够大的信号,加到示波管的Y 轴偏转板上,控制亮点在屏幕中的上下移动。为了在屏幕上显示出完整的稳定波形,将Y 轴的被测信号引入X 轴系统的触发系统,启动或触

示波器的原理和使用

示波器的原理和使用 实验目的 (1) 了解示波器的主要结构和显示波形的基本原理; (2) 掌握模拟示波器和函数信号发生器的使用方法; (3) 观察正弦、矩形、三角波等信号发生器的使用方法; (4) 通过示波器观察李萨如图形,学会一种测量正弦振动频率的方法,并加深对互相垂直振动合成理论的理解。 实验方法原理 (1) 模拟示波器的基本构造 示波器主要由示波管、垂直放大器、水平放大器、扫描信号放大器、触发同步等几个基本部分组成。 (2) 示波器显示波形原理 如果只在垂直偏转板上加一交变正弦电压,则电子束的亮点随电压的变化在竖直方向上按正弦规律变化。要想显示波形,必须同时在水平偏转板上加一扫描电压,使电子束所产生的亮点沿水平方向拉开。 (3) 扫描同步 当扫描电压的周期T x 是被观察周期信号的整数倍时,扫描的后一个周期扫绘的波形与前一个周期完全一样,荧光屏上得到清晰而稳定的波形,这叫做信号与扫描电压同步。 (4) 多踪显示 根据开关信号的转换频率不同,有两种不同的时间分割方式,即“交替”和“断续”方式。 (5) 观察李萨如图形并测频率 x y y x f f N Y N X =数方向切线对图形的切点数方向切线对图形的切点 实验步骤 (1) 熟悉示波器各控制开关的作用,进行使用前的检查和校准。 (2) 将信号发生器的输出信号连接到示波器的CH1或CH2,观察信号波形。 (3) 用示波器测量信号的周期T 、频率f 、幅值U 、峰-峰值Up-p 、有效值Urms,频率和幅值任选。 (4) 观察李萨如图形和“拍”。 (5) 利用多波形显示法和李萨如图形判别法观测两信号的相位差 ① 多波形显示法观测相位差。 ② 李萨如图形判别法观测相位差。 数据处理 0p p u p p =-= --显显U U U E 000=-=T T T E T π 2 4 44 2 4 π2 0 频率相同位相不同时的李萨如图形

模拟示波器的基本工作原理

模拟示波器的基本工作原理 1.回顾中学的沙漏实验——随时间变化的信号如何在平面展示 利用心电图机的结构,已经可以记录电压信号,但是,示波器在大量的应用中,并不需要通过消耗纸张来记录波形,而仅仅是观察波形。因此,可以重复使 用的荧光屏,被应用到示波器的设计中。 2.在示波器上描绘一条曲线——电子枪 和 荧光屏 当在Y 偏转板上加入被测信号,而在X 偏转板上不加电压,可以在示波管的荧光屏上看到光点随着被 测电压的变化而发生位置变化——电压越大,光点位 置越靠上方。 当在X 偏转板上加入一个锯齿波,而在Y 偏转板上不加电压,可以看到光点从荧光屏左边出现,匀速移动到右边,然后又迅速在左边重复出现。 当在X 偏转板上加入一个锯齿波,而在Y 偏转板上加入一个正弦波,则可以看到,光点在匀速左移的同时,其Y 方向位置出现了正弦变化的规律,也就是说,光点的移动轨迹是一个正弦波。 3 .怎样将周期性电压信号稳定地显示于荧光屏? ○ 1~○6时刻,具有相同的特征:都是以上升的方式经过0V 电压。示波器内部,用微分电路可以区分被测信号上升或者下降,用比较器配合外部的电压设置,可以判断被测信号是否经过这个比较电压(比如图中的0V )。这样,再经过一套逻辑电路,可以在被测信号具有相同初相角的时刻,控制X 轴偏转板,发 出一个锯齿 波。这种利用被测信号的周期性,在相 同 初相角时刻,触发X 轴锯齿波扫描信号,使得波形被重叠、稳定地显示于示波器荧光屏的技术,称为同步触发扫描。图中, 锯齿波在○ 1~○6时刻满足触发条件,但仅在○1、○3、○5时刻被触发,是因为在○2、○4、○6时刻,此前的锯齿波尚未扫描结束。 因此,在 示波器外部面板上,有控制被测信号在电压多大时触发锯 齿波产生的电 平旋钮,英文标识为Level ,这个电压称为触发电平。有控制被测信号是上升或者下降经过Level 电压的选择开关,英文标识为Slope 图1.1.3 沙漏摆动留下的正弦波 图1.1.4 示波管的结构示意图 Y 轴偏转板 被测信号 X 轴偏转板 锯齿波 Y 轴偏转板 被测信号 X 轴偏转板 锯齿波

