大学物理b2习题 含答案

大学物理b2习题 含答案
大学物理b2习题 含答案

大学物理B2习题

(一、电磁学部分

1、如图所示,真空中一长为L的均匀带电细直杆,总电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度和电势.

2、一半径为R的均匀带电半圆环,电荷线密度为 ,求换新处O点的电场强度和电势。

3、实验证明,地球表面上方电场不为0,晴天大气电场的平均场强约为120V/m,

方向向下,这意味着地球表面上有多少过剩电荷?试以每平方厘米的额外电子数表示。(526.6410/cm ?个)

解 设想地球表面为一均匀带电球面,总面积为S ,则它所总电量为

00d S

q E S ES εε=?=??

单位面积带电量为 E S

q

0εσ==

单位面积上的额外电子数为

19

120106.1120

1085.8--???===e E

e n εσ

92526.6410/m 6.6410/cm =?=?

4、地球表面上方电场方向向下,大小可能随高度变化,设在地面上方100m 高处场强为150N/C ,300m 高处场强为100N/C ,试由高斯定理求在这两个高度之间的平均体电荷密度,以多余的或缺少的电子数密度表示。(缺少,721.3810/m ?个)

5、如图所示,电量1q 均匀分布在半径为1R 的球面上,电量2q 均匀分布在同心的半径为2R 的球面上,2R >1R 。

(1)利用高斯定理求出r <1R ,1R <r <2R ,r >2R 区域的电场强度 (2)若r >2R

区域的电场强度为零,则?1

=q

q ,1q 与2q 同号还是异号?

6、二个无限长同轴圆筒半径分别为1R 和2R ,单位长度带电量分别为λ+和λ-。求内筒的内部、两筒间及外筒外部的电场分布。

解 由对称性分析可知,E

分布具有轴对称性,即与圆柱轴线距

离相等的同轴圆柱面上各点场强大小相等,方向均沿径向。

如解用图,作半径为r ,高度为h 、与两圆柱面同轴的圆柱形高斯面,则穿过圆柱面上下底的电通量为零,穿过整个高斯面的电通量等于穿过圆柱形侧面的电通量。

d d 2πS

S E S E S E rh ?=?=????侧

若10R r

<<,0i i

q =∑,得

0=E

若21

R r R <<,i i

q h λ=∑ 得

02πE r

λ

ε=

若2R r

>,0i i

q =∑得 0=E

习题6-9解用图

p

112020(0)

(2π0

()r R E R r R r r R λε?<

???>?)(垂直中心轴线向外)

7、一厚度为d 的无限大平板,平板体积内均匀带电,体电荷密度0ρ>.设板内、外的介电常数均为0ε.求平板内、外电场分布.

8、两半径分别为R 1和R 2(R 2>R 1)带等值异号电荷的无限长同轴圆柱面,线电荷密度为λ和-λ,求: 两圆柱面间的电势差V.

9、(27页例9.14)

如图所示,在一个接地的导体球附近有一电量为q 的点电荷,已知球的半径

为R ,点电荷到球心的距离为l ,求导体球表面感应电荷的总电量q '.

10、(10分)一根很长的圆柱形铜导线,半径为R ,载有电流I ,设电流均匀分布于横截面。在导线内部作一平面S ,如图所示。试计算 (1)、导线内任一点的磁感应强度; (2)、通过S 平面的磁通量。(设铜的磁导率0

μμ≈,并

沿导线长度方向取长为1m 的一段作计算)

11、(第91页10.17题)

12、(第92页10.19题)

13、(第90页10.11题)

14、如图所示,半径为R 的半圆线圈ACD 通有电流2I , 置于电流为1I 的无限长直线电流的磁场中, 直线电流1I 恰过半圆的直径, 两导线相互绝缘. 求半圆线圈受到长直线电流1I 的磁力.

C

I I 2

15、(第64页例10.3)

16、在通有电流I=5A的长直导线近旁有一导线段ab,长20

=,离长直导线

l cm

距离10

v m s

=平移时,导线中=.当它沿平行于长直导线的方向以速度10/

d cm

的感应电动势多大?a、b哪端的电势高?

17、直径为D 的半圆形导线置于与它所在平面垂直的均匀磁场B 中,当导线绕着

过P 点并与B 平行的轴以匀角速度ω逆时针转动时,求其动生电动势PQ ε.

16题图 17题图

18、(第112页11.5)

19、如图,导体棒AB(长50cm)和DB接触,整个线框放在B=0.5T的均匀磁场中,磁场方向与图画垂直.

(1)若导体棒以4/

m s的速度向右运动,求棒内感应电动势的大小和方向;

(2)若导体棒运动到某一位置时,电路的电阻为0.20 ,求此时棒所受的力.摩擦力不计.

(3)比较外力作功的功率和电路中消耗的功率,并从能量守恒角度进行分析.

20、(114页11.9)

21、矩形线圈长l=20cm,宽b=10cm,由100匝导线绕成,放置在无限长直导线

旁边,并和直导线在同一平面内,该直导线是一个闭合回路的一部分,其余部分离线圈很远,其影响可略去不计。求图中线圈与长直导线间的互感。

b b

l

22、i

a

b

c

d

1

l 2

l h

x

dx

例:无限长直导线t

sin i i ω0=共面矩形线圈abcd 求:

i

ε已知:1

l 2l h

解:?

+=

2

102l h h

dx l x

i

πμt

sin h

l h ln l i ωπμ21002+=dt

d m i Φε-=t

cos h l h ln l i ωπμ2

1

002+-=??=S d B m

Φ

23、均匀磁场B 限定在无限长圆柱体内,dB/dt =1?10-2T/s ,在该圆柱体的一个横截面上作如图所示的梯形PQMNP ,已知PQ =R=1cm ,MN=0.5cm ,试求: (1)各边产生的感应电动势PQ ε、QM ε、MN ε、N P ε (2)整个梯形的总电动势。 (图中×表示磁场的方向)。

24、(115页11.13)

二、波动光学部分

25、在图示的双缝干涉实验中,若用薄玻璃片(折射率n1=1.4)覆盖缝 S1,用同样厚度的玻璃片(但折射率n2=1.7)覆盖缝 S2,将使屏上原来未放玻璃时

的中央明纹所在处 O变为第五级明纹。设单色光波长 = 4800

A,求

μ)

(1)玻璃片的厚度h(可认为光线垂直穿过玻璃片)。(h=8.0m

(2)如双缝与屏间的距离D=120cm,双缝间距d=0.50 mm,则新的零级明纹O'的坐标x=?

26、在双缝干涉实验中,波长 =550 nm的单色平行光垂直入射到缝间距d=2×10-4 m的双缝上,屏到双缝的距离D=2m。求:

(1)中央明纹两侧的两条第10级明纹中心的间距;

(2)用一厚度为 e=6.6×10-6m、折射率为 n=1.58 的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?(1nm=10-9m)

27、(164页13.15)

28、(151页例13.4)

29、用波长为nm

8.

632的单色光垂直照射一光栅,已知该光栅的缝宽

.0

029

b。求:

=

a,不透光部分的宽度mm

mm

012

.0

=

(1)单缝衍射图样的中央明纹角宽度;

(2)单缝衍射图样中央明纹宽度内能看到的明条纹数目;

(3)若mm

006

a,则能看到哪几级干涉明条纹?

=b

=

.0

30、(190页14.12)

(1)在单缝夫琅和费衍射实验中,垂直入射的光有两种波长,

A 40001=λ,

A 76002=λ。已知单缝宽度为2100.1-?=a cm ,透镜焦距f =50cm 。求两种光第一级衍射明纹中心之间的距离。

(2)若用光栅常数3100.1-?=d cm 的光栅替换单缝,其它条件和上一问相同,

大学物理竞赛指导-经典力学例题-物理中心

大学物理竞赛指导-经典力学选例 一.质点运动学 基本内容:位置,速度,加速度,他们的微积分关系,自然坐标下切、法向加速度,*极坐标下径向速度,横向速度,直线运动,抛物运动,圆周运动,角量描述,相对运动 1.运动学中的两类问题 (1)已知运动方程求质点的速度、加速度。这类问题主要是利用求导数的方法。 例1 一艘船以速率u驶向码头P ,另一艘船以速率v 自码头离去,试证当两船的距离最短时,两船与码头的距离之比为: ()()ααcos :cos v v ++u u 设航路均为直线,α为两直线的夹角。 证:设任一时刻船与码头的距离为x 、y ,两船的距离为l ,则有 α c o s 2222xy y x l -+= 对t求导,得 ()()t x y t y x t y y t x x t l l d d c o s 2d d c o s 2d d 2d d 2d d 2αα--+= 将v , =-=t y u t x d d d d 代入上式,并应用0d d =t l 作为求极值的条件,则得 ααcos cos 0yu x y ux +-+-=v v ()()αα c o s c o s u y u x +++-=v v 由此可求得 ααc o s c o s v v ++=u u y x 即当两船的距离最短时,两船与码头的距离之比为 ()()αα c o s c o s v : v ++u u (2)已知质点加速度函数a =a (x ,v ,t )以及初始条件,建立质点的运动方程。这类问题主要用积分方法。 例2 一质点从静止开始作直线运动,开始时加速度为a 0,此后加速度随时间均匀增加,经过时间τ后,加速度为2a 0,经过时间2τ后,加速度为3 a 0 ,…求经过时间n τ后,该质点的速度和走过的距离。 解:设质点的加速度为 a = a 0+α t ∵ t = τ 时, a =2 a 0 ∴ α = a 0 /τ 即 a = a 0+ a 0 t /τ , 由 a = d v /d t , 得 d v = a d t t t a a t d )/(d 0 000τ??+=v v ∴ 2002t a t a τ +=v

大学物理试卷及答案

2005─2006学年第二学期 《 大学物理》(上)考试试卷( A 卷) 注意:1、本试卷共4页; 2、考试时间: 120分钟; 3、姓名、序号必须写在指定地方; 4、考试为闭卷考试; 5、可用计算器,但不准借用; 6、考试日期: 7、答题答在答题纸上有效, 答在试卷上无效; b =2.897×10?3m·K R =8.31J·mol ?1·K ?1 k=1.38×10?23J·K ?1 c=3.00×108m/s ? = 5.67×10-8 W·m ?2·K ?4 1n 2=0.693 1n 3=1.099 g=9.8m/s 2 N A =6.02×1023mol ?1 R =8.31J·mol ?1·K ?1 1atm=1.013×105Pa 一.选择题(每小题3分,共30分) 1.在如图所示的单缝夫琅禾费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹 (A) 间距变大. (B) 间距变小. (C) 不发生变化. (D) 间距不变,但明暗条纹的位置交替变化. 2. 热力学第一定律只适用于 (A) 准静态过程(或平衡过程). (B) 初、终态为平衡态的一切过程. (C) 封闭系统(或孤立系统). (D) 一切热力学系统的任意过程. 3.假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的 (A) 角动量守恒,动能不变. (B) 角动量守恒,动能改变. (C) 角动量不守恒,动能不变. (D) 角动量不守恒,动量也不守恒. (E) 角动量守恒,动量也守恒. 4.质量为m 的物体由劲度系数为k 1和k 2的两个轻弹簧串联连接在水平光滑导轨上作微小振 动,则该系统的振动频率为 (A) m k k 212+π =ν. (B) m k k 2 121+π=ν . (C) 2 12 121k mk k k +π=ν. (D) )(212 121k k m k k +π=ν 5. 波长? = 5500 ?的单色光垂直照射到光栅常数d = 2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为 (A) 2. (B) 3. (C) 4. (D) 5.