数字示波器的使用

数字示波器的使用 实验报告 姓名: 学号: 座位号: 指导教师: 报告箱号: 实验日期:年月日星期第节

数字示波器的使用 预习提示:完整地学习使用某一仪器的最好方法一般是对照着用户手册,按照提示一步一步地操作,并观察记录实验现象和结果,思考自己所完成的仪器操作的作用。但初次接触像示波器这样的通用仪器,一方面,我们不可能在短时间内学会其所有的操作;另一方面,通用仪器的各种功能之间并不一定有直接的相互关联,我们可以选择其中的部分功能进行学习,其他功能可以留到以后用到时再参考用户手册来学习和实践。实验预习时,学生可以粗读用户手册中与实验内容相关的章节(第一章和第二章),知道有关功能/操作大致是哪些步骤、可以得到哪些结果。千万不要尝试去“背诵”用户手册的某个章节甚至整本用户手册。 实验目的: 预习作业: 1.示波器是一个什么样的仪器?它有哪些应用? 2.本实验所用数字示波器的电压显示范围V pp是_________;若待测量信号的V pp小于此值,则可将信号 直接接到数字示波器的信号输入端(通道1或通道2);若待测量信号的V pp大于此值,则需用示波器10:1衰减探头,且在探头线___________开关打开的情况下才能将信号接入示波器。 3.信号接入示波器之后,如果发现信号幅度纵向只占屏幕的很小部分或上下均超出屏幕显示范围,应调 节相应通道的________旋钮;若信号纵向偏离屏幕中心位置,则应调节相应通道的_________旋钮。若屏幕上显示的信号周期数太少或太多,则应调节该通道的________旋钮。 4.若屏幕上显示的信号一直在左右移动,很可能是因为_________源/模式选择或________电平设置不当。 5.(本题可在实验过程中完成)电压档位显示在液晶屏的_________位置,时基档位显示在液晶屏的 _________位置,触发源和触发模式选择显示在液晶屏的________位置。 6.(本题可在实验过程中完成)屏幕上,信号电压的零点由显示屏________位置的_______符号来指示。 信号以直流耦合方式输入时的指示符号是________;信号以交流耦合方式输入时的指示符号是 ________。

示波器基础(一)——示波器基础知识之一

示波器基础(一)——示波器基础知识之一1.1 说明和功能 我们可以把示波器简单地看成是具有图形显示的电压表。 普通的电压表是在其度盘上移动的指针或者数字显示来给出信号电压的测量读数。而示波器则与共不同。示波器具有屏幕,它能在屏幕上以图形的方式显示信号电压随时间的变化,即波形。 示波器和电压表之间的主要区别是: 1.电压表可以给出祥测信号的数值,这通常是有效值即RMS值。但是电压表不能给出有关信号形状的信息。有的电压表也能测量信号的峰值电压和频率。然而,示波器则能以图形的方式显示信号随时间变化的历史情况。 2.电压表通常只能对一个信号进行测量,而示波器则能同时显示两个或多个信号。 显示系统 示波器的显示器件是阴极射线管,缩写为CRT,见图1。阴极射线管的基础是一个能产生电子的系统,称为电子枪。电子枪向屏幕发射电子。电子枪发射的电子经聚焦形成电子束,并打在屏幕中心的一点上。屏幕的内表面涂有荧光物质,这样电子束打中的点就发出光来。

图1 阴极射线管图 电子在从电子枪到屏幕的途中要经过偏转系统。在偏转系统上施加电压就可以使光点在屏幕上移动。偏转系统由水平(X)偏转板和垂直(Y)偏转板组成。这种偏转方式称为静电偏转。 在屏幕的内表面用刻划或腐蚀的方法作出许多水平和垂直的直线形成网络,称为标尺。标尺通常在垂直方向有8个,水平方向有10个,每个格为1cm。有的标尺线又进一步分成小格,并且还有标明0%和100%的特别线。这些特别的线和标明10%和90%的标尺配合使用以进行上升时间的测量。我们后面会讨论这个问题。 如上所述,受到电子轰击后,CRT上的荧光物质就会发光。当电子束移开后,荧光物质在一个短的时间内还会继续发光。这个时间称为余辉时间。余辉时间的长短随荧光物质的不同而变化。最常用的荧光物质是P31,其余辉时间小于一毫秒(ms).而荧光物质P7的余辉时间则较长,约为300ms,这对于观察较慢的信号非常有用。P31材料发射绿光,而P7材料发光的颜色为黄绿色。 将输入信号加到Y轴偏转板上,而示波器自己使电子束沿X轴方向扫描。这样就使得光点在屏幕上描绘出输入信号的波形。这样扫出的信号波形称为波形轨迹。 影响屏幕的控制机构有:

示波器的原理和使用 实验报告

示波器的原理和使用实验报告 在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。万用表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。示波器是一种使用非常广泛,且使用相对复杂的仪器。本章从使用的角度介绍一下示波器的原理和使用方法。 1、示波器工作原理 示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。 1.1、示波管 阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。 图1示波管的内部结构和供电图示

1.荧光屏 现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。 当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s 为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。 由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。 2.电子枪及聚焦 电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。

示波器基本使用方法

示波器基本使用方法文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

示波器基本使用方法 荧光屏 荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。 示波管和电源系统 1.电源(Power) 示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。 2.辉度(Intensity) 旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。一般不应太亮,以保护荧光屏。 3.聚焦(Focus) 聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。 4.标尺亮度(Illuminance)

此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。 2.3 垂直偏转因数和水平偏转因数 1.垂直偏转因数选择(VOLTS/DIV)和微调 在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。 踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从 5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。 每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是0.2V/DIV。 在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。

示波器使用简易说明

实验1.2常用电子仪器的使用 一、实验目的 1、学习电子电路实验中常用的电子仪器——示波器、函数信号发生器等的主要性能及正确使用方法。 2、初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法 二、实验仪器 1、函数信号发生器EE1641C 2、DS1062E-EDU数字示波器 3、高级电路实验箱 三、实验原理 初步了解示波器面板和用户界面 1. 前面板:DS1000E-EDU系列数字示波器向用户提供简单而功能明晰的前面板, 以进行基本的操作。面板上包括旋钮和功能按键。旋钮的功能与其它示波器类似。显示屏右侧的一列 5 个灰色按键为菜单操作键(自上而下定义为1 号至 5 号)。通过它们,您可以设置当前菜单的不同选项;其它按键为功能键,通过它们,您可以进入不同的功能菜单或直接获得特定的功能应用。

电压参数的自动测量 DS1000E-EDU, DS1000D-EDU 系列数字示波器可自动测量的电压参数包括峰峰值、最大值、最小值、平均值、均方根值、顶端值、低端值。下图表述了各个电压参数的物理意义。 电压参数示意图 峰峰值(Vpp):波形最高点至最低点的电压值。 ?最大值(Vmax):波形最高点至GND(地)的电压值。

最小值(Vmin):波形最低点至GND(地)的电压值。 幅值(Vamp):波形顶端至底端的电压值。? 顶端值(Vtop):波形平顶至GND(地)的电压值。 底端值(Vbase):波形平底至GND(地)的电压值。 过冲(Overshoot):波形最大值与顶端值之差与幅值的比值。 预冲(Preshoot):波形最小值与底端值之差与幅值的比值。 平均值(Average):单位时间内信号的平均幅值。 均方根值(Vrms):即有效值。依据交流信号在单位时间内所换算产生的能量,对应于产生等值能量的直流电压,即均方根值。 2、函数信号发生器 函数信号发生器按需要输出正弦波、方波、三角波三种信号波形。输出电压最大可达20VP-P。通过输出衰减开关和输出幅度调节旋钮,可使输出电压在毫伏级到伏级范围内连续调节。函数信号发生器的输出信号频率可以通过频率分档开关进行调节。 函数信号发生器作为信号源,它的输出端不允许短路。 例一:测量简单信号 观测电路中的一个未知信号,迅速显示和测量信号的频率和峰峰值。 1. 欲迅速显示该信号,请按如下步骤操作: (1) 将探头菜单衰减系数设定为1X,并将探头上的开关设定为1X。 (2) 将通道1的探头连接到电路被测点。 (3) 按下AUTO(自动设置)按键。 示波器将自动设置使波形显示达到最佳状态。在此基础上,您可以进一步调节垂直、水平档位,直至波形的显示符合您的要求。 2. 进行自动测量 示波器可对大多数显示信号进行自动测量。欲测量信号频率和峰峰值,请按如下步骤操作:

相关文档
最新文档