大学物理练习题

一、选择题 1. 半径为R 的均匀带电球面,若其电荷面密度为σ,取无穷远处为零电势点,则在距离球面r (R r <) 处的电势为( ) A 、0 B 、R 0 εσ C 、r R 02 εσ D 、r R 024εσ 2. 下列说法正确的是:( ) A. 电场场强为零的点,电势也一定为零 B. 电场场强不为零的点,电势也一定不为零 C. 电势为零的点,电场强度也一定为零 D. 电势在某一区域内为常量,则电场强度在该区域内必定为零 3. 如图示,边长是a 的正方形平面的中垂线上,距中心O 点 处, 有一电量为q 的正点电荷,则 通过该平面的电通量是( )。 A. B. C. D. 4. 两根长度相同的细导线分别密绕在半径为R 和r 的两个直圆筒上形成两个螺线管,两个螺线管的长 度相同,R=2r ,螺线管通过的电流相同为I ,螺线管中的磁感应强度大小为B R ,B r ,则应该满足:( ) A. B R =2B r B. B R =B r C. 2B R =B r D. B R =4B r 5. 两个同心均匀带电球面,半径分别为a R 和b R (b a R R <), 所带电荷分别为a q 和b q .设某点与球 心相距r ,当b a R r R <<时,取无限远处为零电势,该点的电势为( ) A 、 r q q b a +?π041ε B 、 r q q b a -?π041ε

C 、???? ? ?+?b b a R q r q 0 41επ D 、 ???? ??+?b b a a R q R q 0 41 επ 6. 面积为S 和S 2的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用21Φ表示,线圈2的电流所产生的通过线圈1的磁通用12Φ表示,则21Φ和12Φ的大小关系为( ) 1 2 S 2 S I I A 、12212ΦΦ= B 、1221ΦΦ> C 、1221ΦΦ= D 、12212 1 ΦΦ= 7. 如图所示,两个“无限长”的、半径分别为1R 和2R 的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为1λ和2λ,则在两圆柱面之间、距离轴线为r 处的P 点的电场强度大小E 为( ) A 、 r 02 12ελλπ+ B 、 2 02 10122R R ελελπ+ π C 、 r 01 2ελπ D 、0 8. 如图,长度为l 的直导线ab 在均匀磁场B ? 中以速度v ? 移动,直导线ab 中的电动势为( )

大学物理上册期末考试重点例题

大学物理上册期末考试 重点例题 Document number:PBGCG-0857-BTDO-0089-PTT1998

第一章 质点运动学习题 1-4一质点在xOy 平面上运动,运动方程为 x =3t +5, y = 2 1t 2 +3t -4.(SI ) (式中t 以 s 计,x ,y 以m 计.) (1)以时间t 为变量,写出质点位置矢量的表示式; (2)求出t =1 s 时刻和t =2s 时刻的位置矢量,并计算这1秒内质点的位移; (3)计算t =0 s 时刻到t =4s 时刻内的平均速度; (4)求出质点速度矢量表示式,并计算t =4 s 时质点的速度; (5)计算t =0s 到t =4s 内质点的平均加速度; (6)求出质点加速度矢量的表示式,并计算t =4s 时质点的加速度。 (请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式). 解:(1)质点位置矢量 21 (35)(34)2r xi yj t i t t j =+=+++-m (2)将1=t ,2=t 代入上式即有 211 [(315)(1314)](80.5)2t s r i j m i j m ==?++?+?-=- 221 [(325)(2324)](114)2 t s r i j m i j ==?++?+?-=+m 21(114)(80.5)(3 4.5)t s t s r r r i j m i j m i j m ==?=-=+--=+ (3) ∵ 20241 [(305)(0304)](54)2 1 [(345)(4344)](1716)2 t s t s r i j m i j m r i j m i j m ===?++?+?-=-=?++?+?-=+ ∴ 1140(1716)(54)(35)m s 404 t s t s r r r i j i j v m s i j t --==-?+--= ==?=+??-

大学物理试题及答案

第2章刚体得转动 一、选择题 1、如图所示,A、B为两个相同得绕着轻绳得定滑轮.A滑轮挂一质量为M得物体,B滑轮受拉力F,而且F=Mg.设A、B两滑轮得角加速度分别为βA与βB,不计滑轮轴得摩擦,则有 (A) βA=βB。(B)βA>βB. (C)βA<βB.(D)开始时βA=βB,以后βA<βB。 [] 2、有两个半径相同,质量相等得细圆环A与B。A环得质量分布均匀,B环得质量分布不均匀。它们对通过环心并与环面垂直得轴得转动惯量分别为JA与J B,则 (A)JA>J B.(B) JA

大学物理期末考试经典题型(带详细答案的)

例1:1 mol 氦气经如图所示的循环,其中p 2= 2 p 1,V 4= 2 V 1,求在1~2、2~3、3~4、4~1等过程中气体与环境的热量交换以及循环效率(可将氦气视为理想气体)。O p V V 1 V 4 p 1p 2解:p 2= 2 p 1 V 2= V 11234T 2= 2 T 1p 3= 2 p 1V 3= 2 V 1T 3= 4 T 1p 4= p 1V 4= 2 V 1 T 4= 2 T 1 (1)O p V V 1 V 4 p 1p 21234)(1212T T C M m Q V -=1→2 为等体过程, 2→3 为等压过程, )(2323T T C M m Q p -=1 1123)2(23RT T T R =-=1 115)24(2 5RT T T R =-=3→4 为等体过程, )(3434T T C M m Q V -=1 113)42(2 3 RT T T R -=-=4→1 为等压过程, )(4141T T C M m Q p -=1 112 5)2(25RT T T R -=-= O p V V 1 V 4 p 1p 21234(2)经历一个循环,系统吸收的总热量 23121Q Q Q +=1 112 13 523RT RT RT =+=系统放出的总热量1 41342211 RT Q Q Q =+=% 1.1513 2 112≈=-=Q Q η三、卡诺循环 A → B :等温膨胀B → C :绝热膨胀C → D :等温压缩D →A :绝热压缩 ab 为等温膨胀过程:0ln 1>=a b ab V V RT M m Q bc 为绝热膨胀过程:0=bc Q cd 为等温压缩过程:0ln 1<= c d cd V V RT M m Q da 为绝热压缩过程:0 =da Q p V O a b c d V a V d V b V c T 1T 2 a b ab V V RT M m Q Q ln 11= =d c c d V V RT M m Q Q ln 12= =, 卡诺热机的循环效率: p V O a b c d V a V d V b V c ) )(1 212a b d c V V V V T T Q Q (ln ln 11-=- =ηT 1T 2 bc 、ab 过程均为绝热过程,由绝热方程: 11--=γγc c b b V T V T 1 1--=γγd d a a V T V T (T b = T 1, T c = T 2)(T a = T 1, T d = T 2) d c a b V V V V =1 212T T Q Q -=- =11η p V O a b c d V a V d V b V c T 1T 2 卡诺制冷机的制冷系数: 1 2 1212))(T T V V V V T T Q Q a b d c ==(ln ln 2 122122T T T Q Q Q A Q -= -== 卡ω

浙江省大学物理试题库204-热力学第一定律、典型的热力学过程

浙江工业大学学校 204 条目的4类题型式样及交稿式样 热力学第一定律、典型的热力学过程 一. 选择题 题号:20412001 分值:3分 难度系数等级:2 1 如图所示,一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程 (A) 是A→B. (B) 是A→ C. (C) 是A→D. (D) 既是A→B也是A→C, 两过程吸热一样多。 [ ] 答案:A 题号:20412002 分值:3分 难度系数等级:2 2 质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加一倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小. (D) 等压过程中最大,等温过程中最小.[] 答案:D 题号:20412003 分值:3分 难度系数等级:2 V

3 一定量的理想气体,从a 态出发经过①或②过程到达b 态,acb 为等温线(如图),则①、②两过程中外界对系统传递的热量Q 1、Q 2是 (A) Q 1>0,Q 2>0. (B) Q 1<0,Q 2<0. (C) Q 1>0,Q 2<0. (D) Q 1<0,Q 2>0. [ ] 答案:A 题号:20413004 分值:3分 难度系数等级:3 4 一定量的理想气体分别由初态a 经①过程ab 和由初态a ′经 ②过程a ′cb 到达相同的终态b ,如p -T 图所示,则两个过程中 气体从外界吸收的热量 Q 1,Q 2的关系为: (A) Q 1<0,Q 1> Q 2. (B) Q 1>0,Q 1> Q 2. (C) Q 1<0,Q 1< Q 2. (D) Q 1>0,Q 1< Q 2. [ ] 答案:B 题号:20412005 分值:3分 难度系数等级:2 5. 理想气体向真空作绝热膨胀. (A) 膨胀后,温度不变,压强减小. (B) 膨胀后,温度降低,压强减小. (C) 膨胀后,温度升高,压强减小. (D) 膨胀后,温度不变,压强不变. [ ] 答案:A 题号:20412006 分值:3分 难度系数等级:2 6. 一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两 态处于同一条绝热线上(图中虚线是绝热线),则气体在 (A) (1)过程中吸热,(2) 过程中放热. (B) (1)过程中放热,(2) 过程中吸热. (C) 两种过程中都吸热. (D) 两种过程中都放热. [ ] 答案:B 题号:20412007 分值:3分 p p p V

大学物理期末试卷(带答案)

大学物理期末试卷(A) (2012年6月29日 9: 00-11: 30) 专业 ____组 学号 姓名 成绩 (闭卷) 一、 选择题(40%) 1.对室温下定体摩尔热容m V C ,=2.5R 的理想气体,在等压膨胀情况下,系统对外所做的功与系统从外界吸收的热量之比W/Q 等于: 【 D 】 (A ) 1/3; (B)1/4; (C)2/5; (D)2/7 。 2. 如图所示,一定量的理想气体从体积V 1膨胀到体积V 2分别经历的过程是:A B 等压过程; A C 等温过程; A D 绝热过程 . 其中吸热最多的 过程 【 A 】 (A) 是A B. (B) 是A C. (C) 是A D. (D) 既是A B,也是A C ,两者一样多. 3.用公式E =νC V T (式中C V 为定容摩尔热容量,ν为气体摩尔数)计算理想气体内能 增 量 时 , 此 式 : 【 B 】 (A) 只适用于准静态的等容过程. (B) 只适用于一切等容过程. (C) 只适用于一切准静态过程. (D) 适用于一切始末态为平衡态的过程. 4气缸中有一定量的氦气(视为理想气体),经过绝热压缩,体积变为原来的一半,问气体 分 子 的 平 均 速 率 变 为 原 来 的 几 倍 ? p V V 1 V 2 A B C D . 题2图

【 B 】 (A)2 2 / 5 (B)2 1 / 5 (C)2 1 / 3 (D) 2 2 / 3 5.根据热力学第二定律可知: 【 D 】 (A )功可以全部转化为热, 但热不能全部转化为功。 (B )热可以由高温物体传到低温物体,但不能由低温物体传到高温物体。 (C )不可逆过程就是不能向相反方向进行的过程。 (D )一切自发过程都是不可逆。 6. 如图所示,用波长600=λnm 的单色光做杨氏双缝实验,在光屏P 处产生第五级明纹极大,现将折射率n =1.5的薄透明玻璃片盖在其中一条缝上,此时P 处变成中央 明纹极大的位置,则此玻璃片厚度为: 【 B 】 (A) 5.0×10-4 cm (B) 6.0×10-4cm (C) 7.0×10-4cm (D) 8.0×10-4cm 7.下列论述错误..的是: 【 D 】 (A) 当波从波疏媒质( u 较小)向波密媒质(u 较大)传播,在界面上反射时,反射 波中产生半波损失,其实质是位相突变。 (B) 机械波相干加强与减弱的条件是:加强 π?2k =?;π?1)2k (+=?。 (C) 惠更斯原理:任何时刻波面上的每一点都可作为次波的波源,各自发出球面次波;在以后的任何时刻,所有这些次波面的包络面形成整个波在该时刻的新波面 (D) 真空中波长为500nm 绿光在折射率为1.5的介质中从A 点传播到B 点时,相位改变了5π,则光从A 点传到B 点经过的实际路程为1250nm 。 8. 在照相机镜头的玻璃片上均匀镀有一层折射率n 小于玻璃的介质薄膜,以增强某一波长 的透射光能量。假设光线垂直入射,则介质膜的最小厚度应为: 【 D 】 (A)/n λ (B)/2n λ (C)/3n λ (D)/4n λ P O 1 S 2 S 6. 题图

大学物理典型例题分析

大学物理典型例题分析 第13章光的干涉 例13-1如图将一厚度为l ,折射率为n 的薄玻璃片放在一狭缝和屏幕之间,设入射光波长为λ,测量中点C处的光强与片厚l 的函数关系。如果l =0时,该点的强度为 0I ,试问: (1)点C的光强与片厚l的函数关系是什么; (2)l 取什么值时,点C 的光强最小。 解 (1)在C 点来自两狭缝光线的光程差为nl l δ=- 相应的相位差为 22(1)n l π π ?δλ λ ?= = - 点C 的光强为: 2 14cos 2I I ??= 其中:I1 为通过单个狭缝在点C 的光强。 014I I = (2)当 1(1)()2 n l k δλ =-=-时 点C 的光强最小。所以 1() 1,2,3, 21l k k n λ=-=- 例13-2如图所示是一种利用干涉方法测量气体折射率的干涉示意图。其中T 1 ,T 2 为一对完全相同的玻璃管,长为l ,实验开始时,两管中为空气,在 P 0 处出现零级明纹。然后在T 2 管中注入待测气体而将空气排除,在这过程中,干涉条纹就会移动,通过测定干涉条纹的移 动数可以推知气体的折射率。 设l =20cm ,光波波长589.3nm λ=,空气的折射率1.000276,充一某种气体后,条纹 移动200条,求这种气体的折射率。 解当两管同为空气时,零级明纹出现在P 0处,则从S 1和S 2射出的光在此处相遇时,光程差为零。T 2管充以某种气体后,从S2射出的光到达屏处的光程就要增加,零级明纹将要向下移动,出现在o P ' 处。如干涉条纹移动N条明纹,这样P 0 处将成为第N 级明纹,因此,充气后两 光线在P 0 处的光程差为 S 1 L 1 L 2 T 2 T 1 S 2 S E P 0 P 0 ' 例13-2图 例13-1图

大学物理试题库及答案详解【考试必备】

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确

大学物理例题

例1 路灯离地面高度为H,一个身高为h 的人,在灯下水平路面上以匀速度步行。如图3-4所示。求当人与灯的水平距离为时,他的头顶在地面上的影子移动的速度的大小。 解:建立如右下图所示的坐标,时刻头顶影子的坐标为 ,设头顶影子的坐标为,则 由图中看出有 则有 所以有 ; 例2如右图所示,跨过滑轮C的绳子,一端挂有重物B,另一端A 被人拉着沿水平方向匀速运动,其速率。A离地高度保 持为h,h =1.5m。运动开始时,重物放在地面B0处,此时绳C在铅 直位置绷紧,滑轮离地高度H = 10m,滑轮半径忽略不计,求: (1) 重物B上升的运动方程;

(2) 重物B在时刻的速率和加速度; (3) 重物B到达C处所需的时间。 解:(1)物体在B0处时,滑轮左边绳长为l0 = H-h,当重物的位移为y时,右边绳长为 因绳长为 由上式可得重物的运动方程为 (SI) (2)重物B的速度和加速度为 (3)由知 当时,。

此题解题思路是先求运动方程,即位移与时间的函数关系,再通过微分求质点运动的速度和加速度。 例3一质点在xy平面上运动,运动函数为x = 2t, y = 4t2-8(SI)。 (1) 求质点运动的轨道方程并画出轨道曲线; (2) 求t1=1s和t2=2s时,质点的位置、速度和加速度。 解:(1) 在运动方程中消去t,可得轨道方程为 , 轨道曲线为一抛物线如右图所示。 (2) 由 可得: 在t1=1s 时, 在t2=2s 时, 例4质点由静止开始作直线运动,初始加速度为a0,以后加速度均匀增加,每经过τ秒增加a0,求经过t秒后质点的速度和位移。 解:本题可以通过积分法由质点运动加速度和初始条件,求解质点的速度和位移。

大学物理典型例题分析

大学物理典型例题分析 第13章光的干涉 例13-1如图将一厚度为I,折射率为n的薄玻璃片放在一狭缝和屏幕之间, I (k 1k 1,2,3,川 2 n 1 种利用干涉方法测量气体折射率的干涉示意图。其中 对完全相同的玻璃管,长为I,实验开始时,两管中为空气,在P0处出现零级明纹。然后 在T2管中注入待测气体而将空气排除,在这过程中,干涉条纹就会移动,通过测定干涉条纹的移动数可以推知气体的折射率。 设l=20cm,光波波长589.3nm,空气的折射率1.000276,充一某种气体后,条纹移动 200条,求这种气体的折射率。 解当两管同为空气时,零级明纹出现在P。处,则从S和S2射出的光在此处相遇时, 光程差为零。T2管充以某种气体后,从s射出的光到达屏处的光程就要增加,零级明纹将要向下移动,出现在 FO 处。如干涉条纹移动N条明纹,这样P。处将成为第N级明纹,因此, 充气后两光线在P0处的光程差为 n2l n1l ,测量中点C处的光强与片厚I的函数关系。如果1=0时,该点的强度为 (1) 点C的光强与片厚I的函数关系是什么; (2) I取什么值时,点C的光强最小。 解(1)在C点来自两狭缝光线的光程差为 相应的相位差为 长为 nl Io ,试问: I M1 C 点C的光强为: 2 I 2 其中:h为通过单个狭缝在点 I 411 cos 例13-1图 ⑵当 —(n 1)I C的光 强。 I i (n 1)l 1 (k 2)时 设入射光波 点C的光强最小。所以 例13-2如图所示是

所以 n 2l nj N 即 代入数据得 n 2 N l n 1 n 2 200 589.3 103 1.0002 7 6 1.000865 0.2 例13-3.在双缝干涉实验中,波长 =5500?的单色平行光垂直入射到缝间距 a=2 10 -4 m 的双缝上,屏到双缝的距离 D = 2m .求: (1 )中央明纹两侧的两条第 10级明纹中心的间距; (2)用一厚度为e=6.6 10-6 m 、折射率为n=1.58的玻璃片覆盖一缝后,零级明纹将移到 原来的 第几级明纹处 ? D 解:(1)因为相邻明(暗)条纹的间距为 T ,共20个间距 x 20— 0.11m 所以 a (2)覆盖玻璃后,零级明纹应满足: r 2 (r 1 e) ne 0 设不盖玻璃片时,此点为第k 级明纹,则应有 r 2 r 1 k 所以 (n 1)e k (n 1)e k 6.96 7 零级明纹移到原第 7级明纹处. 例13-4薄钢片上有两条紧靠的平行细缝,用波长 =5461?的平面光波正入射到钢片 上。屏幕距双缝的距离为 D =2.00m ,测得中央明条纹两侧的第五级明条纹间的距离为 x =12.0mm., (1) 求两缝间的距离。 (2) 从任一明条纹(记作0)向一边数到第20条明条纹,共经过多大距离? (3) 如果使光波斜入射到钢片上,条纹间距将如何改变? 2kD x --------- 解(1) d 2kd d x 此处 k 5 10D d 0.910mm x (2)共经过20个条纹间距,即经过的距离

大学物理试卷及答案

2005─2006学年第二学期 《 大学物理》(上)考试试卷( A 卷) 注意:1、本试卷共4页; 2、考试时间: 120分钟; 3、姓名、序号必须写在指定地方; 4、考试为闭卷考试; 5、可用计算器,但不准借用; 6、考试日期: 7、答题答在答题纸上有效, 答在试卷上无效; b =×10?3m·K R =·mol ?1·K ?1 k=×10?23J·K ?1 c=×108m/s ? = ×10-8 W·m ?2·K ?4 1n 2= 1n 3= g=s 2 N A =×1023mol ?1 R =·mol ?1·K ?1 1atm=×105Pa 一.选择题(每小题3分,共30分) 1.在如图所示的单缝夫琅禾费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹 (A) 间距变大. (B) 间距变小. (C) 不发生变化. (D) 间距不变,但明暗条纹的位置交替变化. 2. 热力学第一定律只适用于 (A) 准静态过程(或平衡过程). (B) 初、终态为平衡态的一切过程. (C) 封闭系统(或孤立系统). (D) 一切热力学系统的任意过程. 3.假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的 (A) 角动量守恒,动能不变. (B) 角动量守恒,动能改变. (C) 角动量不守恒,动能不变. (D) 角动量不守恒,动量也不守恒. (E) 角动量守恒,动量也守恒. 4.质量为m 的物体由劲度系数为k 1和k 2的两个轻弹簧串联连接在水平光滑导轨上作微小振 动,则该系统的振动频率为 (A) m k k 212+π =ν. (B) m k k 2 121+π=ν . (C) 2 12 121k mk k k +π=ν. (D) )(212121k k m k k +π=ν 5. 波长? = 5500 ?的单色光垂直照射到光栅常数d = 2×10-4cm 的平面衍射光栅上,可能观 察到的光谱线的最大级次为 (A) 2. (B) 3. (C) 4. (D) 5. 6.某物体的运动规律为d v /dt =-k v 2t ,式中的k 为大于零的常量.当t =0时,初速为v 0,则

大学物理例题

1。质点的运动方程为 求: (1)质点的轨迹方程; (2)质点在第1s和第2秒的运动速度; (3)质点在第1s和第2秒的加速度。 2.在离水面高为h 的岸边,有人用绳子拉小船靠岸,人以不变的速率u收绳。求:当船在离岸距离为x时的速度和加速度。 例3:一质点作直线运动,已知其加速度a= 2- 2t (SI),初始条件为x0=0,v0=0,求 (1)质点在第1s末的速度; (2)质点的运动方程; (3)质点在前3s内经历的路程。

4。 5。

6。已知l 长的绳端拴一质量m 的小球(另 一端固定在o 点),自水平位置由静止释 放。求球摆至任一位置时,球的速度及绳 中的张力。 7. 一个滑轮系统,如图,A 滑轮的加速度为a ,两边分别悬挂质量为m 1和m 2的两个物体, 求两个物体的加速度。 7。一个以加速度大小a=1/3g 上升的升降机里,有一装置如图所示,物体A 、B 的质量相同,均为m ,A 与桌面之间的摩擦忽略不计,滑轮的重量忽略不计。从地面看,B 做自由落体运动。试求,若从升降机上看,B 的加速度大小是多少?

8. 9.重量为P 的摆锤系于绳的下端,绳长为l ,上端固定,如图所示,一水平变力大小为F 从零逐渐增大,缓慢地作用在摆锤上,使摆锤虽然移动,但在所有时间内均无限接近力平衡,一直到绳子与竖直线成 Θ0 角的位置,试计算此变力所做的功. P F

10.一束子弹射入木块,并在木块中走了S ',然后停止;而子弹和木块整个系统水平向右走了S ,求子弹和木块所受的一对摩擦力f s 和f s '所做的净功。 11. 如图所示,倔强系数为k 的弹簧悬挂着质量为m 1,m 2两个物体,开始时处于静止,突然把两物体间的连线剪断,求m 1的最大速度为多少? 12. 墙壁上固定一水平放置的轻弹簧,弹簧的另一端连一质量为m 的物体,弹簧的弹性系数为k ,物体m 与水平面间的摩擦系数为μ,开始时,弹簧没有伸长,现以恒力F 将物体自平衡位置开始向右拉动,试求此系统所具有的最大势能。 k 1m 2 m

大学物理习题分析与解答

第八章 恒定磁场 8-1 均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为[ ]。 (A) B r 22π (B) B r 2π (C) 0 (D) 无法确定 分析与解 根据高斯定理,磁感线是闭合曲线,穿过圆平面的磁通量与穿过半球面的磁通量相等。正确答案为(B )。 8-2 下列说法正确的是[ ]。 (A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零 (D) 磁感强度沿闭合回路的积分不为零时,回路上任意点的磁感强度必定为零 分析与解 由磁场中的安培环路定理,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和一定为零。正确答案为(B )。 8-3 磁场中的安培环路定理∑?=μ=?n L I 1i i 0d l B 说明稳恒电流的磁场是[ ]。 (A) 无源场 (B) 有旋场 (C) 无旋场 (D) 有源场

分析与解 磁场的高斯定理与安培环路定理是磁场性质的重要表述,在恒定磁场中B 的环流一般不为零,所以磁场是涡旋场;而在恒定磁场中,通过任意闭合曲面的磁通量必为零,所以磁场是无源场;静电场中E 的环流等于零,故静电场为保守场;而静电场中,通过任意闭合面的电通量可以不为零,故静电场为有源场。正确答案为(B )。 8-4 一半圆形闭合平面线圈,半径为R ,通有电流I ,放在磁感强度为B 的均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[ ]。 (A) B R I 2π (B) B R I 221π (C) B R I 24 1π (D) 0 分析与解 对一匝通电平面线圈,在磁场中所受的磁力矩可表示为B e M ?=n IS ,而且对任意形状的平面线圈都是适用的。正确答案为(B )。 8-5 一长直螺线管是由直径d =0.2mm 的漆包线密绕而成。当它通以I =0.5A 的电流时,其内部的磁感强度B =_____________。(忽略绝缘层厚度,μ0=4π×10-7N/A 2) 分析与解 根据磁场中的安培环路定理可求得长直螺线管内部的磁感强度大小为nI B 0μ=,方向由右螺旋关系确定。正确答安为(T 1014.33-?)。 8-6 如图所示,载流导线在平面内分布,电流为I ,则在圆心O 点处的磁感强度大小为_____________,方向为 _____________ 。 分析与解 根据圆形电流和长直电 流的磁感强度公式,并作矢量叠加,可得圆心O 点的总

大学物理考试卷及答案下

汉A 一、单项选择题(本大题共5小题,每题只有一个正确答案,答对一题得 3 分,共15 分) 1、强度为0I 的自然光,经两平行放置的偏振片,透射光强变为 ,若不考虑偏振片的反 射和吸收,这两块偏振片偏振化方向的夹角为【 】 A.30o; B. 45o ; C.60o; D. 90o。 2、下列描述中正确的是【 】 A.感生电场和静电场一样,属于无旋场; B.感生电场和静电场的一个共同点,就是对场中的电荷具有作用力; C.感生电场中可类似于静电场一样引入电势; D.感生电场和静电场一样,是能脱离电荷而单独存在。 3、一半径为R 的金属圆环,载有电流0I ,则在其所围绕的平面内各点的磁感应强度的关系为【 】 A.方向相同,数值相等; B.方向不同,但数值相等; C.方向相同,但数值不等; D.方向不同,数值也不相等。 4、麦克斯韦为建立统一的电磁场理论而提出的两个基本假设是【 】 A.感生电场和涡旋磁场; B.位移电流和位移电流密度; C.位移电流和涡旋磁场; D.位移电流和感生电场。 5、当波长为λ的单色光垂直照射空气中一薄膜(n>1)的表面时,从入射光方向观察到反射光被加强,此膜的最薄厚度为【 】 A. ; B. ; C. ; D. ; 二、填空题(本大题共15小空,每空 2分,共 30 分。) 6、设杨氏双缝缝距为1mm ,双缝与光源的间距为20cm ,双缝与光屏的距离为1m 。当波长为0.6μm 的光正入射时,屏上相邻暗条纹的中心间距为 。 7、一螺线管的自感系数为0.01亨,通过它的电流为4安,则它储藏的磁场能量为 焦耳。 8、一质点的振动方程为 (SI 制),则它的周期是 ,频率是 ,最大速度是 。 9、半径为R 的圆柱形空间分布均匀磁场,如图,磁感应强度随时间以恒定速率变化,设 dt dB 为已知,则感生电场在rR 区域为 。 4 I n 4λn 32λn 2λn 43λ)6 100cos(1052 π π-?=-t x

大学物理试题1.1

1.选择题 1.在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张 力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上 升时,绳子刚好被拉断? ( ) (A) 2a 1. (B) 2(a 1+g ). (C) 2a 1+g . (D) a 1+g . 2.如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为 ( ) (A) θcos mg . (B) θsin mg . (C) θcos mg . (D) θsin mg . 3.竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 紧靠在圆筒 的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A 不下落,圆筒转动的 角速度ω至少应为 ( ) (A) R g μ (B)g μ (C) R g μ (D)R g 4.已知水星的半径是地球半径的 0.4倍,质量为地球的0.04倍.设在地球 上的重力加速度为g ,则水星表面上的重力加速度为: ( ) (A) 0.1 g (B) 0.25 g (C) 2.5 g (D) 4 g 5.一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则 摆锤转动的周期为 ( ) (A)g l . (B)g l θcos . (C)g l π 2. (D)g l θπcos 2 . 6.在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动, 则转台的角速度ω应满足 ( ) (A)R g s μω≤. (B)R g s 23μω≤. (C)R g s μω3≤. (D)R g s μω2≤. 7.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f ( ) (A) 恒为零. (B) 不为零,但保持不变. (C) 随F 成正比地增大. (D) 开始随F 增大,达到某一最大值后,就保持不变 a 1 m θ θ l ωO R A A O O ′ ω

理工科大学物理知识点总结及典型例题解析

理工科大学物理知识点总结及典型例题解析

————————————————————————————————作者:————————————————————————————————日期: ?

v 第一章 质点运动学 本章提要 1、 参照系:描述物体运动时作参考的其他物体。 2、 运动函数:表示质点位置随时间变化的函数。 位置矢量:k t z j t y i t x t r r )()()()(++== 位置矢量:)()(t r t t r r -?+=? 一般情况下:r r ?≠? 3、速度和加速度: dt r d v = ; 22dt r d dt v d a == 4、匀加速运动: =a 常矢量 ; t a v v +=0 2 210t a t v r += 5、一维匀加速运动:at v v +=0 ; 2210at t v x += ax v v 2202=- 6、抛体运动: 0=x a ; g a y -= θcos 0v v x = ; gt v v y -=θsin 0 t v x θcos 0= ; 2 210sin gt t v y -=θ 7、圆周运动:t n a a a += 法向加速度:22 ωR R v a n == 切向加速度:dt dv a t = 8、伽利略速度变换式:u v v +'= 【典型例题分析与解答】 1.如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h,滑轮到原船位置的绳长为l 。当人以匀速v 拉绳,船运动的速度v '为多少? 解:取如图所示的坐标轴, 由题知任一时刻由船到滑轮的绳长为l=l 0-vt 则船到岸的距离为: 2 2022)(-h -vt l -h l x == 因此船的运动速率为: o x v l v h

大学物理试卷及答案

大学物理试卷及答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

察到的光谱线的最大级次为

(A) 2. (B) 3. (C) 4. (D) 5. 6.某物体的运动规律为d v /dt =-k v 2t ,式中的k 为大于零的常量.当t =0时,初速为v 0,则速度v 与时间t 的函数关系是 (A) 0221v v +=kt (B) 0221 v v +-=kt (C) 02121v v +=kt (D) 0 2121v v + -=kt 7. 在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是: (A) 合力矩增大时, 物体角速度一定增大; (B) 合力矩减小时, 物体角速度一定减小; (C) 合力矩减小时,物体角加速度不一定变小; (D) 合力矩增大时,物体角加速度不一定增大. 8.一质点沿x 轴作简谐振动,振动方程为 )3 1 2cos(1042π+π?=-t x (SI). 从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 (A) s 81 (B) s 61 (C) s 41 (D) s 31 (E) s 2 1 9.下列各图所示的速率分布曲线,哪一图中的两条曲线能是同一温度下氮气和氦气的分子速率分布曲线 10.一束光强为I 0的自然光,相继通过三个偏振片P 1、P 2、P 3后,出射光的光强为I =I 0 / 8.已知P 1和P 3的偏振化方向相互垂直,若以入射光线为轴,旋转P 2,要使出射光的光强为零,P 2最少要转过的角度是 (A) 30°. (B) 45°. (C) 60°. (D) 90°. 二. 填空题(每空2分,共30分). 1. 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动. 2. 一卡诺热机低温热源的温度为27C,效率为30% ,高温热源的温度 T 1 = . 3.由绝热材料包围的容器被隔板隔为两半,左边是理想气体,右边真空.如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度__________(升高、降低或不变),气体的熵__________(增加、减小或不变). 4. 作简谐振动的小球, 振动速度的最大值为v m =3cm/s, 振幅为A=2cm, 则小球振动的周期为 ;若以速度为正最大时作计时零点,振动表达式为 .

相关文档
最新文档